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Abstract. The current ramp-up phase for the ITER hybrid scenario is analyzed with

the CRONOS integrated modelling suite. The simulations presented in this paper

show that the heating systems available at ITER allow, within the operational limits,

the attainment of a hybrid q profile at the end of the current ramp-up. A reference

ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A

heating scheme with only NBI and ECCD can also reach the target q profile; however,

LHCD can play a crucial role in reducing the flux consumption during the ramp-up

phase. The optimum heating scheme depends on the chosen transport model, and on

assumptions on parameters like ne peaking, edge Te,i and Zeff . The sensitivity of the

current diffusion on parameters that are not easily controlled, shows that development

of real time control is important to reach the target q profile. A first step in that

direction has been indicated in this paper. Minimizing resistive flux consumption and

optimizing the q profile turn out to be conflicting requirements. A trade-off between

these two requirements has to be made. In this paper it is shown that fast current

ramp with L-mode current overshoot is at the one extreme, i.e. optimum q profile at

the cost of increased resistive flux consumption, whereas early H-mode transition is at

the other extreme.
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1. Introduction

The scenario design of a future tokamak device like ITER naturally focuses on the main

heating phase, during which fusion reactions take place. Nevertheless, the conditions to

access, and eventually to terminate smoothly, the desired main heating state is also an

essential topic. The main heating phase is usually carried out at high plasma current

(Ip), since in a tokamak high current means high confinement. This current is ramped

up from a negligible value just after the plasma breakdown to a plateau value, usually

mainly by inductive means. There are several issues to be addressed during plasma

current ramp phases of tokamak operation [1]. First, Magnetohydrodynamic (MHD)

activity can take place and lead to early plasma termination, depending on the shape

of the current density profile. Hence the design of the Poloidal Field (PF) system

and plasma shape controller must allow ramping up Ip while providing stable plasma

equilibrium. Secondly, a significant amount of magnetic flux is needed to ramp the

plasma up inductively, thus the flux consumption during the current ramp is also a key

element in the design of the PF system.

One of the operation modes foreseen for ITER is the so-called hybrid scenario [2].

Compared to the standard H-mode, this scenario is characterized by a somewhat lower

Ip, thus allowing a more prolonged heating phase. In this operation mode, the loss of

confinement due to lower Ip, is compensated by a confinement improvement brought

about by a carefully tailored q profile. This typical hybrid q profile is characterized

by qmin near or slightly above 1 and a wide flat region [3]. Therefore, apart from the

two issues mentioned above, a third issue is central to the current ramp-up phase for

hybrid operation: the q profile obtained at the end of the ramp-up must be optimized by

applying additional heating and non-inductive current drive during the current ramp. It

should be noted that experience on existing large tokamaks has shown that it is nearly

impossible to restore the q profile to the hybrid shape once it has relaxed to a shape

with q(0) clearly below 1 over a sizeable area.

This paper concentrates on the last-mentioned issue: it first reports on a systematic

effort to optimize, using the available engineering knobs, the current ramp-up phase for

the ITER hybrid scenario, in terms of q profile attained at the end of the ramp-up phase.

Then the paper addresses the sensitivity of the final q profile to the assumptions made,

and how to adapt the ramp-up scenario when plasma parameters deviate from assumed

values. In the last part of the paper we come back briefly to the first two issues, i.e. the

operational limits and the flux consumption.

There are contradictory results on the reliability of the neoclassical description of

current diffusion during the current ramp-up phase. Recent work shows that in JET,

using MSE measurements very early in the ramp-up, the calculated current diffusion

until q = 2 is reached is significantly faster than observed in the experiment [4]. Also

in AUG the neoclassical calculation yielded a too fast current penetration during the

ohmic ramp-up phase [5]. On the other hand, the calculated current diffusion in the

later part of the ramp-up in JET can be matched with the observations, by adjusting
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the profiles of Zeff and Te within the experimental uncertainties [6]. Moreover, the

observed relaxation of the q profile after the L-H transition in JET is reported to be

in agreement with neoclassical calculations [7]. The emerging pattern may be that the

current diffusion modelling appears to work better at low collisionality, which is good

news for the ITER modelling, since the collisionality is low in ITER. In the present work

we will use neoclassical resistivity for the calculation of the current density evolution.

Although this may cause some overestimation of the current penetration in the early

phase of the ramp-up, this systematic effect does not affect the differences between the

simulations brought about by different choices of plasma and heating parameters.

Validation on the ramp-up phase of JET, AUG and Tore Supra [6, 8, 9] has shown

that both empirical scaling based models and the semi-empirical Bohm/gyro-Bohm

model (L-mode version, ITB shear function off, [10]) yield a good reproduction of this

phase for considered discharges, in terms of Te profile and li. Therefore these two models

have been used in the reported work. The Coppi-Tang model [11] did a good job in

reproducing the current ramp-up phase in DIII-D [12], but strongly underestimated

thermal transport in JET [6]; hence this model will not be used in this work.

The paper is organized as follows: first the modelling tools and ITER assumptions

are discussed. Next a figure of merit for the q profile is defined and the choice of

the heating and current drive scheme is discussed. Then, in the central sections,

the optimum ramp-up scenario (given the assumptions made) is presented, and the

sensitivity of the results to several parameters is analyzed. Next we analyze whether

one can gain by a faster current ramp rate or a current overshoot. Then the crucial

points of operational limits and flux consumption are treated from the reconstruction

of the currents in the PF coils. Finally a few words are spent on the extrapolation to

the burn phase.

This work was carried out within the ITER Scenarios Modelling working group

(ISM), part of the European Integrated Tokamak Modelling (ITM) Task Force.

2. Modelling tools and assumptions

For the simulations the CRONOS integrated suite of codes [13] was used. The core of

CRONOS is a 1.5D transport solver, whereby 1D current diffusion, particle and energy

equations are solved up to the separatrix, self consistently with 2D magnetic equilibrium.

The magnetic equilibrium is calculated with HELENA [14]. The neoclassical transport,

bootstrap current, and neoclassical resistivity are calculated with NCLASS [15]. In

principle, CRONOS can model sawteeth; however, in the simulations sawteeth were not

taken into account, because the goal was to stay away from sawtoothing regimes. The

main simulations are done in prescribed boundary mode and are then post-processed

by the FREEBIE code [16] to compute the currents in the PF coils, allowing to check

that the designed scenario stays within the PF coils operational limits.

In this work, the NBI heat and current sources are calculated by NEMO/SPOT

[17, 18], the ECRH propagation and absorption are simulated with the ray-tracing code
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REMA [19], and the LH deposition and current drive with C3PO/LUKE [20]. LHCD

and ECCD have been calculated separately without accounting for possible synergy

between the two. However, this synergy occurs only in very specific conditions (same

location of the waves in real and velocity space); therefore it would very likely be only

a small correction to the present simulations. Radial diffusion of fast electrons is not

taken into account in the calculation of the driven current densities, since it has been

shown to be negligible, see e.g. [21]. Other mechanisms that could lead to broadening

of the LHCD and ECCD profiles, such as scattering of the waves by density fluctuations

[22] were not taken into account.

As indicated in the introduction, two transport models have been used, following

the outcome of the benchmark versus experiment carried out in [9]: an empirical scaling

based model and the semi-empirical Bohm/gyro-Bohm model (L-mode version, ITB

shear function off). For the scaling based model a fixed radial shape of the heat diffusion

χe,i(ρ, t) = A(t)(1+6ρ2+80ρ20) is used, where A(t) is adjusted at each call of the model

such that the plasma thermal energy contentWth follows a known scaling expression, e.g.

the ITER-97L (L-mode) scaling [23] or the IPB98 (H-mode) scaling [24, 25]. Previous

work showed that confinement during the ramp-up phase is weaker than standard L-

mode [9], therefore a scaling factor smaller than 1 was needed in both cases: the optimal

(and similar) agreement between experiment and simulations in the current ramp-up

dataset was obtained using LITER97L = 0.6 and HIPB98 = 0.4, respectively. Here we will

use the IPB98 scaling with HIPB98 = 0.4.

The ITER design and limitations are used, e.g. the designed geometries and

limitations of the heating systems are used. For example, NBI is only allowed if

〈ne〉 ≥ 2 · 1019m−3 in order to avoid shine through, and NBI can only be applied at half

or full power (i.e. 16.5 or 33 MW). However, for numerical stability of the simulations,

a finite ramp-up time of 10 s is assumed; this has no effect on the q profiles at the end

of the current ramp-up.

The following assumptions were adopted from the ITER team:

(i) An expanding ITER shape is used, starting on the LFS of the torus, with initial

plasma volume ≃ 50% of the final plasma volume. X-point formation takes place after

15s, when Ip = 3.5 MA.

(ii) A flat Zeff profile is assumed, decreasing in time with increasing density, with an

asymptotic value of 1.7 [26].

(iii) A rather low density of ne = 0.25 · nGw
e is taken.

The ne profile is assumed to be parabolic with a moderate peaking factor

ne(0)/〈ne〉 = 1.3. This is a compromise between the (unrealistic) flat ne profile often

used in ITER scenario predictions and the peaking factor of ≃ 1.5 predicted by scaling

studies [27].

In addition, the simulations will be based on L-mode ramp-up. Therefore as an

additional constraint is taken that the total input power should stay below the L-H

threshold during the whole ramp-up phase; the L-H threshold scaling law [28] predicts

for the reference density PLHthr ≃ 29 MW at end of the current ramp-up. In section 8
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it will be argued that a transition to H-mode during the ramp-up, although profitable

for the standard H-mode scenario, is not useful for the ramp-up to the hybrid scenario.

As reference scenario a moderate Ip ramp rate is chosen such that Ip = 12 MA

is reached after 80 s. However, also faster ramp rates and current overshoots will be

considered.

Other assumptions (Te,i(edge), initial Te,i and li) are based on experimental evidence

from existing large tokamaks. The initial parabolic q profile is chosen by CRONOS such

that it matches the given li. Due to the high resistivity (low Te) in the early phase of the

ramp-up, the influence of the choice of the initial q profile has disappeared before halfway

through the current ramp-up phase. The simulations start 1.5 s after breakdown, when

Ip = 0.5 MA.

3. Figure of merit for q profile

The good performance of hybrid discharges, compared to standard H-mode, is partially

due to the absence of sawteeth and other detrimental MHD modes, and partially due to

a reduction of radial transport. The main driver of transport in strongly heated plasmas

is thought to be the Ion Temperature Gradient (ITG) mode [29, 30]. ITG turbulence

features a threshold in the inverse ion temperature gradient length, i.e. is only present

when

R/LTi
> R/LITG

Ti,crit
(1)

where LTi
= Ti/|∇(T i)| ITG dominated transport is then schematically given by

χi = χnc
i + χITG

i (R/LTi
−R/LITG

Ti,crit
) ·H(R/LTi

−R/LITG
Ti,crit

) (2)

where H is the Heaviside step function. Theory predicts, and experiments confirm,

that ITG transport is stiff, i.e. χITG
i ≫ χnc

i , which implies that R/LTi
will never

rise much above R/LITG
Ti,crit

. The only exception is the core of plasmas with strong

toroidal rotation, where ITG transport is much less stiff, and significant excursions of

R/LTi
above R/LITG

Ti,crit
are possible [31]. However, strong rotation cannot be achieved

in ITER. Hence, the only way to improve core confinement in ITER, is to enhance

R/LITG
Ti,crit

. Under various assumptions theories predict

R/LITG
Ti,crit

∼ (1 + cs/q) (3)

with c a numerical constant, c = O(1), and where s is the magnetic shear (s = r/q∇q)

[32, 33]. So one has to maximize 〈s/q〉, where the brackets denote the volume average,

within the constraint for the hybrid regime that q > 1 everywhere and that no regions

with strong negative s should exist. The rationale of the latter constraint is to avoid the

creation of an Internal Transport Barrier (ITB), which would make control of the plasma

much more complicated, and to avoid deleterious MHD, e.g. double tearing modes. We

will use an empirical criterion s > −0.5. A high value of 〈s/q〉 is achieved by q(0) close

to 1, a wide low shear region, and high s in the outer part of the plasma, which are
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indeed the characteristics of a hybrid q profile. For practical reasons the normalized

value F = 〈s/q〉 · qa will be used as figure of merit; its value has to be maximized at the

end of the current ramp-up.

4. Choice of heating and current drive scheme

The most straightforward way to obtain the hybrid q profile is as follows: let the

discharge evolve without additional heating until q(0) close to 1, and then apply off-

axis heating and CD to clamp q(0) and broaden the q profile. For the typical plasma

conditions during the ramp-up phase, ECRH from the equatorial launcher deposits

very centrally, so is unsuitable for this purpose. ICRF can, due to its wide range of

possible frequencies from 40 to 70 MHz, deposit on- and off-axis; however, ICRF can

only efficiently drive current when deposited on-axis [34], so is also not very useful for

this purpose. The remaining heating and CD options are: NBI using the off-axis setting,

i.e. with deposition radius ρdep ∼ 0.3, LHCD (with ρdep ∼ 0.4−0.6 depending on plasma

conditions) and the Upper Port Launcher (UPL) of ECCD. The latter has 2 antennas

with different ranges of poloidal angles, with ρdep ≥ 0.4 and 0.6, respectively. Since

ECCD and LHCD have quite narrow power deposition profiles, excessive use of one of

these as only current drive source would yield a very localized net CD profile, leading to

locally a strong negative shear, which should be avoided because of the risk of triggering

unwanted MHD. Therefore it is better to use a combination of CD sources in such a way

that the non-inductive CD is spread over a wide off-axis zone, thus compensating for the

peaked ohmic drive. Figure 1 gives an example if this, taken from the reference scenario

as detailed in the next section. This figure also shows that at least a combination of NBI

and ECCD is needed to achieve a broad off-axis non-inductive current density profile

up to ρ ∼ 0.5 − 0.6; with NBI solely, still a broad q profile could be achieved, but not

as flat as with a combination of NBI and ECCD.

5. Reference case

Figure 2 shows the optimized scenario, as sketched in the previous section, for the

reference case using the scaling model (left panel, full lines) Figure 3 shows the profiles

of Te,i and q at the end of the Ip ramp-up. For reference the figures also show the result

without any additional heating. As seen from Fig.3 a good hybrid q profile is reached

at the end of the ramp-up. The question whether this q profile can be kept during the

burn phase will be treated in Section 9. We will come back to the figure of merit in the

next sections.

Since the LHCD system is not foreseen in the ITER baseline design, it is important

to assess the importance of LHCD for the results. Although LHCD can strongly modify

the q profile in the early phase of the ramp-up, its effect on the q profile at the end

of the ramp-up is rather modest, i.e. a scenario with LHCD replaced by extra ECCD

yields a q profile which is only slightly less flat, see Fig.4. However, it should be noted
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Figure 1. Driven current density profiles, plotted vs. normalized toroidal flux

coordinate ρ for the reference case (as described in Section 5) at 65 s (left) and 80

s (right). The upper panels show the balanced mix of sources that is used: 8 MW

of ECCD from one of the UPL antennas (blue full), 3 MW of LHCD (red dashed)

and 16.5 MW of NBI (green dashed-dotted line). Also shown is the bootstrap current

density (black dotted). The lower panels show the total non-inductive driven current

density (dashed red), the ohmic current density (blue dotted) and the total current

density (black full line). If the total input power were allowed to exceed PLHthr, some

power from the other UPL ECCD antenna could be added for an even more smooth

total driven current density profile; the thin blue line in the upper panels shows the

driven current density for extra 5 MW of ECCD.

that LHCD is the most effective current drive source. Hence LHCD can play a strong

role in reducing the flux consumption during the ramp-up phase [35]; a reduction of ∼15

% can be reached, which would be sufficient to extend the flat top phase by hundreds

of seconds.

6. Sensitivity analysis

Of course the optimized scheme is dependent on the chosen transport model. The

Bohm/gyro-Bohm model predicts ∼ 30% lower temperatures than the scaling model,

and therefore a faster current penetration; this is accounted for by switching on ECCD
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Figure 2. Time traces of the optimized scenario for the reference case, assuming

scaling model (left panels) or Bohm/gyro-Bohm model (right panels). For comparison

the figure also shows the time traces of Te,i(0), li and q(0) without any additional

heating (thin lines in lower panels).

and LHCD 20 s earlier (Fig.2, right panel). It should be noted that it is not allowed to

advance NBI because of the risk of shine through. As seen from fig.3 also in this case a

good hybrid q profile is reached at the end of the ramp-up.

Regarding sensitivity of the results to the assumptions, following parameters were

varied: Te,i(edge) (by 40%), ne (by 40%), ne profile shape (parabolic vs. flat) and Zeff .

We will only consider the scaling model (H=0.4) here; the sensitivity of the simulations

to these changes when using the Bohm/gyro-Bohm model is quite similar and can be
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Figure 4. q profiles at 80 s for the reference case (blue) and for a case where LHCD

(3 MW) was replaced by extra 8 MW of ECCD (red dashed line).

accounted for in the same way.

(i) varying edge Te gives only a modest change of li (≃ 0.04) and a tiny change of q, so

poses no problem.

(ii) ne peaking: A flatter ne profile would cause an increased peaking of Te, hence a
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faster current diffusion in the outer part of the plasma and a more peaked final current

density profile; on the other hand the higher central Te would slow down the current

diffusion to the centre. Simulations show that the latter effect is less important, so

the net effect is a more peaked current density profile: in an ITER ramp-up without

additional heating, in a case with ne(0)/〈ne〉 = 1.05 instead of 1.3 the moment that

q(0) reaches 1 (t(q0 = 1)) is shifted earlier by ∼ 10 s. This can be compensated for by

a corresponding earlier start of the additional heating. The opposite trend applies in

case of a more peaked ne profile and is accounted for in a similar way by delaying the

heating, as shown in Fig.5.

(iii) Zeff : A 30% higher/lower value of Zeff causes a faster/slower current diffusion, and

a shift of t(q0 = 1) of ∼ 10 s, which can be compensated for like the previous case.

(iv) ne: We only consider the effect of a 40% higher ne. Again this causes (due to lower

Te) faster current diffusion. Since now also PLHthr is higher by ≃ 10 MW, the applied

power can be higher by this amount; moreover higher ne allows earlier application of

NBI. The thus adapted heating scheme, together with the time traces of li and q(0), is

shown in Fig.6. In this way the the flat q profile is restored, see Fig.7.
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Figure 5. Effect of flat or extra peaked ne profile. Shown are profiles of Te (upper

panel) and q (lower panel) at 80 s, without (dashed and dashed-dotted lines) and with

adapted heating scheme (lines with symbols). In the lower panel also ne is plotted (thin

lines). The values of ne(0)/〈ne〉 are 1.30, 1.05 and 1.47, respectively, for the three

cases shown. The heating was moved earlier/later by 10 and 6 s, respectively.

The figure of merit (F), as defined in section 3 can be used to verify that the shifts

in heating scheme, as indicated above, indeed restore the optimized q profile. As an

example, Fig.8 shows the time traces of F for the reference case, and the cases with
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Figure 6. Time traces of powers, q(0) and li for the high ne case with the heating

scheme of the reference scenario (left) and with adapted heating scheme (right). For

comparison the lower panels also show the time traces of q(0) and li of the reference

scenario (thin lines). Without modified heating scheme, q(0) drops far below 1 and

li rises too high (i.e. above 1); these unwanted features are avoided with the adapted

heating scheme. The LHCD power time traces are somewhat ragged due to the fact

that the calculated absorbed power is plotted, which may be different from the prescribed

power.

peaked ne both without and with adapted heating. As can been seen, indeed the high

value of F at the end of the current ramp-up at 80 s is restored with the adapted heating

scheme.

The sensitivity of the current diffusion on parameters that are not easily controlled,

shows that development of real time control is important to reach the target q profile.

As a first step in that direction, a real-time adaptive determination of auxiliary power

switch-on time could be easily implemented on the basis of the present simulations,

since for many parameters a deviation of the expected value can be accounted for by a

simple shift of the heating wave form. Let P = {P i|i = 1, . . . , N} denote the values of a

set of observables, like Zeff , 〈ne〉, etc. Let P
0 = {P0

i|i = 1, . . . , N} be the values of the

reference case, and let t0 be the starting time of the external heating in this case. Then

the start time of the heating could depend on the measured values of the observables in

the early phase of the current ramp-up as follows:

t = t0 +
∑

i=1,...,N

αi

P i − P0
i

P0
i

(4)
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Figure 8. Time traces of F (see text) for the reference case (blue full line) and the

cases with peaked ne without and with adapted heating (green dashed and red dashed-

dotted line, respectively). Indeed the high value of F at the end of the ramp-up is

restored with the adapted heating scheme.

where the values of the αi can be determined from sensitivity analyses as presented

earlier in this section. For example, let P1 be the value of Zeff , then the sensitivity

analysis showed that a time shift of 10 s was needed when the value deviated by 30%
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from the reference value, i.e. α1 = −10/0.3 = −33 s, with a minus sign because higher

Zeff needs earlier heating. Similarly, of one takes for P2 the value of ne(0)/〈ne〉, then

the previous analysis showed that a peaking factor of 1.05 instead of 1.3 needed 10 s

later heating, so α2 · ((1.05− 1.3)/1.3) = −10 s, i.e. α2 = 52 s.

As an example, Eq.4 is applied to a case with flat ne and 15% higher Zeff , where

Eq.4 would prescribe a forward shift of the heating by 15 s. Figure 9 shows that in this

way indeed an excellent reproduction of the optimum q profile was obtained.
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Figure 9. Effect of combination of flat ne profile and higher Zeff on q profile at

end of ramp-up (green dashed line), and result of applying modified heating scheme as

prescribed by Eq.4 (red dashed-dotted line, see text).

Of course this simple approach has some limitations. First, a non-linear response

may be needed when larger deviations from the expected values are encountered. More

importantly, some plasma parameters which affect the q profile evolution are not

experimentally available during the early phase of the discharge, e.g. the Zeff profile

shape. Nevertheless, the example given above shows that a simple real-time adaptive

determination of auxiliary power switch-on time can already yield very useful results.

Alternative break down scenarios would of course also affect the q profile evolution.

As an example, one could envisage breakdown at the HFS instead of at the LFS, as is

considered by the ITER team recently. The different geometry in the very early phase

of the discharge leads to a modified current diffusion. However, the effect on the current

density evolution turns out to be negligible after ∼ 50s, see Fig.10.

7. Current ramp rate and current overshoot

So far, all simulations were done with a moderate current ramp rate, reaching the flat

top of 12 MA at 80 s. However, the ITER hardware would allow for a faster current

rise. Moreover, recent JET experiments have shown that a current overshoot may lead

to better hybrid characteristics, in terms of q profile shape and confinement [36]. Also

of relevance is whether flux consumption could be diminished in this way.

Therefore simulations have been done with a higher current ramp rate, reaching the

flat top of 12 MA at 60 s, and these simulations have been further modified by adding a
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Figure 10. Left: time traces of R0 and q(0) for the normal breakdown at LFS (blue

full line) and for alternative breakdown at HFS (red dotted line). Right: q profiles at

50 s for the same cases.

current overshoot up to 14 MA at 70 s, lasting for 10 s. The start of the external heating

has been shifted forward by 5 s for these two runs. The time evolution of Ip, Ptotal, li,

q(0), resistive flux consumption (to be discussed in next section), and F are plotted in

Fig.11. Figure 12 shows the q profiles at the start of the current flat-top for these two

cases, i.e. at 60 and 90 s, respectively; for comparison also the q profile of the reference

case is shown at the start of the current flat-top (80 s). Since part of the difference

may be caused by the different duration of the ramp phases, also the three q profiles are

shown at 90 s (lines with diamonds/circles). In both comparisons the current overshoot

shows by far the most favourable q profile.

It should be noted that a control oriented approach, when applied to TCV, also

showed the favourable effect of a current overshoot [37]. In this approach the tokamak

actuator time evolution required to optimally reach a given point in the tokamak

operating space while satisfying a set of constraints, is found by solving a non-linear,

constrained, finite-time optimal control problem.

8. Operational limits and flux consumption

It is appropriate to come back now to the other two issues mentioned in the introduction:

operational limits as posed by the central solenoid (CS) and poloidal field (PF) coils,

and flux consumption.

By post processing the simulation results with the free boundary equilibrium code

FREEBIE [16], run in Poynting mode, it has been checked that the simulations presented

are within the boundaries put by the design values of the CS and PF coils. The most

critical coils turn out to be the central solenoid coil CS1ULU+CS1ULL and the first
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poloidal field coil PF1. Figure 13 shows the currents in these coils for three cases: the

reference case without additional heating, a typical case with additional heating (similar

to the reference case), and the case with fast current rise and current overshoot. All

cases are within the limits. However, one could extrapolate that the current rise cannot

be much faster without touching the limit of coil CS1ULU+CS1ULL. In order to allow
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time [s]
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−50
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C
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]
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Figure 13. Lay-out of the ITER coil design (left), and some of the coil currents

as calculated by FREEBIE (right). Shown are the currents in the two most critical

coils: the central solenoid coils CS1ULU+CS1ULL, and the poloidal field coil PF1

for 3 cases: the reference case without additional heating (blue full line), a typical

case with additional heating (green dashed), and the case with fast current rise and

current overshoot as described in Section7 (red dashed-dotted line). The maximum and

minimum allowed currents are plotted in black.

for a long flat-top phase, it is desirable to reduce the flux consumption during the current

rise phase as much as possible. For an analysis of the flux consumption, we distinguish

between resistive and inductive flux (∆ΦR and ∆ΦI). We follow the method as first

described by Ejima et al [38], and later on applied to e.g. NSTX and DIII-D [39, 40],

applying Poynting’s theorem to the poloidal field. The total poloidal flux change at the

plasma surface is expressed as

∆ΨS(t) = ∆ΨI(t) + ∆ΨR(t) (5)

with

∆ΨI(t) =

∫ t

0

dt′

Ip

∫

V

∂

∂t

(

Bpol
2

2µ0

)

dV (6)

∆ΨR(t) =

∫ t

0

dt′

Ip

∫

V

jφEφdV (7)

where Bpol, jφ and Eφ denote the poloidal magnetic field and the toroidal current density

and electric field, respectively.
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∆ΨI at the end of the current ramp-up is determined by the poloidal field, e.g. the

q profile, attained; since this should always be close to the same, ideal shape, ∆ΨI will

always be more or less the same at the end of the ramp-up. Hence, if flux consumption

is to be saved, it should be in the resistive part; therefore, we restrict the analysis to

this part. It should be noted that at the end of the ramp-up phase both parts are of

the same order of magnitude.

One could envisage two ways to reduce ∆ΨR: by (very) early heating, and by

early transition to the H-mode. For both options one example which is believed to be

representative has been chosen and has been simulated. The early heating example has,

compared to the reference case, starting from 30 s additional 10 MW of LHCD and

6 MW of ECRH from the equatorial launcher; both induce considerable core heating

and current drive. The example with early H-mode transition has full (33 MW) NBI

power from 50 s; the L-H transition is forced at 55 s, with a pedestal of 4 keV and

high density (90% of nGw
e ) after the transition. The H-mode phase was simulated both

with the empirical scaling model (now assuming HIPB98 = 0.8) and with the GLF23

transport model, with quite similar results. Figure 14 shows the total external heating

power, 〈Te〉, the total non-inductive current (including bootstrap current), li and ∆ΨR

for these two examples (using scaling model for the H-mode phase), together with the

reference case. Indeed the higher Te and the increased non-inductive current lead to a

significant reduction of the resistive flux consumption in both examples. Early heating

turns out to be the most effective; it should be noted, however, that li rises slightly

above 1 with early heating, which might pose operational problems.

The saving in flux consumption comes at a price: both examples feature a sub-

optimum q profile at the end of the ramp-up, as shown in Fig.15. Moreover it should

be noted that early heating leads to a rather large reversed shear region, which might

be a good start for the steady state scenario but not for the hybrid scenario.

It should be noted that a similar dependence between flux consumption and q profile

shape was seen in the simulations with faster current ramp-up and current overshoot:

there the improved q profile came at the price of an enhanced resistive flux consumption

(∆ΨR, see 4
th panel of Fig.11). Therefore a trade-off has to be made between ∆ΨR and

optimization of the q profile.

A useful figure of merit for the resistive flux consumption during the current ramp-

up is the so-called Ejima coefficient, defined as CE = ∆ΨR/(µ0R0Ip), calculated at the

end of the current ramp-up [38]. Figure 16 shows the two parameters to judge this

trade-off, viz. CE and F both for the two examples with reduced flux consumption as

discussed above, and for the two cases with fast current ramp and current overshoot of

the previous section, together with the reference case. The total input energy during

the ramp-up is used as horizontal axis.

A reduction of CE by 0.05 corresponds to a saving of ≃ 4.7 Vs. With an expected

Vloop during the flat-top of the hybrid scenario of 0.02 - 0.05 V (mainly depending on

assumption of pedestal height, [3]), this would correspond to an extension of the flat

top duration by 100-150 s. This clearly shows the significance of the trade-off between
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Figure 14. Total external heating power, 〈Te〉, total non-inductive current (including

bootstrap current), li and ∆ΨR for the reference case (blue full line), an example

with additional early heating (green dashed-dotted) and an example of early H-mode

transition (red dashed line).

flux consumption and optimization of the q profile: the flat-top can be extended by

some 200-250 s by early heating or early H-mode, i.e. ∼ 10% for an expected flat top

duration of ∼ 3000 s, however at the cost of a strong reversed shear region or a less

well-developed q profile, respectively. On the other hand, fast current rise combined

with current overshoot leads to a superior q profile, but at the cost of a reduced flat-top

by some 200-300 s, i.e. ∼ 10%. In practice this reduction might be much smaller, since

an optimized q profile leads to better plasma performance and thus lower Vloop during

the flat-top. Moreover, one should keep in mind that one of the goals of the hybrid

scenario is to maximize the neutron fluence (total number of neutrons per shot). Since

Pfus is approximately proportional to F [3], it may well be that the neutron fluence is
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Figure 16. Figure of merit (F) plotted vs. Ejima coefficient (CE) at the end of

the ramp-up phase for the reference case (square), the examples with early heating

(diamond) and with transition to H-mode after 55s (circle), and for the optimized

cases with fast current ramp (pentagram) and current overshoot (hexagram).

9. Extrapolation to burn phase

Since the final goal is to sustain the optimized q profile during the ∼3000 s flat top, in

order to maximize the neutron fluence, two more questions are important: how does the

q profile react to the L-H transition, and can q be held stationary during the long flat

top.

Regarding the first question: based on the reference case, preliminary simulations

were done to assess the evolution of the q profile during the L-H transition. To this end,

in a time window of 20 s immediately after the end of the current ramp-up, the external

power was raised to 70 MW (33 MW NBI + 37 MW ECRH), i.e. clearly above the L-H
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threshold, and in the modelling the L-H transition was forced by imposing a pedestal

of 4 keV. At the same time the density was raised to the target density for the hybrid

scenario (∼ 9 · 1019m−3); α particle heating was taken into account in the modelling. It

turned out that during this transition the core q profile was preserved very well.

The second question has already been addressed in earlier work, which showed

that, under reasonable assumptions for the pedestal, indeed the q can be held stationary

during the long flat top [3].

It should be noted that, in case of a non-optimized q profile at the start of the

burn phase, it is still possible to optimize the q profile during the burn phase itself.

However, due to the very low resistivity in this phase, this may take up to ∼ 1000 s.

Therefore, with a non-optimized q profile at the start of the burn phase, one might

expect a significantly reduced fusion power during the first ∼ 1000 s of the total burn

phase of ∼ 3000 s.

10. Conclusions and Outlook

The simulations presented in this paper show that the heating systems available at

ITER allow, within the operational limits, the attainment of a hybrid q profile at the

end of the current ramp-up. A reference ramp-up scenario is reached by a combination

of NBI, ECCD (UPL) and LHCD.

Since LHCD is not contained in the ITER baseline design, also simulations without

LHCD have been performed. It turns out that the target q profile can also be achieved

with a heating scheme using only NBI and ECCD. However, being the most efficient

current driver, LHCD can play a crucial role in reducing the flux consumption during

the ramp-up phase, and hence in extending the duration of the burn phase by ∼ 10%.

The optimum heating scheme depends on the chosen transport model. Moreover,

modified assumptions on ne peaking, edge Te,i and Zeff can be easily accounted for by

a shift in start time of the heating scheme. A higher density during the ramp-up phase

can be accounted for equally well, and might even be profitable because it gives more

freedom in the application of the heat sources, while keeping the plasma n L-mode.

The sensitivity of the current diffusion on parameters that are not easily controlled,

shows that development of real time control is important to reach the target q profile.

As a first step in that direction, a real-time adaptive determination of auxiliary power

switch-on time could be easily implemented on the basis of the simulations presented in

this paper. A basic example of this was given in this paper.

Minimizing resistive flux consumption and optimizing the q profile turn out to be

conflicting requirements. A trade-off between these two requirements has to be made.

In this paper it was shown that fast current ramp with current overshoot is at the

one extreme, i.e. optimum q profile at the cost of increased resistive flux consumption,

whereas early H-mode transition is at the other extreme.

The fact that current overshoot is useful in tailoring the q profile was experimentally

investigated at JET [36] and corroborated by theoretical work at TCV [37]. It has now
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for the first time proven to be a useful tool for ITER as well.
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