@article{8772, author = {M. Hoelzl and G.T. A. Huijsmans and S.J. P. Pamela and M. Becoulet and E. Nardon and F.J. Artola and B. Nkonga and C.V. Atanasiu and I. Krebs and E. Westerhof and V. Bandaru and A. Bhole and D. Bonfiglio and A. Cathey and O. Czarny and A. Dvornova and T. Fehér and A. Fil and E. Franck and S. Futatani and M. Gruca and H. Guillard and J.W. Haverkort and I. Holod and D. Hu and S.K. Kim and S.Q. Korving and L. Kos and L. Kripner and G. Latu and F. Liu and P. Merkel and D. Meshcheriakov and V. Mitterauer and S. Mochalskyy and J.A. Morales and R. Nies and N. Nikulsin and F. Orain and D. Penko and J. Pratt and R. Ramasamy and P. Ramet and C. Reux and N. Schwarz and Singh Verma and S.F. Smith and C. Sommariva and E. Strumberger and D.C. vanVugt and M. Verbeek and F. Wieschollek and J. Zielinski}, title = {The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas}, abstract = {JOREK is a massively parallel fully implicit non-linear extended MHD code for realistic tokamak X-point plasmas. It has become a widely used extremely versatile simulation code for studying large-scale plasma instabilities and their control and is continuously developed in an international community with strong involvements in the European fusion research program and ITER organization. This article gives a comprehensive overview of the physics models implemented, numerical methods applied for solving the equations and physics studies performed with the code. A dedicated section highlights some of the verification work done for the code. A hierarchy of different physics models is available including a free boundary and resistive wall extension and hybrid kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element grids in single and double X-point plasmas which can be extended to the true physical walls and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key results obtained with JOREK regarding plasma edge and SOL, are deep insights into the dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free regimes, detachment physics, the generation and transport of impurities during an ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the focus is on the dynamics of the thermal quench and current quench triggered by massive gas injection (MGI) and shattered pellet injection (SPI), runaway electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical displacement events (VDEs). Also the seeding and suppression of tearing modes (TMs), the dynamics of naturally occurring thermal quenches triggered by locked modes, and radiative collapses are being studied.}, year = {2021}, journal = {Nuclear Fusion}, volume = {61}, pages = {065001}, url = {https://arxiv.org/abs/2011.09120}, doi = {10.1088/1741-4326/abf99f}, language = {eng}, }