Software architecture for control and data acquisition of linear plasma generator
Magnum-PSI

P.W.C. Groen, V. van Beveren, A. Broekema, P.J. Busch, J.W. Genuit, G. Kaas, A.J. Poelman, J. Scholten,
P.A. Zeijlmans van Emmichoven

FOM Institute DIFFER - Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral
Euregio Cluster, P.O. Box 1207, 8430 BE, Nieuwegein, The Netherlands, www.differ.nl.

Abstract

The FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research has completed the construction phase
of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface
interactions under ITER divertor conditions. Magnum-PSI consists of several hardware subsystems, and a variety of
diagnostic systems. The COntrol, Data Acquisition and Communication (CODAC) system integrates these subsystems
and provides a complete interface for the Magnum-PSI users. Integrating it all, from the lowest hardware level of sensors
and actuators, via the level of networked PLCs and computer systems, up to functions and classes in programming
languages, demands a sound and modular software architecture, which is extendable and scalable for future changes.
This paper describes this architecture, and the modular design of the software subsystems. The design is implemented
in the CODAC system at the level of services and subsystems (the overall software architecture), as well as internally in

the software subsystems.

Keywords:

Magnum-PSI, plasma generator, data acquisition, CODAC, experiment control

1. Introduction

The FOM Institute DIFFER is completing a new appa-
ratus to study plasma wall interactions in the parameter
regime relevant for ITER and beyond. This linear ma-
chine, Magnum-PSI, consists of a series of vacuum cham-
bers with on one end the plasma source and on the other
the target manipulator [1,[2]. The plasma is magnetized by
an axial magnetic field and is transported from the source
to the target. Cooling is an important aspect of the device,
since up to a few 100 kW can be dissipated [3]. An exten-
sive description of the status of the Magnum-PSI device is
given by [4]. Several diagnostics have been implemented to
study the properties of plasmas, plasma wall interactions,
and targets after plasma exposure. The first experiments
have been performed [, 6]. Safety plays an important
role in running the machine, because of the presence of
large magnetic stray fields, handling of hydrogen and deu-
terium, and use of intense laser beams. The complexity of
the device makes a central COntrol, Data Acquisition and
Communication (CODAC) system necessary. At the start
of the Magnum-PSI project in 2005, a broad experience
in in-house development of software was available, based
on earlier projects like the Rijnhuizen Tokamak Project
(RTP), see e.g. [7]. It was therefore decided to continue
this full in-house development.

The Magnum-PSI CODAC system consists of services,
subsystems (the cooling, vacuum, magnet, target station,
and plasma source systems) as well as diagnostics [§] that

Preprint submitted to Fusion Engineering and Design

have their software representations in the CODAC soft-
ware architecture. Hereafter the term ’subsystems’ is main-
ly used for the software part of subsystems. The term ’sys-
tems’ will refer to both software subsystems and services.

To handle the complexity, and expandability of Mag-
num-PSI CODAC, a general setup is needed, which is re-
alized by a modular design. This design applies to both
the software architecture, and to its subsystems.

The authors of [§] treated the overall Magnum-PSI CO-
DAC system architecture, with a strong emphasis on tech-
nology choices, the hardware, and the communication lay-
ers. This paper will place emphasis on the software archi-
tecture and will then zoom in on the software subsystem
design.

The CODAC systems of devices like JET [9], ASDEX
Upgrade [10, [11], TEXTOR [12], and W7-X [13] contain
elements comparable to that of Magnum-PSI: complexity,
local and central control, distribution of systems, flexibil-
ity, extendibility, and a major role for safety. It seems,
however, that most CODAC systems are custom made
for the device in question. The ‘local components’ of [13]
and the ‘Application Processes’ of [10, [11] are similar to
the subsystems in Magnum-PSI. Very interesting also on a
more detailed level of building blocks for distributed con-
trol systems, next to JETRTApp [9], are FireSignal |14, 15]
with ‘Nodes’ resembling subsystems, the tool kit TANGO
[16] and the set of tools and applications called EPICS
[17], on which the ITER CODAC Core System is based

December 4, 2012



Services

]
Master Status Subsystem
Subsystem ) Database Timing <)
GUI
Logging ... (etc)

Subsystem 1 Subsystem 2 ... (etc)

Intermediate Intermediate Intermediate

laier laier layfr

Figure 1: The Magnum-PSI CODAC software architecture with cen-
tral services, subsystems and the Magnum-PSI device.

NE] In literature there is however somewhat less focus on
the details of the design for the software of subsystems,
which makes it difficult to compare to Magnum-PSI.

In the following two sections the software architecture
for the Magnum-PSI CODAC and the software subsystem
design will be described. A concise overview of its im-
plementation, and choices made, will be given in the last
section.

2. The architecture

The Magnum-PSI CODAC software architecture con-
tains services and subsystems (fig. [[). The Master and
the Status service are the main services. Additional
services are the database, timing, and log services. The
services are surrounded by (software) subsystems. More
services and subsystems can easily be added. The control
of subsystems is governed by setting values of data struc-
tures called variables. Systems communicate via mes-
sages, that refer to a variable. A system can send a request
to set the variable’s value via a command message to a
subsystem that handles the variable internally (section B]).
A subsystem shares its own variables’ actual values with
the other systems via status messages. Subsystems do
not communicate directly to one another, but only via the
Master and Status service. Command messages always
pass through the Master. Status messages go directly to
the Status service. Fig. 2] shows the architecture in an op-
erational context with the communication via messages.

The operation of Magnum-PSI is governed by two mo-
des, and their respective states (fig. [B). Magnum-PSI
starts in the Off state of the Service mode. Operation is
performed in the Plasma mode. Switching modes is only
possible in the Off state, in which Magnum-PSI is idle.
When leading Magnum-PSI from the Maintenance to the
Target Exposure state, e.g., the operator first has to bring
it to the Off state, then switch from the Service to the
Plasma mode, and then take it from the Off state, through

Plasma Vacuum
GUIL GUI

Subsystem X
(e.g. GUI)

Additional
Services

Master Status Server

Vacuum
subsystem

“Software
subsystem”

Subsystem Y
(e.g. Cooling)

—* command
== status

Hardware layer

Figure 2: The communication within the Magnum-PSI CODAC soft-
ware architecture via command and status messages.

the subsequent states, to the Target Exposure state. A
state not only represents the state of the experiment, but
also governs certain 'business’ rules of the underlying soft-
ware systems. Examples of such state related rules are that
in the Target Exposure state it is not allowed to retract the
target manipulator, that vacuum valves are not allowed to
be closed in the Plasma Tuning state and that extra data
is written to the database in the Target Exposure state.
Rules for safety and protection on the other hand, are dealt
with at a lower level. The Master determines the state and
brings the other systems in that state. It also dispatches
the command messages. Each system registers itself at the
Master by telling its hostname and port number, so that
other systems are able to find it by asking the Master. The
Status service holds the operational data of Magnum-PSI,
i.e. a cache of the actual values of the variables sent by the
systems. Subsystems retrieve information of other systems
from the Status service.

The database service manages the underlying data files,
and receives data and meta data from the subsystems for
persistent data storage. Each system, including future ex-
tensions (e.g. new diagnostics) is able to write to, and
read from, the database. The timing service manages the
time synchronization of Magnum-PSI. It holds the Mag-
num wall clock time, and manages the trigger inputs and
outputs. The log service manages, and stores, log messages
from the systems.

Subsystems are responsible for a specific task within
the Magnum-PSI CODAC system. A subsystem with a
hardware counterpart is an abstraction of that hardware.
An example of a subsystem is the vacuum subsystem, that
controls the pressure in the Magnum-PSI system. Each
system owns a number of variables and has its own specific
task associated with its variables. Only a system that
owns the variable is allowed to assign an actual value to
the data. E.g. the cooling subsystem owns the ’request
pump on’ variable, and after a request it switches on the
pump when the system state and rules allow it. A variable



Magnum Modes and States

Service Mode Plasma Mode

System
checks

Maintenance

System
Configuration

Plasma Safe
Tuning

—> State change initiated by operator. —> (Black) Normal state change.

——> Automatic state change, iniiated by condiions. (Yellow) State change to *Safe state”

——> (Red) State change to “Error state”
— (Green) State change from *Safe state”.

Figure 3: The Magnum-PSI CODAC modes and states. The Service
mode has 6 states, the Plasma mode has 8 states. Only the Off state
is shared.

resides in only one system, contains data (e.g. value, time
stamp), and has specific properties (e.g. a unique ID, the
value’s data type).

A special type of subsystem is the Graphical User In-
terface (GUI). It uses all general components that make
up a subsystem. The information that a GUI displays,
is retrieved from the Status service. A GUI is allowed to
send command messages only to the corresponding sub-
system and is typically used by an operator to control the
corresponding subsystem, e.g, opening a valve by pushing
a button in the GUI. GUIs are allowed to display any data
from the Status service.

3. Subsystem design

Subsystems are the generic components of the archi-
tecture. This section shows how subsystems are built up
themselves. The subsystem’s internal components resem-
ble the overall architecture components. They are called
managers and modules and play the role of services and
subsystems respectively (fig. ). Their communication is
also realized by sending, and receiving messages. Modules
do not communicate directly with one another, but always
via the managers. Managers are central to the subsys-
tem. The two main managers are the Command manager,
which acts as a gatekeeper, like the Master, and the Vari-
able manager that holds and shares the variables’ actual
values, like the Status service.

A subsystem always contains a Master module, that
communicates with the Master, a Status service module,
that communicates with the Status service and a State-
mode module, responsible for handling the (allowed) state
of the subsystem. A module owns variables, has its own

Master Status Server Addm.ona]
Services
| I + : +
; ;
Subsystem ll (R} il
Master Status Server Module X
Module Module e.g. Database mod.
Sl +
H i !
II
1lue P mmmmm e -
[
[
Y
Command Additional

M M

S

|

i
Module Y

e.g. hardware module

Module Z

diate layer
Hardware layer

Figure 4: The design of the subsystem, with the basic elements, and
the way they communicate.

specific task and is only allowed to update a variable that
it owns. A subsystem can be extended by adding mod-
ules, e.g. a database module, a log module, or a hardware
module.

The generic set-up of the subsystem also allows the
services to be built up this way. Services like the log service
and the timing service are in fact implemented this way.

The extensibility and flexibility in the design applies
both to the software architecture and to the internal struc-
ture of subsystems themselves.

4. Implementation

This section will give a brief overview of the software
architecture implementation. More details can be found in
[8]. Key decisions at the start of the project were: using
PLCs for real-time hardware control and safety (next to
interlocking at hardware level) and HDF5 for data stor-
age. This was followed by choosing Python as the main,
platform independent, programming language (e.g. with
PyTables for HDF5) and ZeroC Ice for client-server com-
munication. Servers run on Linux, which in turn runs on
a redundant, virtualized platform. GUIs (PyQt) run on
Windows. When non-PLC based subsystems were added,
and a more modular approach was needed, the architec-
ture was further developed into its final form.

Servers and subsystems are written in Python. Sub-
systems connected to hardware via a PLC use an in-house
developed client and additional code to glue the subsys-
tem to the C coded PLC. This communication layer is an
example of the implementation of the intermediate layer
for the subsystem PLC hardware module. The command
and status messages between systems are sent and received
using Remote Procedure Calls (RPCs) with ZeroC Ice. A
subsystem acts as a server to RPCs, receiving messages
for its own tasks, or as a client when sending a message to
the Master. For timing and synchronization of triggered
events (not of separate clocks) a timing server is used,



which holds the GPS based reference time. The connec-
tion between the timing server Python layer and its un-
derlying (LabView based) FPGA is another example of an
intermediate layer.

At the moment 19 subsystems (including 9 GUIs) and 5
servers (2 of which are based on subsystem design) are im-
plemented. Each subsystem holds on average 5 modules.
The systems carry together about 1500 variables related
to hardware I/O and circa 20,000 variables that only live
in software. Roughly 500 of these variables are stored in
the database.

5. Conclusion

The basic CODAC system for the linear plasma genera-
tor Magnum-PSI is finished. The system manages the con-
trol of the device, arranges the data storage, and provides
a complete interface for the Magnum-PSI users. The CO-
DAC system works well. The modular design of the soft-
ware architecture enables large flexibility, implying that
additional services and subsystems can easily be added.

Acknowledgements

The authors would like to thank the Magnum-PSI team
for their input. This work, supported by the European
Communities under the contract of Association between
EURATOM/FOM, was carried out within the framework
of the European Fusion Programme with financial sup-
port from NWO (Netherlands Organisation for Scientific
Research, funded by the Netherlands government). The
views and opinions expressed herein do not necessarily re-
flect those of the European Commission.

References

[1] A. Kleyn et al., Plasma-surface interaction in ITER. Vacuum,
80 10 (2006), pp. 1098.

[2] J. Rapp et al., Construction of the plasma-wall experiment
Magnum-PSI. Fusion Eng. Des., 85 (2010), pp. 1455.

[3] O.G. Kruijt et al., Thermal effects and component cooling in
Magnum-PSI. Fusion Eng. Des., 86 (2011), pp. 1724.

[4] J. Scholten et al., Operational status of the Magnum-PSI linear
plasma device. This conference (2012).

[5] G. De Temmerman et al., Overview of the first results from the
Magnum-PSI high flux device. This conference (2012).

[6] M.A. van den Berg et al., Study of the influence of target tilt-
ing and castellation on power load distribution. This conference
(2012).

[7] P.C. van Haren and F. Wijnoltz, TRAMP, the next generation
data acquisition for RTP. IEEE Trans. Nucl. Sci., 39 (1992), pp.
95.

[8] G.W. van der Linden et al., Design of the Magnum-PSI Safety,
Control and Data Acquisition System. Fusion Eng. Des., 83
(2008), pp 273.

[9] G. De Tommasi et al., A flexible and reusable software for real-
time control applications at JET. Fusion Eng. Des., 74 (2005),
pp 515.

[10] W. Treutterer et al., The new ASDEX upgrade real-time control
and data acquisition system. Fusion Eng. Des., 66-68 (2003), pp.
755.

[11]

G. Raupp et al., Control process structure of ASDEX Upgrade’s
new Control and Data Acquisition System. Fusion Eng. Des.,
74 (2005), pp. 697.

M. Korten et al., JDAQ, the new TEXTOR data acquisition
program. Fusion Eng. Des., 81 (2006), pp. 1723.

J. Schacht et al., Overview and status of the control system of
WENDELSTEIN 7-X. Fusion Eng. Des., 82 (2007), pp. 988.
A. Neto et al., FireSignal-Data acquisition and control system
software. Fusion Eng. Des., 82 (2007), pp. 1359.

A.S. Duarte et al., FireSignal application Node for subsystem
control. Fusion Eng. Des., 85 (2010), pp. 496.

The TANGO website, http://www.tango-controls.org/, 01-
Aug-2012.

EPICS, Experimental Physics and Industrial Control System,
http://www.aps.anl.gov/epics/, 01-Aug-2012.

CODAC Core System documents in the CODAC Section of the
ITER website, http://www.iter.org/org/team/chd/cid/codac,
01-Aug-2012.



	Introduction
	The architecture
	Subsystem design
	Implementation
	Conclusion

