@article{8990, author = {J. Garcia and F.J. Casson and L. Frassinetti and D. Gallart and L. Garzotti and H.T. Kim and M. Nocente and S. Saarelma and F. Auriemma and A. Ho and J. Ferreira and S. Gabriellini and P. Huynh and K. Kirov and E. Lerche and M.J. Mantsinen and V.K. Zotta and Z. Stancar and D.M.A. Taylor and D. Van Eester and C.D. Challis and JET Contributors}, title = {Modelling performed for predictions of fusion power in JET DTE2: overview and lessons learnt}, abstract = {For more than a decade, an unprecedented predict-first activity has been carried in order to predict the fusion power and provide guidance to the second Deuterium–Tritium (D–T) campaign performed at JET in 2021 (DTE2). Such an activity has provided a framework for a broad model validation and development towards the D–T operation. It is shown that it is necessary to go beyond projections using scaling laws in order to obtain detailed physics based predictions. Furthermore, mixing different modelling complexity and promoting an extended interplay between modelling and experiment are essential towards reliable predictions of D–T plasmas. The fusion power obtained in this predict-first activity is in broad agreement with the one finally measured in DTE2. Implications for the prediction of fusion power in future devices, such as ITER, are discussed.}, year = {2023}, journal = {Nuclear Fusion}, volume = {63}, pages = {112003}, publisher = {IOP Publishing}, doi = {10.1088/1741-4326/acedc0}, language = {eng}, }