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Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an 

extensive software kit. A layer of middleware will manage and control a complex set of interconnections between 

teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics. 

The middleware is driven by constraints on amounts and timing of data like real-time control loops, camera images, 

and database access. 

The Remote Handling Study Centre (RHSC), located at FOM institute DIFFER, has a 4-operator work cell in an 

ITER relevant RH control room setup which connects to a virtual hot cell back-end. The Centre is developing and 

testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware 

layer. SW components studied include generic human-machine interface software, a prototype of a RH operations 

management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple 

independent views. Real-time rigid body dynamics and contact interaction simulation software supports simulation 

of structural deformation, "augmented reality" operations and operator training. 

The paper presents generic requirements and conceptual design of middleware components and Operations 

Management System in the context of a RH Control Room work cell. The simulation software is analyzed for real-

time performance and it is argued that it is critical for middleware to have complete control over the physical 

network to be able to guarantee bandwidth and latency to the components. 
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1. Introduction 

ITER has established procedures to develop validated 

RH designs and methods [1][2]. This implies that the 

accessibility and handle-ability of an ITER component 

by remote methods, needs to be reviewed. Subject to the 

established RH class of the task, the maintenance 

procedures need to be detailed before the system enters 

the operational stage. 

Starting from the conceptual design stage, it is 

necessary to analyze RH compatibility. Virtual Reality 

(VR) simulation is a cost-effective and flexible method 

to enable RH Compatibility Assessment (RHCA) [2]. 

The Remote Handling Study Centre (RHSC) [2] 

enables VR simulation for RH procedure detailing and 

validation. Operators can interact individually or as a 

team with the virtual environment by different means, 

including common computer interfaces such as 

keyboards, mice, joysticks and spacemice. Monitors 

provide visual feedback through configurable views. 

Additionally, the virtual environment boosts a rigid body 

dynamics simulator with contact interaction. Advanced 

interaction with the rigid body simulator is possible 

through haptic master devices, allowing for user 

position/force input, and for force feedback to the user. 

Currently a desktop solution and a full-scale master 

arm are available: respectively Sensable Phantom Omni 

devices and a Haption Virtuose 6D35-45. Various 

remote scenes are available including a hot cell mockup 

and a scene used for benchmarking operators [3][4][5], 

which has also been benchmarked on a hardware test 

bed [6]. The software components used in the RHSC 

reflect a number of the functionalities that ITER seeks in 

the RH Control System (RHCS) architecture, albeit not 

yet in the modular form that is requested, where a 

middleware layer will be connecting and servicing the 

modules with data [7]. The RHSC strives to implement a 

prototype of the ITER-RHCS.  

 
Figure 1.1 RHCS layout concept with RHCS supervisor added 
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This paper describes steps taken to come to a RHCS 

middleware prototype based on the available software 

components at the RHSC. The driving requirements are 

presented and reviewed. Several generically available 

middleware solutions and an ad-hoc solution are 

conceptually implemented. Compliance with 

requirements and performance are analyzed wherever 

possible. 

2. RHCS required functional components 

The RHSC is developing functionality roughly along 

the lines of Figure 1.1 [7]. Most modules do not yet 

implement the full set of features required for future 

operations. Some software overlaps several modules, and 

some modules are not relevant for the RHSC. 

2.1. Operations Management System 

RH Procedures will be stored in an Operations 

Management System (named ODS at JET). The RHSC 

developed a web server component, called the RH Task 

Browser (RHTB), for accessing the task information 

through any web browser. The tasks are stored in a 

backend Java server running a PostgreSQL database.  

 
Figure 2.1 RHTB with procedure to replace Steering Mirror 

Assembly component on Upper Port Launcher plant 

The RHTB allows RH procedures to be input in a 

programmatic way, using branching and sub-functions, 

steps with situational pictures and descripts, user rights 

management, and procedure execution by a team of 

operators. The operators have different roles and can 

work together on this system to successfully complete 

procedures and annotate steps along the way.  

A structured language for defining and describing 

RH steps remains to be developed. 

2.2. Virtual Reality 

In the RHCS context, VR is merely used as an aid to 

simulate the current state in a scene and to help the 

operator easily monitor situations which cannot be 

directly viewed by real cameras. 

2.3. Physical simulator 

The Virtual Slave Simulator (VSS) is the RHSC 

implementation of the Nvidia PhysX rigid body 

simulator with contact interaction. The software is soft-

realtime and runs on a Windows platform with refresh 

rates up to 1kHz. For non-trivial scenes, the update rate 

is between 250Hz and 333Hz. This is still fast enough to 

transparently display slave manipulator forces to the 

master operator.  

 
Figure 2.2 HMI with identification of manipulator axes and 

positions, camera and light locations 

2.4. Command and Control 

This is a category of user interface software 

components that incorporates generic user interfacing to 

the VR and other systems, as well as specific interfacing 

to RH equipment and tooling. The latter are often in 

form of a Human Machine Interface (HMI, Figure 2.2) 

and incorporate commands specific to the start, operation 

and shutdown of these systems.  

2.5. Modules irrelevant to RHSC 

The RHSC lacks a hardware backend, so it is not yet 

possible to implement a complete remote viewing 

system with sensors, image processing, monitors to the 

operator and remote diagnostics. However, research into 

a synthetic viewing system is being undertaken [8], 

employing cameras to geometrically calibrate a virtual 

scene to a real hardware setup [2].  

2.6. RH supervisor role 

One item is added to Figure 1.1, being the RH 

supervisor role [7] – an operator interface and RHCS 

component that allow setting the operational theatre. Its 

function is to allocate resources (RH interfaces, RH 

equipment, network capacity, and operators) to the task 

at hand and changing task states.  

3. Middleware synopsis 

Functional requirements based on data analysis and 

types of middleware are presented below. The view of 

ITER RH is presented and taken into account to identify 

a few available middleware frameworks. These are pilot 

tested. Furthermore, as network performance will be 

limiting performance of any middleware, it is evaluated 

whether conventional Ethernet is fast enough for time 

synchronization and soft real-time control. 

3.1. Requirements from data perspective 

The combination of data requirements in the various 

RH networks makes for a challenging setting for 

middleware. The goal is to use the same middleware 

across all networks. 

Real time data, such as joint position updates, 

requires small data packets to be sent with little latency. 

Typical messages are in the order of 40 bytes per RH 



 

 

equipment and to be sent with <0.2ms end-to-end but 

preferably <0.1ms round-trip delay at a high rate (1kHz). 

A small loss of data is acceptable only if very infrequent.  

Video data requires multiple, continuous streams 

with, for HD-video, >1Mbit/s bandwidth per channel 

with <50ms end-to-end latency. Frame drops and data 

loss are acceptable to about 10% before visual artifacts 

start to hinder operators. 

Audio, if used, is similar to video with a factor 20 

lower bandwidth for one channel. Time stamping is 

important to keep the audio in sync with video. 

Text, messages, state changes and other data is much 

lower in bandwidth and does not have real-time or 

bandwidth requirements, but normally do require 

acknowledgement of correct reception. Database 

transactions will not be too large but do require fast 

transmission and fast processing, as other clients might 

depend on the correctness in time of some of the data. 

File/model data exchange requires larger amounts of 

data to be transmitted in a short interval, with integrity 

guarantees, but no real-time or firm bandwidth 

constraints. As it is likely that multiple module 

(instances) will individually load models at the same 

time the concurrent capacity needed will be quite large. 

From these conflicting requirements is derived that at 

the least a Quality-of-Service enabled network will be 

necessary. Combining streaming and file access is 

common practice although tailoring is required for 

critical data.  However, providing real-time guarantees 

with low latency and jitter is much more difficult [9].  

3.2. ITER RH originating requirements  

The RHCS should align to ITER RH middleware 

requirements. That shall [10]: 

 Be able to support synchronous remote method 

invocation (Sync RMI), 

 Be able to support asynchronous remote method 

invocation with call-back (Async RMI), 

 Use a neutral language to define remote object 

public interfaces (Neutral Language), 

 Have no platform, language, network, or 

application dependency (Independency). 

 

3.3. Types of middleware 

In the literature four main types of middleware can 

be found [11]. The transactional type is geared towards 

database transactions, with consistency guaranteed, 

having as drawback that clients could have to wait on 

other client transactions. Remote Procedure Calls 

(RPCs) are transparent and supported on multiple 

platforms, but scalability is limited as there is no support 

for asynchronous communication, load balancing 

etcetera. Message Oriented Middleware (MOM) offers a 

mailbox abstraction focusing on asynchronous 

transmission. No confirmation of delivery is 

implemented but other solutions like QoS [12] improve 

reliability. There’s no standardization. Object Oriented 

Middleware (OOM) evolved from RPCs by adding 

inheritance, references and exceptions. Transport 

transformation is automatic, synchronous and 

asynchronous communication is supported. Scalability is 

somewhat limited by overhead in locating the 

implementation and methods by remote objects. The 

latter type is the most widely used and most evolved, and 

integrates all functionality necessary.  

3.4. Pilot testing available OOMs 

On the Windows 7x64SP1 working environment of 

the RHSC, a number of readily available options were 

pilot tested for integration. Setting up build 

environments and producing simple working 

applications on localhost took for all options a few days.  

CORBA (Common Object Request Broker 

Architecture) is the classical OOM and a widely 

recognized standard. However, many different versions 

and many different implementations exist, none of which 

implements the full scope. In JacORB version 2.3, an 

open source CORBA implementation, a trivial “Hello 

world”-like client/server application was programmed. It 

was found to require quite some environment 

configuration to get it working. 

ICE version 3.4 (Internet Communication Engine, an 

OOM) by ZeroC has been implemented in the VSS 

application. One-way latency in data transfer measured 

over localhost, i.e. both communicating software 

components are located on one PC, increased from 

0.1ms to 0.16ms. Additionally ZeroC has IceStorm 

available, a DDS (Data Distribution Service, which is a 

form of MOM). 

OpenSplice DDS & OpenSplice RMI (Remote 

Method Invocation) are respectively a MOM and OOM 

offered by PrismTech. Version 6 of DDS is 

recommended by a study for ITER RHCS [10] and was 

implemented here. In contrast to IceStorm it has QoS 

available, enabling native support for real-time 

applications. It performs very fast over localhost, on 

average some 25μs round-trip, although some spikes do 

occur. This is much faster than sending an ICMP over 

localhost (around 250μs), or sending an UDP datagram 

over localhost (around 50 μs) suggesting that 

OpenSplice bypasses the network stack for localhost 

connections.  

Unfortunately, implementation of OpenSplice RMI 

was found to be hard, support from PrismTech turned 

out to be slow and limited. Manuals are concise and 

community support is barely available. It is a new 

product for OpenSplice and seems immature. An ad-hoc 

RMI method via DDS was not implemented at this time. 

EPICS is the middleware of choice for ITER 

CODAC. However it does not seem to be suited to 

robotics [13] so this option was not tried. 

3.5. Real time control 

Closed-loop control needs accurate time 

synchronization to be an order of magnitude better than 

the smallest time slice encountered (about 100μs). 

Network Time Protocol offers accuracy down to one 



 

 

millisecond. NTP is present and enabled in all major 

operating systems, however in Windows it is a 

simplified version which does not enable 

synchronization accuracy better than 2 seconds [14].  

As an alternative, the Precision Time Protocol (PTP) 

is an IEEE standard and allows sub-microsecond 

accuracy but is a bit tedious as it requires specific 

network switches, and functions best with specific 

endpoint Ethernet hardware. 

3.6. Ethernet latency 

On a local network with Dell i5 Windows 7 PCs with 

1Gbit/s cards, all connected via a Foundry FLS 648 

switch, Ethernet latency has been estimated by sending 

ICMP packets. 

From: 

To: 

Linux, 32bit 

Ubuntu 12.04 

Windows 7  

SP1 64bit 

Linux 130μs 860 μs 

Windows 600μs 1350μs 

Localhost 11μs 250μs 

Table 1 Round-trip delay timing (averaged) on local network 

Latencies with only a crossover-cable were similar, 

but more consistent.  From Table 1 it seems the 

Windows endpoints contribute significantly to the 

overall latency, and a multiple-PC network environment 

contributes to jitter and spikes. Our test was not 

extensive enough to report actual jitter values.  

Results indicate that Windows should be avoided for 

soft real-time applications over Ethernet. Other actors on 

the network will create further performance degradation, 

both in throughput and in latencies. Therefore, it is 

important to control the behavior on the network, either 

by programmatically enforcing correct behavior on the 

application side, or enforcing application access and 

behavior on the network switches.  

For future work it is recommended to perform further 

performance testing the middleware options in a 

representative environment. 

4. Conclusions and future steps 

The ITER RHCS requires a mixture of Object 

Oriented Middleware (OOM) and Data Distribution 

Service (DDS) like middleware architectures. Both the 

OOM and DDS solutions should preferably be acquired 

from the same supplier to insure interoperability and 

support. Candidate suppliers that can deliver both 

include PrismTech OpenSplice and ZeroC ICE, however 

the research presented here is not complete to warrant a 

preferred option yet. The major advantage of PrismTech 

is native QoS support, with a disadvantage that their 

RMI product seems immature.  

Additionally a small management component 

overhead is suggested which serves to monitor network 

usage and performance, and can act as the ultimate 

escalation level that can be called by individual actors 

(when require more capacity, lower latency). This 

component can balance requests and act accordingly. 

For the RHSC at DIFFER, the ad-hoc UDP datagram 

method will be extended to basic real-time 

functionalities [15] and system time synchronization will 

be attempted. Prototyping will proceed both with Ice and 

OpenSplice middleware to evaluate implementation in 

these environments with real-life applications, and 

network control will be implemented. 
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