Capabilities of the ITER Electron Cyclotron Equatorial Launcher for Heating and Current Drive

Daniela Farina
L Figini, M Henderson, G. Ramponi, and G Saibene

Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milano, Italy
ITER Organization, Saint-Paul-lez-Durance France
Fusion for Energy, Barcelona, Spain

acknowledgments
A. Loarte, T. Casper, K. Kajiwara, K Takahashi

EC-17, Deurne 10.5.2012
Outline

• **ITER Equatorial Launcher (EL) goals**

• **EC capabilities within present EL design**
 – ECCD in scenarios at burn @ full field
 – ECCD in plasma current ramp-up phase @ full field
 – ECRH @ nominal and reduced B field

• **Proposal of a new EL design with poloidal steering mirrors**

 work done under ITER Contracts

 see Farina et al NF 2012
ITER Equatorial Launcher (EL)
170 GHz @ 20 MW

Present design *(still to be finalized)*
- 3 sets of 8 beams, equatorial port
 - 3 mirrors same R @ different z, TOP, MID, BOTTOM
- Toroidal steering

Physics Objectives
- Access in range of $0 \leq \rho_T < 0.45$)
- Drive Current (co-ECCD)
- Current Profile tailoring (co&cnt-ECCD)
- Central Heating
- Assist L-H transition
- SS operation
- *Breakdown & Burnthrough*
Beam tracing analysis

• Beam tracing code GRAY (Farina, FS&T 2007):
 – astigmatic Gaussian beam propagation
 – relativistic power absorption (Farina, FS&T 2008)
 – ECCD moment conservation model (Maruschenko FS&T 2009)

• J and p_d profile characterization
 – almost Gaussian profile:
 • ρ_{tor}, $\Delta \rho_{\text{tor}}$: peak radius, profile width at 1/e
 – generic profiles:
 • $<\rho>$, $\sigma_{\rho}=(<\delta \rho^2>)^{1/2}$: “average” radius and width

\[
<\rho> = \frac{\int \rho p(\rho)dV}{\int p(\rho)dV} = \frac{\int \rho dP}{\int dP}
\]

\[
<\delta \rho^2> = \frac{\int (\rho - <\rho>)^2 p(\rho)dV}{\int p(\rho)dV}
\]

• Launching set up
 – 3 mirror locations (beam / single ray analysis)
 R=926.5 cm z=2, 62, 122 cm
 – poloidal α and toroidal β launching angles
 $\tan \alpha = N_z/N_R$, $\sin \beta = N_\phi$

20° ≤ |β| ≤ 45°
$\alpha = 0°$, ± 5°
Two main ITER scenarios at full field (ITER IDM):

a) “15 MA Elmy H-mode Scenario”
 Low T_e & high n_e -> low ECCD efficiency

b) “9 MA non inductive Scenario”
 High T_e & low n_e -> high ECCD efficiency
ECCD results at full field

SCEN 15 MA:
- ~15% larger I_{cd} wrt old scen. 2 estimates
 (momentum conservation model)

SCEN 9 MA:
- quite large I_{cd}, up to 60 kA/MW
- up to +50% more than for previous scen. 4 (larger T_e)

dotted lines: non monotonic J profile
(2nd harm contribution)

Achievable radial range: $0 < \rho < 0.5$
The present EL design foresees co-injection from TOP and LOW rows and counter injection from MID row.

Various H&CD combinations are feasible delivering power either to a single row or to more than one row in different directions.

LIMITATION

upper radial limit around $\rho \approx 0.45$

OPEN ISSUE

How to further optimize EC interaction region?
EC potential at various time slices

4 time slices of a 15 MA Scenario
(courtesy T Casper, ITER):

a) after diverting (L-mode)
b) during current ramp-up (L-mode)
c) at the end of current ramp-up (H-mode)
d) at an early burn stage (H-mode)

<table>
<thead>
<tr>
<th>case</th>
<th>time slice</th>
<th>I_{pl} (MA)</th>
<th>n_{e0} (10^{20} m$^{-3}$)</th>
<th>T_{e0} (keV)</th>
<th>Fusion power (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>11.7 s</td>
<td>3.7</td>
<td>0.075</td>
<td>4.6</td>
<td>0.002</td>
</tr>
<tr>
<td>(b)</td>
<td>58 s</td>
<td>11.5</td>
<td>0.30</td>
<td>8.0</td>
<td>1.6</td>
</tr>
<tr>
<td>(c)</td>
<td>80 s</td>
<td>15</td>
<td>0.40</td>
<td>14.4</td>
<td>4.4</td>
</tr>
<tr>
<td>(d)</td>
<td>130 s</td>
<td>15</td>
<td>0.85</td>
<td>29.0</td>
<td>471.7</td>
</tr>
</tbody>
</table>

D Farina, EC-17
10.5.2012
ECCD in the ramp-up phase

- **t=130 s**
 - wide radial deposition range
 - lower ECCD efficiency due to 2nd harm. parasitic absorption

- **t=80 s**
 - OM absorption, large ECCD efficiency

- **t=58 s**
 - both XM & OM absorption but at different location
 - higher I_{cd} for XM injection

- **t=11 s**
 - XM absorption only, close to plasma center
 - quite high I_{cd} because of low n_e
XM absorption at low density

XM1 interaction usually prevented in case of low field side injection due to presence of right cutoff

\[\frac{\omega_p^2}{\omega^2} = (1-N_r^2)(1-\frac{\Omega}{\omega}) \]

(blue dotted line)

At low \(n_e \) and high \(T_e \), XM absorption may occur along the trajectory far ahead of the EC cold resonance (red line) in the upshifted resonance region at

\[\Omega(x)/\omega = [1-N_r^2(x)]^{1/2} \]

(red dashed line)

Right cutoff shifts outwards for increasing \(n_e \) (a->d)

XM1 interaction cannot occur anymore after a given time depending on the injection angle.
EC heating capabilities at $B \leq 5.3\ T$

Radial power localization versus magnetic field for $20^\circ \leq |\beta| \leq 42^\circ$ and XM&OM injection, $P_{\text{abs}} > 95%$

GOAL:
- **Central Heating:**
 - Power absorbed inside $\rho \leq 0.5$
- **L to H-mode:**
 - Heat inside separatrix $\rho \leq 0.85$

OM efficient
- at large T_e, n_e ($t=80s$, 130s)
- high B (OM1)

XM efficient
- at low n_e ($t \leq 58s$) as XM1
- at low B (XM2-3)

at $B \approx 4\ T$: 1st harm. at hfs boundary & 2nd harm. at lfs boundary
Heating potential at lower B

Maximum EC power deposited inside radius ρ

$$P_{\text{ins}}(\rho) = \int_0^\rho \rho \, dV$$

High EC absorption in a quite wide B_0 range

ECRH efficient not only close to nominal and half values $5.3 \, T$ & $2.65 \, T$

2 critical B_0 intervals:
- $3.6 \, T < B_0 < 4 \, T$: 1$^{\text{st}}$ and 2$^{\text{nd}}$ harmonic are close to inner/outer plasma boundary
- $B_0 < 2.5 \, T$: EC interaction occurs at 2$^{\text{nd}}$ and 3$^{\text{rd}}$ harmonic (less efficient, especially at low n_e & T_e).

Maximum over OM&XM, and $20^\circ \leq |\beta| \leq 42^\circ$
How to extend EC deposition region?

Driven EC current
Full poloidal and toroidal angle scan

15 MA – MID ROW

9 MA – MID ROW

Driven EC current
Full poloidal and toroidal angle scan

toroidal steering

poloidal

α (deg)

$|\beta|$ (deg)

$|I_{cd}|$ (kA/MW)
Which is the best path in α & β?

- at present pure toroidal steering
- should we move to poloidal steering?
- or to a combination of the two?
- PROS and CONS in all options

\[\rho_T < 0.42 \]
\[\rho_T < 0.45 \]
\[\rho_T < 0.42 \]
How to maximize ECCD?

EL @ toroidal steering
\(I_{cd} \) up to \(\rho \approx 0.45 \)

UL @ poloidal steering
\(I_{cd} \) at \(\rho > 0.5 \)

EL poloidal steering allows to:
- maximize \(I_{cd} \) at mid radius
- drive current beyond mid radius

Constraint on the choice of the toroidal angle:
- \(\beta < \sim 23^\circ \) to allow for EC assisted breakdown and startup from EL

CAVEAT
Present analysis based on 2 scenarios at burn, results sensitive to \(n&T \) values
Toroidal versus poloidal steering

15 MA Scenario:
- poloidal steering allows to extend radial deposition region
- I_{cd} values almost the same as for toroidal steering

9 MA Scenario:
- much lower I_{cd} at $0.2<\rho<0.4$ *(2\text{nd} harm. absorption at low beta)*
- much wider radial interaction region in case of poloidal steering
Conclusions

- Two reference ITER scenarios investigated with new CD momentum conservation model (+15% ECCD)

- ECH&CD during plasma ramp-up conditions at nominal magnetic, high to full absorption in spite of reduced n_e and T_e

- EC system applicable for central heating (inside mid radius) for the majority of the toroidal magnetic field range from half to full field

- Proposal for a poloidal steering EL setup to increase ECCD beyond mid radius, further investigation still required, final assessment in the near future