
author’s email: j.f.koning@differ.nl

Evaluating ITER Remote Handling middleware concepts

J.F. Koning
a
, C.J.M. Heemskerk

b
, P. Schoen

b
, D. Smedinga

b
, A.H. Boode

c
, D.T. Hamilton

d

a
FOM Institute DIFFER, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box

1207, 3430 BE Nieuwegein, the Netherlands, www.differ.nl
 b
Heemskerk Innovative Technology, Noordwijk, The Netherlands

c
University of Applied Sciences InHolland, Alkmaar, The Netherlands

d
ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance, France

Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an

extensive software kit. A layer of middleware will manage and control a complex set of interconnections between

teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics.

The middleware is driven by constraints on amounts and timing of data like real-time control loops, camera images,

and database access.

The Remote Handling Study Centre (RHSC), located at FOM institute DIFFER, has a 4-operator work cell in an

ITER relevant RH control room setup which connects to a virtual hot cell back-end. The Centre is developing and

testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware

layer. SW components studied include generic human-machine interface software, a prototype of a RH operations

management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple

independent views. Real-time rigid body dynamics and contact interaction simulation software supports simulation

of structural deformation, "augmented reality" operations and operator training.

The paper presents generic requirements and conceptual design of middleware components and Operations

Management System in the context of a RH Control Room work cell. The simulation software is analyzed for real-

time performance and it is argued that it is critical for middleware to have complete control over the physical

network to be able to guarantee bandwidth and latency to the components.

Keywords: Remote Handling, haptic, virtual reality, master-slave, middleware

1. Introduction

ITER has established procedures to develop validated

RH designs and methods [1][2]. This implies that the

accessibility and handle-ability of an ITER component

by remote methods, needs to be reviewed. Subject to the

established RH class of the task, the maintenance

procedures need to be detailed before the system enters

the operational stage.

Starting from the conceptual design stage, it is

necessary to analyze RH compatibility. Virtual Reality

(VR) simulation is a cost-effective and flexible method

to enable RH Compatibility Assessment (RHCA) [2].

The Remote Handling Study Centre (RHSC) [2]

enables VR simulation for RH procedure detailing and

validation. Operators can interact individually or as a

team with the virtual environment by different means,

including common computer interfaces such as

keyboards, mice, joysticks and spacemice. Monitors

provide visual feedback through configurable views.

Additionally, the virtual environment boosts a rigid body

dynamics simulator with contact interaction. Advanced

interaction with the rigid body simulator is possible

through haptic master devices, allowing for user

position/force input, and for force feedback to the user.

Currently a desktop solution and a full-scale master

arm are available: respectively Sensable Phantom Omni

devices and a Haption Virtuose 6D35-45. Various

remote scenes are available including a hot cell mockup

and a scene used for benchmarking operators [3][4][5],

which has also been benchmarked on a hardware test

bed [6]. The software components used in the RHSC

reflect a number of the functionalities that ITER seeks in

the RH Control System (RHCS) architecture, albeit not

yet in the modular form that is requested, where a

middleware layer will be connecting and servicing the

modules with data [7]. The RHSC strives to implement a

prototype of the ITER-RHCS.

Figure 1.1 RHCS layout concept with RHCS supervisor added

CODAC Central Systems

Virtual
Reality

Operations
Management

System

Remote
Diagnostics

File Network

Physical
Simulator

Equipment
Management

System

Viewing
System

Viewing
Monitor

RH
Equipment
Controller

RH Equipment
Device

Viewing
Sensor

RH Tool
Device

RH Tool
Controller Digitizing Image

Processing
RH Device
Controller

RH Input
Device

Real-time Network

Command
and Control

Video Network

Control Network

Diagnostic Network

RH Operator Interfaces

RH Equipment

RH Controllers

RH System

Field Wiring

Plant Operation Network

RHCS
supervisor

Koning_paper_SOFT_2012.docx
Click here to view linked References

http://ees.elsevier.com/fusengdes/viewRCResults.aspx?pdf=1&docID=4769&rev=1&fileID=157482&msid={8B13A34D-84AF-4D80-A7FC-CF1E9A179634}

This paper describes steps taken to come to a RHCS

middleware prototype based on the available software

components at the RHSC. The driving requirements are

presented and reviewed. Several generically available

middleware solutions and an ad-hoc solution are

conceptually implemented. Compliance with

requirements and performance are analyzed wherever

possible.

2. RHCS required functional components

The RHSC is developing functionality roughly along

the lines of Figure 1.1 [7]. Most modules do not yet

implement the full set of features required for future

operations. Some software overlaps several modules, and

some modules are not relevant for the RHSC.

2.1. Operations Management System

RH Procedures will be stored in an Operations

Management System (named ODS at JET). The RHSC

developed a web server component, called the RH Task

Browser (RHTB), for accessing the task information

through any web browser. The tasks are stored in a

backend Java server running a PostgreSQL database.

Figure 2.1 RHTB with procedure to replace Steering Mirror

Assembly component on Upper Port Launcher plant

The RHTB allows RH procedures to be input in a

programmatic way, using branching and sub-functions,

steps with situational pictures and descripts, user rights

management, and procedure execution by a team of

operators. The operators have different roles and can

work together on this system to successfully complete

procedures and annotate steps along the way.

A structured language for defining and describing

RH steps remains to be developed.

2.2. Virtual Reality

In the RHCS context, VR is merely used as an aid to

simulate the current state in a scene and to help the

operator easily monitor situations which cannot be

directly viewed by real cameras.

2.3. Physical simulator

The Virtual Slave Simulator (VSS) is the RHSC

implementation of the Nvidia PhysX rigid body

simulator with contact interaction. The software is soft-

realtime and runs on a Windows platform with refresh

rates up to 1kHz. For non-trivial scenes, the update rate

is between 250Hz and 333Hz. This is still fast enough to

transparently display slave manipulator forces to the

master operator.

Figure 2.2 HMI with identification of manipulator axes and

positions, camera and light locations

2.4. Command and Control

This is a category of user interface software

components that incorporates generic user interfacing to

the VR and other systems, as well as specific interfacing

to RH equipment and tooling. The latter are often in

form of a Human Machine Interface (HMI, Figure 2.2)

and incorporate commands specific to the start, operation

and shutdown of these systems.

2.5. Modules irrelevant to RHSC

The RHSC lacks a hardware backend, so it is not yet

possible to implement a complete remote viewing

system with sensors, image processing, monitors to the

operator and remote diagnostics. However, research into

a synthetic viewing system is being undertaken [8],

employing cameras to geometrically calibrate a virtual

scene to a real hardware setup [2].

2.6. RH supervisor role

One item is added to Figure 1.1, being the RH

supervisor role [7] – an operator interface and RHCS

component that allow setting the operational theatre. Its

function is to allocate resources (RH interfaces, RH

equipment, network capacity, and operators) to the task

at hand and changing task states.

3. Middleware synopsis

Functional requirements based on data analysis and

types of middleware are presented below. The view of

ITER RH is presented and taken into account to identify

a few available middleware frameworks. These are pilot

tested. Furthermore, as network performance will be

limiting performance of any middleware, it is evaluated

whether conventional Ethernet is fast enough for time

synchronization and soft real-time control.

3.1. Requirements from data perspective

The combination of data requirements in the various

RH networks makes for a challenging setting for

middleware. The goal is to use the same middleware

across all networks.

Real time data, such as joint position updates,

requires small data packets to be sent with little latency.

Typical messages are in the order of 40 bytes per RH

equipment and to be sent with <0.2ms end-to-end but

preferably <0.1ms round-trip delay at a high rate (1kHz).

A small loss of data is acceptable only if very infrequent.

Video data requires multiple, continuous streams

with, for HD-video, >1Mbit/s bandwidth per channel

with <50ms end-to-end latency. Frame drops and data

loss are acceptable to about 10% before visual artifacts

start to hinder operators.

Audio, if used, is similar to video with a factor 20

lower bandwidth for one channel. Time stamping is

important to keep the audio in sync with video.

Text, messages, state changes and other data is much

lower in bandwidth and does not have real-time or

bandwidth requirements, but normally do require

acknowledgement of correct reception. Database

transactions will not be too large but do require fast

transmission and fast processing, as other clients might

depend on the correctness in time of some of the data.

File/model data exchange requires larger amounts of

data to be transmitted in a short interval, with integrity

guarantees, but no real-time or firm bandwidth

constraints. As it is likely that multiple module

(instances) will individually load models at the same

time the concurrent capacity needed will be quite large.

From these conflicting requirements is derived that at

the least a Quality-of-Service enabled network will be

necessary. Combining streaming and file access is

common practice although tailoring is required for

critical data. However, providing real-time guarantees

with low latency and jitter is much more difficult [9].

3.2. ITER RH originating requirements

The RHCS should align to ITER RH middleware

requirements. That shall [10]:

 Be able to support synchronous remote method

invocation (Sync RMI),

 Be able to support asynchronous remote method

invocation with call-back (Async RMI),

 Use a neutral language to define remote object

public interfaces (Neutral Language),

 Have no platform, language, network, or

application dependency (Independency).

3.3. Types of middleware

In the literature four main types of middleware can

be found [11]. The transactional type is geared towards

database transactions, with consistency guaranteed,

having as drawback that clients could have to wait on

other client transactions. Remote Procedure Calls

(RPCs) are transparent and supported on multiple

platforms, but scalability is limited as there is no support

for asynchronous communication, load balancing

etcetera. Message Oriented Middleware (MOM) offers a

mailbox abstraction focusing on asynchronous

transmission. No confirmation of delivery is

implemented but other solutions like QoS [12] improve

reliability. There’s no standardization. Object Oriented

Middleware (OOM) evolved from RPCs by adding

inheritance, references and exceptions. Transport

transformation is automatic, synchronous and

asynchronous communication is supported. Scalability is

somewhat limited by overhead in locating the

implementation and methods by remote objects. The

latter type is the most widely used and most evolved, and

integrates all functionality necessary.

3.4. Pilot testing available OOMs

On the Windows 7x64SP1 working environment of

the RHSC, a number of readily available options were

pilot tested for integration. Setting up build

environments and producing simple working

applications on localhost took for all options a few days.

CORBA (Common Object Request Broker

Architecture) is the classical OOM and a widely

recognized standard. However, many different versions

and many different implementations exist, none of which

implements the full scope. In JacORB version 2.3, an

open source CORBA implementation, a trivial “Hello

world”-like client/server application was programmed. It

was found to require quite some environment

configuration to get it working.

ICE version 3.4 (Internet Communication Engine, an

OOM) by ZeroC has been implemented in the VSS

application. One-way latency in data transfer measured

over localhost, i.e. both communicating software

components are located on one PC, increased from

0.1ms to 0.16ms. Additionally ZeroC has IceStorm

available, a DDS (Data Distribution Service, which is a

form of MOM).

OpenSplice DDS & OpenSplice RMI (Remote

Method Invocation) are respectively a MOM and OOM

offered by PrismTech. Version 6 of DDS is

recommended by a study for ITER RHCS [10] and was

implemented here. In contrast to IceStorm it has QoS

available, enabling native support for real-time

applications. It performs very fast over localhost, on

average some 25μs round-trip, although some spikes do

occur. This is much faster than sending an ICMP over

localhost (around 250μs), or sending an UDP datagram

over localhost (around 50 μs) suggesting that

OpenSplice bypasses the network stack for localhost

connections.

Unfortunately, implementation of OpenSplice RMI

was found to be hard, support from PrismTech turned

out to be slow and limited. Manuals are concise and

community support is barely available. It is a new

product for OpenSplice and seems immature. An ad-hoc

RMI method via DDS was not implemented at this time.

EPICS is the middleware of choice for ITER

CODAC. However it does not seem to be suited to

robotics [13] so this option was not tried.

3.5. Real time control

Closed-loop control needs accurate time

synchronization to be an order of magnitude better than

the smallest time slice encountered (about 100μs).

Network Time Protocol offers accuracy down to one

millisecond. NTP is present and enabled in all major

operating systems, however in Windows it is a

simplified version which does not enable

synchronization accuracy better than 2 seconds [14].

As an alternative, the Precision Time Protocol (PTP)

is an IEEE standard and allows sub-microsecond

accuracy but is a bit tedious as it requires specific

network switches, and functions best with specific

endpoint Ethernet hardware.

3.6. Ethernet latency

On a local network with Dell i5 Windows 7 PCs with

1Gbit/s cards, all connected via a Foundry FLS 648

switch, Ethernet latency has been estimated by sending

ICMP packets.

From:

To:

Linux, 32bit

Ubuntu 12.04

Windows 7

SP1 64bit

Linux 130μs 860 μs

Windows 600μs 1350μs

Localhost 11μs 250μs

Table 1 Round-trip delay timing (averaged) on local network

Latencies with only a crossover-cable were similar,

but more consistent. From Table 1 it seems the

Windows endpoints contribute significantly to the

overall latency, and a multiple-PC network environment

contributes to jitter and spikes. Our test was not

extensive enough to report actual jitter values.

Results indicate that Windows should be avoided for

soft real-time applications over Ethernet. Other actors on

the network will create further performance degradation,

both in throughput and in latencies. Therefore, it is

important to control the behavior on the network, either

by programmatically enforcing correct behavior on the

application side, or enforcing application access and

behavior on the network switches.

For future work it is recommended to perform further

performance testing the middleware options in a

representative environment.

4. Conclusions and future steps

The ITER RHCS requires a mixture of Object

Oriented Middleware (OOM) and Data Distribution

Service (DDS) like middleware architectures. Both the

OOM and DDS solutions should preferably be acquired

from the same supplier to insure interoperability and

support. Candidate suppliers that can deliver both

include PrismTech OpenSplice and ZeroC ICE, however

the research presented here is not complete to warrant a

preferred option yet. The major advantage of PrismTech

is native QoS support, with a disadvantage that their

RMI product seems immature.

Additionally a small management component

overhead is suggested which serves to monitor network

usage and performance, and can act as the ultimate

escalation level that can be called by individual actors

(when require more capacity, lower latency). This

component can balance requests and act accordingly.

For the RHSC at DIFFER, the ad-hoc UDP datagram

method will be extended to basic real-time

functionalities [15] and system time synchronization will

be attempted. Prototyping will proceed both with Ice and

OpenSplice middleware to evaluate implementation in

these environments with real-life applications, and

network control will be implemented.

Acknowledgments

This work, supported by NWO, ITER-NL and the

European Communities under the contract of the

Association EURATOM / FOM, was carried out within

the framework of the European Fusion Programme. The

views and opinions expressed herein do not necessarily

reflect those of the European Commission.

The views and opinions expressed herein do not

necessarily reflect those of the ITER Organization

References

[1] A.Tesini et al., ITER Remote Maintenance System

(IRMS) lifecycle management, Fusion Engineering and

Design, Volume 86, Issues 9–11, October 2011, Pages

2113-2116

[2] J.F. Koning et al., Analysis of ITER upper port plug

remote handling maintenance scenarios, Fusion

Engineering and Design, Volume 87, Issues 5–6, August

2012, Pages 515-519

[3] C.J.M. Heemskerk et al.., Verifying elementary ITER

maintenance actions with the MS2 benchmark product,

Fusion Engineering and Design, Volume 86, Issues 9–11,

October 2011, Pages 2064-2066

[4] J. van Oosterhout et al., Haptic Shared Control improves

Hot Cell Remote Handling despite controller

inaccuracies, this conference

[5] H. Boessenkool et al., Challenges in human-in-the-loop

tele-operated maintenance at ITER, this conference

[6] G.Y.R. Schropp, On the Influence of Visual Feedback on

Human Task Performance in Remote Handling, Fusion

Engineering and Design, Volume 87, Issues 5–6, August

2012, Pages 808-812

[7] D.T. Hamilton et al., An integrated architecture for the

ITER RH control system, Fusion Engineering and

Design, Volume 87, Issue 9, September 2012, Pages

1611-1615

[8] C.J.M. Heemskerk et al., Introducing artificial depth cues

to improve task performance in ITER maintenance

actions, this conference

[9] T. Dumitras et al., A study of unpredictability in fault-

tolerant middleware, Computer Networks, article in press

[10] P. Soetens et al., Middleware, ITER_D_7554YJ v1.0

[11] H. Pinus, Middleware: Past and Present a Comparison,

http://userpages.umbc.edu/~dgorin1/451/middleware/mid

dleware.pdf

[12] ITU, G.1000 : Communications Quality of Service: A

framework and definitions, http://www.itu.int/rec/T-REC-

G.1000-200111-I/en

[13] P. Soetens, RH Operating Framework,

ITER_D_6URDH4 v1.0

[14] Support boundary to configure the Windows Time

service for high accuracy environments,

http://support.microsoft.com/kb/939322

[15] Mahajan K., UDP Unicast Test, ITER_D_46LRZ4 v1.1

http://userpages.umbc.edu/~dgorin1/451/middleware/middleware.pdf
http://userpages.umbc.edu/~dgorin1/451/middleware/middleware.pdf
http://www.itu.int/rec/T-REC-G.1000-200111-I/en
http://www.itu.int/rec/T-REC-G.1000-200111-I/en
http://support.microsoft.com/kb/939322

