@article{7418, author = {B. Lloyd and R. J. Akers and F. Alladio and S. Allan and L. C. Appel and M. Barnes and N. C. Barratt and N. Ben Ayed and B. N. Breizman and M. Cecconello and C. D. Challis and I.T. Chapman and D. Ciric and G. Colyer and J. W. Connor and N. J. Conway and M. Cox and S. C. Cowley and G. Cunningham and A. Darke and M. De Bock and E. Delchambre and G. De Temmerman and R. O. Dendy and P. Denner and M. D. Driscoll and B. Dudson and D. Dunai and M. Dunstan and S. Elmore and A. R. Field and G. Fishpool and S. Freethy and L. Garzotti and K. J. Gibson and M. P. Gryaznevich and W. Guttenfelder and J. Harrison and R. J. Hastie and N. C. Hawkes and T. C. Hender and B. Hnat and D. F. Howell and M. D. Hua and A. Hubbard and G. Huysmans and D. Keeling and Y. C. Kim and A. Kirk and Y. Liang and M. K. Lilley and M. Lisak and S. Lisgo and Y. Q. Liu and G. P. Maddison and R. Maingi and S. J. Manhood and R. Martin and G. J. McArdle and J. McCone and H. Meyer and C. Michael and S. Mordijck and T. Morgan and A. W. Morris and D. G. Muir and E. Nardon and G. Naylor and M. R. O'Brien and T. O'Gorman and J. Palenik and A. Patel and S. D. Pinches and M. N. Price and C. M. Roach and V. Rozhansky and S. Saarelma and S. A. Sabbagh and A. Saveliev and R. Scannell and S. E. Sharapov and V. Shevchenko and S. Shibaev and D. Stork and J. Storrs and W. Suttrop and A. Sykes and P. Tamain and D. Taylor and D. Temple and N. Thomas-Davies and A. Thornton and M. R. Turnyanskiy and M. Valovic and R. G. L. Vann and G. Voss and M. J. Walsh and S. E. V. Warder and H. R. Wilson and M. Windridge and M. Wisse and S. Zoletnik}, title = {Overview of physics results from MAST}, abstract = {Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%. }, year = {2011}, journal = {Nuclear Fusion}, volume = {51}, number = {9}, pages = {094013}, month = {Sep}, isbn = {0029-5515}, doi = {10.1088/0029-5515/51/9/094013}, note = {ISI Document Delivery No.: 818DPTimes Cited: 0Cited Reference Count: 60SI}, language = {English}, }