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1. Introduction 

 During operation of fusion devices plasma-facing materials can be eroded, 

transported to a new location and redeposited [1]. Material migration is important 

because of the limitations it sets on components lifetime and impurity concentration in 

the plasma. If carbon is used in the divertor its codeposition with hydrogen isotopes in 

remote areas becomes arguably the biggest concern [2]. It becomes extremely 

challenging to prevent tritium accumulation in areas, that are difficult to access.   

 Since a significant fraction of carbon in fusion devices is eroded in the form of 

hydrocarbons, local hydrocarbon injection became a useful tool for studying carbon 

migration both in tokamaks [3] and linear devices [4, 5]. Despite numerous studies, the 

understanding of carbon transport is still limited by unknowns such as sticking 

coefficients of different species or re-erosion rates of codeposited species [6]. We have 

performed a series of methane injection experiments in the linear plasma generator Pilot-

PSI to address the questions of hydrocarbons transport in the plasma and the spatial 

extent of carbon redeposition. The unique feature of Pilot-PSI is the ability to create a 

high density low temperature (ne ≤ 1021 m-3, Te ~ 1 eV) plasma beam for up to 160 s, 

entering the ITER divertor-relevant regime. The experimental results are compared to 

simulations with the 3D Monte Carlo impurity transport and PSI code ERO [7, 8]. 

 

2. Experimental 

 The Pilot-PSI linear plasma generator is described in detail in [9]. Magnetic field 

strength of 0.4 T was used throughout this work. Unless stated otherwise, hydrogen was 

used as the process gas. 
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Plasma electron density ne and temperature Te are measured by Thomson 

scattering at a distance of ~25 mm upstream from the plasma facing surface [10]. Both ne 

and Te peak in the middle of the plasma beam and decrease with distance from the axis. 

Throughout this article we refer to the peak values of density and temperature. Typical 

full width at half maximum (FWHM) of the plasma beam is ~12 mm. 

Methane was injected into the center of the plasma column through a single hole 

in polished molybdenum samples. The diameter of the injection hole was 0.6 mm. The 

injection rate was set at 3 sccm (standard cubic centimeter per minute; 1 sccm = 4.4×1017 

CH4/s). The samples had a diameter of 25 mm. We used the samples as collectors for the 

deposits. Importantly, injection of methane had no influence on the measured profiles of 

ne and Te. 

Optical emission spectroscopy was used to quantify the penetration of the injected 

methane into the main plasma. We monitored the molecular CH A-X band emission 

(Gerö band around 431 nm) using an absolutely calibrated CCD camera equipped with an 

interference filter (transmission peak at 430.7 nm, FWHM of 2.7 nm). A correction factor 

of 2.8 was used to determine the intensity of the full CH A-X band from the 

measurements in the reduced wavelength range [11]. The camera was positioned to have 

a tangential view of the sample and was focused on the location of injection. Detailed 

description of the mechanisms that lead to the creation of the excited CH molecules in 

Pilot-PSI plasmas can be found in [12].  

A fast infrared camera (SC7500-MB, FLIR) was used to monitor the surface 

temperature of the samples during exposure. After the exposure, analyses of the samples 
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included mass gain measurements, scanning electron microscopy (SEM), spectroscopic 

ellipsometry and visible Raman spectroscopy.  

 

3. Results 

 Spectroscopic observations of the CH A-X band are summarized in Figure 1. The 

emission profiles are plotted along and across the magnetic field axis. The emission 

plumes were recorded for three sets of plasma parameters, as indicated in the figure. The 

CH emission is localized in the immediate vicinity of the injection point. The e-folding 

length of the profile in the axial direction is equal to 1.3-1.5 mm. In the direction across 

the axis the emission has a Gaussian profile with FWHM in the range 2.5-3.0 mm which 

is significantly smaller than the diameter of the plasma beam. The shape of the plume is 

independent of the Te in the range from 0.3 eV to 2.2 eV. In the previous methane 

injection experiments [13] the hole for methane injection was almost two times larger, 

however the CH emission plumes were quite similar compared the ones obtained in this 

study. Additionally, we have varied the injection rate from 0.6 sccm to 3 sccm and 

noticed no significant effect on the plume dimensions.  

 Hydrocarbon transport in the plasma, erosion and redeposition are strongly 

interdependent parts of carbon migration. Understanding migration requires that its 

constituents are studied together.  That was the reason for collecting redeposits using the 

same injection set-up. The samples were exposed at different surface temperatures, while 

the methane injection rate was kept the same. Mass gain measurements were used to 

determine the net amount of redeposited carbon. The results are summarized in Table 1, 

where Tsurf is the surface temperature as measured by the IR camera, R is the fraction of 
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injected carbon redeposited on the sample, Te
 is the electron temperature, ne is the 

electron density and t is the exposure time. Since the FWHM of the plasma beam is 

smaller than the diameter of the samples, the temperature is non-uniform across the 

surface. This is why the temperature span is given in the table. Examples of the surface 

temperature profiles are given in Figure 2. The profiles feature sharp peaks (dashed lines 

in Figure 2) in the immediate vicinity of the injection holes. This effect could be due to 

overheating of the edges of the injection hole. At the same time, the injection hole can act 

as a small cavity trapping the radiation and acting close to a black body. In any case, this 

effect was very localized. Excluding the spike, the shape of the temperature profiles is 

consistent with the Gaussian shape of the plasma beam. 

  Note that under hydrogen plasma bombardment the total amount of redeposited 

carbon increases at lower surface temperatures. Yet the largest fraction of carbon was 

redeposited in a single experiment with pure argon plasma (ne = 5.5 × 1020 m-3, Te = 1.3 

eV). The energy of argon ions was insufficient to cause sputtering of carbon. This shows 

how important chemical re-erosion is in establishing the balance between net deposition 

and erosion.  

 The morphology and localization of the deposits are also strongly influenced by 

the temperature. Below 500 K hydrogenated amorphous carbon (a-C:H) films are 

deposited over the entire exposed surface (Figure 2). The films are the thickest close to 

the injection point. In this region they are unstable in air and flakes peel away in a matter 

of hours. The rest of the sample is covered by a thinner film resilient to the air exposure. 

When the temperature is larger than 800 K no films are deposited on the surface. Instead, 

a narrow (~5 mm in diameter) region around the injection hole gets covered by dense 
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agglomerations of carbon microparticles (Figure 3). Previously, particles with similar size 

and fine-structure were found on fine-grain graphite samples under similar conditions, 

but without methane injection [14]. The influence of plasma conditions on the particle 

growth and studies of their internal structure are described in [15]. In the intermediate 

temperature range we observed the microparticles embedded into the amorphous film. 

Interestingly, samples 1 and 3, that were exposed under similar plasma conditions exhibit 

different redeposit morphologies. This illustrates the crucial role of the surface 

temperature. 

A characteristic visible Raman spectrum of the microparticles is given in Figure 

4. The spectrum is dominated by the so-called D-peak and G-peak, with the ratio of the 

peak intensities ID/IG ~ 2. The double-peaked spectrum resembles measurements of 

carbon layers from Tore Supra [16] and carbon dust samples from NSTX [17]. The 

authors of [16], who also performed X-ray diffraction studies, attributed such spectral 

shape to high porosity of the samples and concluded that they are highly disordered 

carbons consisting mainly of sp2 bonds. However, other forms of carbon have similar 

structure of the Raman spectrum [17]. More detailed measurements are needed for a 

definite conclusion concerning the structure of the microparticles in our experiments. It 

should be mentioned that despite their large size, those particles account for a small (< 

10%) fraction of the injected carbon, and that their hydrogen content is very low. 

Refractive index n and the film thickness have been measured by spectroscopic 

ellipsometry at several locations along the radius of the samples. The thickness of the 

films decreases towards the edge of the samples (Figure 5). This is not surprising, since 

the source of carbon was located in the center of the samples. Comparison of the 
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measured refractive indexes with values documented in the literature [18] allowed us to 

estimate a film density of about 0.8 g.cm-3 and a hydrogen content of 55 at. %. Of course, 

this is a rough estimation since the film properties change with the distance from the 

center. In fact, since refractive indexes are decreasing towards the sample edge (Figure 

5), the hydrogen content is expected to increase along the sample radius which could be 

explained by the lower temperatures on the periphery. 

After 100 s of growth the film thicknesses reach several hundred nanometers on 

the edge of the samples. The thicknesses of several micrometers are measured  

approximately 5 mm away from the injection hole. Ellipsometry measurements closer to 

the center were not possible due to flaking of the films, although the flaking indicates 

even larger thicknesses. Growth rates of the order of hundreds of nanometers per second 

are predicted by ERO [8]. This is compatible with the observed thicknesses of the films. 

Growth rates of the same order of magnitude are obtained from mass gain measurements 

assuming uniform growth across the sample surface (horizontal lines in Figure 5). 

 

4. Discussion 

 Carbon redeposition was observed during all methane injection experiments in 

Pilot-PSI. However, both overall redeposition efficiency and radial profiles of 

redeposition vary significantly with surface temperature while they appear insensitive to 

the plasma parameters. The two extreme scenarios in terms of morphology are a-C:H 

films covering the full surface of the sample at low temperatures and very localized dust-

like deposits at high temperatures.  
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In these experiments, growth rate of deposits at any given location is determined 

by the balance between redeposition and erosion of carbon. In the case of argon plasma, 

when the deposited carbon could not be re-eroded, the redeposited fraction calculated 

with ERO was 65.0% and within the experimental error bar. Although the redeposition 

profile does not match exactly, simulation and experiment are in the same order of 

magnitude [8]. In the case of hydrogen plasma, ERO simulations were performed 

assuming constant, but varied from run to run, value for chemical erosion of carbon [8]. 

If an erosion yield of 0.2% is assumed, ERO results are in good agreement with growth 

rates on the edge of the samples. However, the total amount of redeposited carbon is in 

this case overestimated. For a better match with the mass gain measurements the yield of 

5.0% has to be assumed, but this means suppression of any film growth on the outside of 

the sample. A plausible explanation could be a variation of erosion yield across the 

surface. Indeed, the erosion yield is known to be a complicated function of surface 

temperature and ion energy [19], particle flux [20] and properties of the films [21], that is 

not yet well understood in the high plasma flux regime. So, a gradient of the erosion yield 

could be caused by the narrow width of the plasma beam compared to the sample size 

and associated gradients in plasma parameters and surface temperature. The application 

of the Roth model of chemical sputtering [19,20] to these experiments is not 

straightforward. As mentioned earlier, carbon films grow in the low surface temperature 

regions under bombardment by low energy ions, albeit the plasma flux is high. The local 

balance in these regions is shifted from erosion to deposition, yet the gross erosion is not 

zero. Indeed, earlier experiments [22] demonstrated that graphite is eroded under such 

conditions, but the Roth model predicts otherwise. Our experimental conditions are 
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outside the applicability region of the model and quantification of the chemical erosion 

yield profile across the sample surface in Pilot-PSI is the subject of future work. 

Flaking of thick films close to the injection point did not allow us to establish the 

growth rates there. Thus, a comparison of characteristic widths of the plasma, emission 

plumes and deposition profiles was not possible. Lower injection rates and shorter 

exposure times might help to overcome this hurdle. 

 

5. Conclusions 

 Injection of methane through the sample into the center of hydrogen plasma beam 

in Pilot-PSI results in localized CH A-X emission plumes. The emission intensity decays 

rapidly both along and across the magnetic field axis. The plume shape is unaffected by 

the electron temperature. The amount of carbon redeposited on the sample, its 

distribution over the surface and morphology of the deposits depends strongly on the 

surface temperature. For Tsurf < 500 K a-C:H film grows across the entire surface, its 

thickness being maximal close to the injection point. If Tsurf ≥ 800 K no visible film 

growth is observed, instead deposition occurs only in the center of the sample. The 

deposits in this case are in the form of carbon microparticle agglomerates. There also 

exists an intermediate phase when particles are embedded in the film. A balance between 

local deposition and erosion is the key to explain the observed changes in the location of 

the redeposits. For the same plasma parameters, surface temperature variations change 

local erosion yield significantly, thus shifting the balance in one way or the other.  
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Figure captions 

Table 1. Exposure conditions, redeposited fractions (R) and morphologies of the carbon 

deposits for various samples. Column Tsurf  describes the variation of the temperature 

from the edge of the sample towards the center.  

 

Fig 1. Axial (top) and radial (bottom) profiles of the CH A-X emission measured by 

optical emission spectroscopy. The dashed line marks the position of the sample obtained 

from the background images taken before the experiment. Small misalignment or 

defocusing of the camera cause uncertainty in determining the position of the injection 

nozzle, which would explain the signal in the x<0 region. 

Fig. 2. (Top) Temperature profiles across the surface of the samples as measured by the 

infrared camera. Dotted lines indicate the region of uncertainty in the temperature 

measurement. (Bottom) Photographs of the samples with different types of deposits. 

Fig. 3. SEM images of the carbon microparticles near the injection hole. 

Fig. 4. Visible Raman spectra of the carbon microparticle deposits near the injection hole. 

Fig. 5. Growth rates, film thicknesses (both - top) and refractive indexes (bottom) of the 

deposited films as a function of the distance from the center. Samples numbering is taken 

from Table 1. Horizontal lines in the upper figure - calculated growth rates from mass 

gain measurements assuming homogeneous growth across the surface. 
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Sample 
 ID Tsurf, K R, % 

Morphology 

Center Edge Te, eV ne, m-3 
(×1020) 

t, 
sec 

1 1020 − 1300 n/a MP ND 2.2 1.8 140 

2 825 − 975 <10 MP ND 1.8 1.6 500 

3 415 − 695 14 ± 5 F+MP F 2.2 1.8 100 

4 350 − 425 21 ± 8 F F 0.3 1.6 100 

5 365 − 415 38 ± 8 F F 0.3 2.0 100 

Argon ≤ 525 54 ± 22 F+MP F 1.3 5.5 40 
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Fig 1.  
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Fig. 2.  

  



 17 

 

Fig. 3.  
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Fig. 4.  
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Fig 5.  
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