

Self-consistent Fokker-Planck approach to CO₂ vibrational kinetics

P. Viegas¹, M. C. M. van de Sanden¹, S. Longo² and P. Diomede¹

¹ CPPC group, DIFFER, Eindhoven, the Netherlands ² Dipartimento di Chimica, Bari, Italy

July 16th 2019

Motivation - CO₂ conversion

Efficient conversion in plasma reactors at DIFFER:

Forward vortex

Supersonic expansion

Understanding and optimizing CO₂ conversion in MW plasma reactors requires multidimensional modelling

Modelling CO₂ plasma reactors

- The description of plasma reactors requires multidimensional models that couple microwave, flow, heat and plasma.
- Vibrational non-equilibrium
 has an impact on
 dissociation mechanisms in
 CO₂ discharge reactors.

Modelling CO₂ plasma reactors

- The description of plasma reactors requires multidimensional models that couple microwave, flow, heat and plasma.
- Vibrational non-equilibrium has an impact on dissociation mechanisms in CO₂ discharge reactors.
- Usual State-To-State (STS) approach:
 Resolution of conservation equations for dozens of vibrational levels,
 including all their reactions.
- In reactor models, the STS approach can compromise computational efficiency.

- Alternatively, we can consider only a few species and effective rate coefficients that take into account vibrational non-equilibrium
- But it still requires the population of vibrationally excited states:
 Vibrational Distribution Function (VDF)
- Need fast solution of the VDF that can be coupled with plasma models and preserves accurate results

Alternative approach for vibrational kinetics

Multilevel kinetics

Collisional interactions

System of ODEs

- \rightarrow Drift and diffusion in energy space
- → Fokker-Planck Equation

Gain-loss equation for population of states *i*:

$$\frac{d n_i}{dt} = \sum_j S_{ij}(t)$$

 n_i = number density of species *i*

 S_{ij} = source term associated to reaction j

 Assumption of continuum in energy space of asymmetric stretching vibrational mode: Energy between states << dissociation energy

 Assumption of only small energy transitions: Monoquantum transitions References: Van Kampen, *North-Holland* (1981) Biberman *et al., Consultants Bureau* (1987)

Fokker-Planck (FP) approach

$$\frac{df(\varepsilon)}{dt} = -\frac{dJ(\varepsilon)}{d\varepsilon}$$

$$J(\varepsilon) = A(\varepsilon)f(\varepsilon) - B(\varepsilon)\frac{df(\varepsilon)}{d\varepsilon}$$

- f = vibrational distribution function
- J =flux in energy space
- A = drift coefficient
- B = diffusion coefficient

Transport coefficients

A and B as $f(T_g, T_v, k)$

derived for each process in

Viegas *et al., submitted*

Rusanov, Fridman and Sholin, Sov. Phys. Usp. **24** (1981), 447

8/18

FIG. 7. Population of antisymmetric CO_2 vibrational mode.

Numerical FP approach

In stationary conditions,

$$\frac{df(\varepsilon)}{dt} = -\frac{dJ}{d\varepsilon} = 0$$

f = vibrational distribution functionJ = flux in energy space

J is uniform and can be defined as dissociation rate at $\varepsilon = \varepsilon_{diss}$

Finding J and f becomes a flux-matching problem that can be solved fast

Diomede *et al., J. Phys. Chem. C* **121** (2017), 19568 Diomede *et al., J. Phys. Chem. A* **122** (2018), 7918 Need to implement in self-consistent plasma model and verify its correctness

Comparison of STS and FP approaches, assuming:

- Fixed pressure p = 100 mbar and gas temperature $T_q = 300$ K.
- Constant input power density *P*_{dep}.
- Almost pure CO₂ plasma; low dissociation.
- Dissociation only through asymmetric stretching vibrational channel.
- Same kinetic data in STS and FP models.

- Electron energy ε_m equation
- Species densities rate equations:

$$\frac{d n_i}{dt} = \Sigma_j S_{ij}(t)$$

$$n_i$$
 = number density of species i

 S_{ij} = source term associated to reaction j

• Solved until stationary condition is reached

- $k(\varepsilon_m)$ from EEDF solution from Bolsig+ for pure CO₂
- Kinetic data from
 Kozak and Bogaerts, Plasma Sources Sci. Technol. 23 (2014), 045004

Zero-dimensional STS model

Total of 261 reactions and 28 ODEs to solve:

 ε_m , e, CO₂(v=0-21), CO₂(v_a), CO₂(v_b), CO₂(v_c), CO₂(v_d)

1.	Ionization:	$e + CO_2(v=0-3, v_{a_i}v_{b_i}v_c) \rightarrow CO_2^+ + 2 e$
2.	Recombination:	$e + CO_2^+ \rightarrow CO_2$ (CO+O)
3.	e-V:	$e + CO_2(v=0-2, v_{a,}v_{b,}v_c) \leftrightarrow CO_2(v=1-3, v_{a,}v_{b,}v_c) + e$
4.	V-V:	$\begin{array}{rcl} \text{CO}_2(v=n) &+& \text{CO}_2(v=1) & \longleftrightarrow & \text{CO}_2(v=n+1) &+& \text{CO}_2(v=0) \\ \text{CO}_2(v=n) &+& \text{CO}_2(v=n) & \longleftrightarrow & \text{CO}_2(v=n+1) &+& \text{CO}_2(v=n-1) \end{array}$
5.	V-V dissociation:	$CO_2(v=21) + CO_2(v=1) \rightarrow CO_2(CO+O) + CO_2(v=0)$ $CO_2(v=21) + CO_2(v=21) \rightarrow CO_2(CO+O) + CO_2(v=20)$
6.	V-V':	$\text{CO}_2(v=n) + \text{CO}_2(v=0) \leftrightarrow \text{CO}_2(v=n-1) + \text{CO}_2(v_{a_i}v_b)$
7.	V-T:	$CO_2(v=n) + CO_2 \leftrightarrow CO_2(v=n-1) + CO_2$
		$CO_2(v_{a,}v_{b,}v_{c,}v_d) + CO_2 \longleftrightarrow CO_2(v=0,v_{a,}v_{b,}v_c) + CO_2$ 12/18

Reduced STS + FP model

 Use a simplified STS model to calculate T_v in stationary condition: Same energy equation and electron rate equation as full STS model;
 V-V, V-V' and V-T in asymmetric stretching mode truncated at v=3.

• Total of 77 reactions and 9 ODEs to solve: ε_m , e, CO₂(v=0-3), CO₂(v_a), CO₂(v_b), CO₂(v_c)

• Solve the stationary FP equation to obtain the VDF and the V-V dissociation rate. Replaces STS V-V, V-V' and V-T in asymmetric stretching mode.

Benchmarking the FP approach ($P_{dep} = 1000 \text{ Wcm}^{-3}$)

Full STS model:

- $n_e = 1.9 \times 10^{11} \text{ cm}^{-3} \text{ and } T_e = 1.52 \text{ eV}$
- $T_v = 2101 \text{ K}$
- V-V dissociation rate = 1.11×10^{12} cm⁻³s⁻¹
- Calculation time 423.87 s

Reduced STS + FP model:

- $n_e = 1.9 \times 10^{11} \text{ cm}^{-3} \text{ and } T_e = 1.52 \text{ eV}$
- $T_{\nu} = 2169 \text{ K}$
- V–V dissociation rate = 1.24×10^{12} cm⁻³s⁻¹
- Calculation time 69.61 s (69.58 + 0.03 s)

Very good agreement on VDF

Benchmarking the FP approach (variation of P_{dep})

- T_v slightly higher with reduced STS difference increases with P_{dep}
- Very good agreement on VDF

Benchmarking the FP approach (variation of P_{dep})

- T_v slightly higher with reduced STS difference increases with P_{dep}
- Very good agreement on VDF for $T_v < 2500$ K
- Correctness of FP approach is verified for T_g = 300 K and T_v < 2500 K

- The correctness of the FP approach has been verified for use in self-consistent plasma models.
- The FP approach is much more computationally efficient for stationary solution than the full STS approach.
- The computational efficiency obtained by the FP approach is very promising for the development of multidimensional models.

- Understand the influence of further chemical processes on VDF, and vice-versa, using the FP approach.
- Study of T_q dependence of FP coefficients and VDF.
- > Use the self-consistent FP model in conditions of experiments with CO_2 plasma reactors.

Thank you for your attention

Acknowledgements:

European Union project KEROGREEN

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

TTW open technology project (grant nr. 15325)

NWO Applied and Engineering Sciences

Shell-NWO/FOM initiative 'Computational sciences for energy research'

