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Abstract

For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak
plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In
previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade
however, the desired frequency range in which the islands are to be tracked (5 Hz – 20 kHz) is much larger
than is possible with a PLL. In this contribution an extended Kalman filter (EKF) and an unscented Kalman
filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals using
noisy measurements. Compared to PLLs, the EKF and UKF are able to track magnetic islands in a
much larger frequency range. The filters are applied on synthetic data and on experimental data from the
TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of
magnetic islands on ASDEX Upgrade.

Keywords: Extended Kalman Filter, Unscented Kalman Filter, magnetic islands, phase tracking,
real-time, rotating tearing modes control

1. Introduction

Tokamaks are toroidal devices in which a hot
plasma is confined by means a magnetic field. Ex-
ternal coils generate the dominant toroidal mag-
netic field Bφ. A toroidal electric current Ip in the
plasma adds a smaller poloidal component Bθ. Ide-
ally, the resulting magnetic field has helical field
lines that lie on nested surfaces of constant flux.
On some of these surfaces, magnetic islands can

develop, caused by the so-called neoclassical tear-
ing modes (NTMs). Due to magnetic reconnection,
the topology of nested flux surfaces changes, which
degrades the performance and stability of the reac-
tor.
The magnetic axis of the island is referred to as

the O-point. The O-point is a local minimum in
the current density. In reactor-relevant tokamaks
such as ITER, real-time control of the width of
these modes is required [1]. The control scheme
is based on local non-inductive current drive using
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high power mm-wave beams. The beam frequency
is a multiple of the electron cyclotron frequency,
and the deposition of the beam is a localized, reso-
nant process. As the island is rotating and the de-
position location is fixed, modulation of the beam
power is required to assure deposition in the islands
O-point. This implies that the phase of the island
rotation needs to be identified in real-time, with
good accuracy.

The island rotation can be inferred from mag-
netic field measurements outside the plasma or from
local electron temperature Te measurements at the
radial location of the island. The repetitive passing
of the O-point leads to a repetitive variation of Te

and the magnetic field. The poloidal phase of the is-
land needs to be inferred from these measurements,
and made available to a real-time control system.
Given the variation of the signal’s amplitude and
the amount of measurement noise, simple threshold
methods cannot be applied. Measurements of the
frequency content of the signals and concomitant
phase determination in principle require sampling
over a number of oscillations. In situations with

Preprint submitted to Fusion Engineering and Design January 8, 2013



rapidly varying frequencies this leads to significant
errors in the phase measurement. In situations with
locking islands this leads to significant latency.
A phase-locked loop (PLL) can be used to esti-

mate frequency and phase of a measured periodic
signal in real-time by locking the oscillator of the
PLL with the measured signal [2]. Successful O-
point tracking and modulation control using a PLL
have been achieved in TEXTOR [3]. However, the
frequency band for which PLLs work is inherently
limited, and the method can only be applied in sys-
tems in which the mode frequency is limited within
a well known band. On ASDEX Upgrade, a toka-
mak characterized by strong torque from neutral
beams and by strong island-wall interaction, the
mode frequency band is from 100 Hz to 10 kHz.
This range is much wider than the frequency band
of PLLs, which necessitates the development of a
viable alternative method, capable of tracking peri-
odic signals in a frequency range of at least 100 Hz
to 10 kHz.
In this contribution two real-time methods (an

extended and an unscented Kalman filter), for ac-
curate and low latency tracking of oscillating sig-
nals with variable frequency, amplitude and phase
are discussed. The frequency band for which these
methods works is, in principle, only bounded by the
Nyquist frequency (half the sample frequency).
The paper is organised as follows. In Section 2,

the signal model is discussed. In Section 3, theory
and principles of Kalman filters are explained. In
Section 4, the methods are tested on synthetic data,
and in Section 5, the methods are tested on off-
line data of magnetic field and electron temperature
measurements.

2. Signal model

The Kalman filters that we will propose in Sec-
tion 3 estimate the states of a system, based on
its measured output and a state-space model of the
system.
Because of the repetitive passing of the O-point

of the magnetic islands, the magnetic field mea-
surements or electron temperate measurements are
roughly sinusoidal signals. Therefore we do not
model fusion processes, but we simply derive a
state-space model that describes a cosine. Of
course, this model can be used to track many other
sinusoidal signals, such as, for example, Alfvén
waves. The filters might also be able to track a
sawtooth using a different signal model, such as a

sawtooth model as described in [4] or [5]. Many
other signals (including nonperiodical signals) can
be tracked using an appropriate state-space model.
We assume that the measured signal can be de-

scribed by

y(t) = A(t) cos(θ(t)) + v(t). (1)

Here y is the measured signal, A the amplitude of
the sinusoid, θ its phase in radians and v the mea-
surement noise.
In discrete time tk = kts, where ts is the constant

sample time and k ∈ Z, the signal is written as

yk = Ak cos(θk) + vk. (2)

To track this signal using a Kalman filter, a state-
space model is needed with states that describe the
evolution of the amplitude Ak, phase θk and fre-
quency fk = (θk+1−θk)/(2πts). Here the following
nonlinear discrete-time model is used, that at time
tk has states

xk =





x1,k

x2,k

x3,k



 =





Ak cos(θk)
Ak sin(θk)
2πfkts



 . (3)

Assuming that the amplitude and frequency are al-
most constant in the small time-interval (tk, tk+1],
state x1 at time tk+1 becomes

x1,k+1 = Ak+1 cos(θk+1)

= Ak cos(θk + 2πfkts) + w1,k

= x1,k cos(x3,k)− x2,k sin(x3,k) + w1,k, (4)

where the unmodelled variations in amplitude and
frequency are included in the process noise w1,k.
A similar derivation can be used to find x2,k+1.

The result is the nonlinear state-space model for
xk+1 together with output yk

xk+1 =





x1,k cos(x3,k)− x2,k sin(x3,k)
x1,k sin(x3,k) + x2,k cos(x3,k)

x3,k



+ wk

= f(xk) + wk,

yk = x1,k + vk. (5)

The measured signal to be estimated has time-
varying frequency, phase and amplitude. These
variances, as well as model errors, are accounted
for in the process noise wk.
The resulting model (5) is observable [6] for

x1, x2 > 0, 0 < x3 < π, which implies that
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the states of the system can by inferred from the
measured output in the frequency range A > 0,
0 < f < fs/2, where fs is the sample frequency.

As shown in [7], multiple sinusoids can be tracked
simultanuously by expanding the signal model to
include multiple sinusoids with different frequencies
and amplitudes.

In [8] an extra state x4 = α was proposed, where
α is the rate of change of the amplitude, such that
Ak+1 = αkAk. Something similar can be done for
the frequency tracking using fk+1 = fk + ∆f,k,
where ∆f,k is the estimated frequency increase.

Depending on the signal to be estimated, these
extensions might improve the performance of the
filter.

Since no knowledge of the fusion processes is
used, the model is very general and can be used
to describe any sinusoidal signal. If a model of the
physical process that produces the periodic signal
is available, this can also be included into the sig-
nal model, which will have a positive effect on the
stability and performance of the filter.

3. Kalman filters

For the problem of tracking the island phase,
frequency and amplitude, an observer is needed
that reliably estimates the states of the system
(and thereby the frequency, phase and amplitude),
and is insensitive to measurement noise. The ob-
servers that are investigated here are the extended
Kalman filter (EKF) [9] and unscented Kalman fil-
ter (UKF) [10], which are both extensions of the
Kalman filter to nonlinear systems.

A general description of a time-invariant discrete-
time dynamical system is given by

xk+1 = f(xk, uk, wk),

yk = h(xk, vk), (6)

where at time tk, xk is the state vector, uk the in-
put, wk the process noise, yk the output and vk the
measurement noise, and the functions f and h are
independent of time (time-invariant). In general,
xk, uk, wk, yk and vk are vectors.

In this article it is assumed that w and v are

zero-mean noise (7), (8) and are uncorrelated (11):

E{wk} = 0, (7)

E{vk} = 0, (8)

E{wkw
⊤

k } = Qk, (9)

E{vkv
⊤

k } = Rk, (10)

E{wkv
⊤

k } = 0. (11)

Here, E{·} denotes the expectation of (·).
For the model presented in Section 2, yk and vk

are scalars and the functions f and h are nonlinear
and time-invariant.
The Kalman filter was first described in [11] and

can be used to estimate the states of a linear time-
invariant (LTI) discrete-time systems, described by
the state-space model of Eq. (6), with functions f
and h linear in their parameters.
The Kalman filter is an iterative filter and con-

sists of two steps per iteration. First the model
of the plant is used to predict the a priori state
and output estimates x̂−

k and ŷ−k , and second the
a priori state estimate is corrected based on the
measured output of the plant:

x̂k = x̂−

k +Kk(yk − ŷ−k ). (12)

The Kalman gain Kk is based on the noise covari-
ance matrices Qk and Rk, and on Pk, which is an
iterative estimate of E{ee⊤}, where e = x− x̂ is the
state estimate error. For the complete algorithm
of the Kalman filter, see the EKF (Algorithm 3.1),
which reduces straightforwardly to the Kalman fil-
ter when the system is linear.
For LTI systems with zero-mean noise, the

Kalman filter is the optimal linear filter in the least-
squares sence, meaning that no other linear filter
can achieve a smaller error e in a least-squares sense
than the Kalman filter. Since the Kalman filter only
assumes zero-mean noise, the measurement noise
need not be white, but can also be colored. A
nonlinear filter can only outperform the Kalman
filter when the random processes w and v are non-
Gaussian [11].

3.1. Extended Kalman filter

For nonlinear systems the Kalman filter cannot
be used, which led to the development of the ex-
tended Kalman filter (EKF) [9]. The main idea
behind the EKF is that at each iteration the non-
linear system is linearized around the current state
estimate.
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The nonlinear system is used to compute the a

priori estimates, and the linearized system is used
to compute the Kalman gain. The complete algo-
rithm is shown in Algorithm 3.1.

Algorithm 3.1 Complete algorithm of the ex-
tended Kalman filter for nonlinear differentiable
systems.

1: Initialize x̂ and P with x̂0 and P0 6= 0.
2: Assign the expected noise covariances to Q and

R.
3: for k = 1, 2, 3, . . . do

4: Linearize the system dynamics (Eq. (6))

Fk =
∂f(x̂k−1, uk−1, 0)

∂xk−1

Hk =
∂h(x̂k−1, 0)

∂xk−1

5: Predict the state and the estimate error co-
variance

x̂−

k = f(x̂k−1, uk, 0)

P−

k = FkPk−1F
⊤

k +Q

6: Compute the Kalman gain

Kk = P−

k H⊤

k (HkP
−

k H⊤

k +R)−1

7: Update the state and covariance estimate
using the measurement

x̂k = x̂−

k +Kk(yk − h(x̂−

k , 0))

Pk = (I −KkHk)P
−

k

8: end for

For nonlinear systems, convergence and non-
biasedness of the EKF are not guaranteed. So, even
if the filter converges, it might converge to incor-
rect state estimates. The extended Kalman filter
is nonetheless often used because of the simplicity
of the algorithm and the fact that the EKF often
works well in practise.

3.2. Unscented Kalman filter

The linearization step in the EKF algorithm in-
troduces errors that can deteriorate the perfor-
mance and stability of the filter. A more accurate
nonlinear filter is the unscented Kalman filter of
[10], which evaluates the nonlinear function at a
certain set of 2Nx + 1 points (the sigma points)

around the previous state estimate x̂k−1, where Nx

is the length of the state vector x. All these points
are propagated through the nonlinear system, and
based on the weighted mean and covariance of these
transformed sigma points, the a priori state esti-
mate x̂−

k and the Kalman gain Kk are found with-
out any linearization.
The complete algorithm of the unscented Kalman

filter is shown in Algorithm 3.2, where the following
2Nx + 1 sigma points are used:

x(i) =



















x̂k, i = 0

x̂k +
(
√

Nx

1−W
(0)
m

Pk

)

i
, 0 < i ≤ Nx

x̂k −
(
√

Nx

1−W
(0)
m

Pk

)

i−Nx

, Nx < i ≤ 2Nx

.

(13)

Using certain weights, the weighted mean and co-
variance of the sigma points is equal to the true
mean and covariance of x̂k. For the calculation of
the mean, these weights are

W (i)
m =

{

α2(Nx+κ)−Nx

α2(Nx+κ) , i = 0
1−W (0)

m

2Nx

, 0 < i ≤ 2Nx

, (14)

and for the calculation of the covariance they are

W (i)
c =

{

W
(0)
m + (1 + β − α2), i = 0

W
(i)
m , 0 < i ≤ 2Nx

.

(15)
Here 10−4 < α < 1 is a parameter that determines
the spread of the sigma points, i ∈ {0, .., 2Nx}, and
κ and β are secondary parameters used to incorpo-
rate prior knowledge of the probability distribution
of the state. For Gaussian distributions κ = 3−Nx

and β = 2 [10, 12].
For the tracking problem considered in this ar-

ticle, the exact value of α appeared to be of little
influence, so the arbitrary value α = 10−3 is used.
The square root in (13) should be computed

using a numerically stable and efficient method.
Here it is calculated using the Cholesky decompo-
sition [10, 13], which requires that Pk is positive
definite. However, Pk is a covariance matrix, so it
might be only positive semidefinite. A solution is
to calculate the Cholesky decomposition of Pk+ ǫI,
where ǫ > 0 is a small parameter.
For nonlinear systems the UKF is more accurate

than the EKF, the tradeoff is a higher computa-
tional cost [10].
For both filters it can be derived that when

R >> Q, the filter will rely more on the model than

4



Algorithm 3.2 Complete algorithm of the un-
scented Kalman filter.
1: Initialize x̂ and P .
2: Assign α, β and κ.
3: Assign the expected noise covariances to Q and

R.
4: for k = 1, 2, 3, . . . do

5: Calculate sigma points x
(i)
k−1 using Eq. (13)

6: Propagate sigma points through the system
dynamics (Eq. (6))

x
(i)
k = f(x

(i)
k−1)

y
(i)
k = h(x

(i)
k )

7: Calculate the a priori state and output es-

timate using W
(i)
m as in Eq. (14)

x̂−

k =

2Nx
∑

i=0

W (i)
m x

(i)
k (16)

ŷ−k =

2Nx
∑

i=0

W (i)
m y

(i)
k (17)

8: Calculate the a priori covariance estimates

using W
(i)
c as in Eq. (15)

P−

k = Q+

2Nx
∑

i=0

W (i)
c (x

(i)
k − x̂−

k )(x
(i)
k − x̂−

k )
⊤,

P−

xy,k =

2Nx
∑

i=0

W (i)
c (x

(i)
k − x̂−

k )(y
(i)
k − ŷ−k )

⊤,

P−

yy,k = R+

2Nx
∑

i=0

W (i)
c (y

(i)
k − ŷ−k )(y

(i)
k − ŷ−k )

⊤

(18)

9: Calculate the Kalman gain

Kk = P−

xy,k

(

P−

yy,k

)−1

10: Update the estimated state and its covari-
ance

x̂k = x̂−

k +Kk(yk − ŷ−k ) (19)

Pk = P−

k −KkP
−

yy,kKk (20)

11: end for

on the measurements, so the convergence speed of

the filter will be low. When Q >> R, the filter
will rely more on the measurements than on the
model, which leads to fast convergence, but also
noisy estimates. The stability of the filters depends
on the accuracy of the initial conditions and covari-
ance matrices R and Q, but also on how well the
model fits the measured data. For instance, track-
ing a sawtooth using the sinusoidal signal model
presented here turned out to be impossible, while
tracking a pure sinusoid succeeded almost without
fail.
Although quantitative results on the convergence

speed and stability of the filters would be useful,
these are hard to find because of the nonlinearity
of the problem, and the dependence on the signal
that is to be tracked.

3.3. Covariance matrices R and Q

The Kalman gain depends heavily on the process
noise covariance matrix Q, and the measurement
noise covariance matrix R, therefore accurate values
for Q and R are essential for good performance and
stability of the filter. In many cases, R and Q are
constant matrices and are tuned using a trial and
error procedure.

Here, the process noise wk includes the changes in
the frequency, phase and amplitude of the dominant
harmonic in the measured periodic signal. As the
level of fluctuation of these variables is unknown
and varies over time, an algorithm that provides an
adaptive estimate Q̂k of the time-varying matrix
Qk is desired.
All unmodelled dynamics that are visible in the

measurement (such as upper harmonics) are in-
cluded in the measurement noise vk. Assuming that
these unmodelled dynamics are roughly the same in
each tokamak shot, a reasonable value for R can be
found by tuning.

A number of approaches to the adaptive estima-
tion of Q can be taken, including Bayesian esti-
mation, maximum likelihood estimation, correla-
tion methods and covariance-matching techniques
[14]. Bayesian estimation and maximum likelihood
estimation methods yield reliable estimates, but
are computationally difficult. Correlation methods
are mainly applicable for systems where Q is time-
invariant, and the computations become very dif-
ficult when the system is nonlinear. Here we use
a covariance-matching technique, which is easy to
implement and works reasonably in practise, but
the convergence cannot be guaranteed. Other esti-
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mation techniques will possibly yield better results
and are an interesting subject of future research.
Here a covariance-matching technique is pre-

sented for the estimation of Q, which is based on
the one presented in [12]. Applying this adaptive
estimation ofQ in the EKF or UKF yields the adap-
tive extended Kalman filter (AEKF) or adaptive
unscented Kalman filter (AUKF).
If it is assumed that a good estimate x̂k−1 of xk−1

is available, then

f(xk−1)− f(x̂k−1) ≈ 0, (21)

and

xk − x̂−

k = f(xk−1)− f(x̂k−1) + wk ≈ wk. (22)

Assuming that the correction step provides a good
estimate x̂k of xk, then xk− x̂k ≈ 0. Given that the
correction term zk = x̂k − x̂−

k = Kk(yk − h(x̂k)), it
follows that zk ≈ wk, so zk can be used to estimate
Qk.
The covariance of the correction term zk equals

E{zkz
⊤

k } = E{Kk(h(xk)− h(x̂−

k ) + vk)

(h(xk)− h(x̂−

k ) + v)⊤K⊤

k }
(23)

= E{Kk(h(xk)− h(x̂−

k ))(h(xk)

− h(x̂−

k ))
⊤K⊤

k +KkRK⊤

k }.
(24)

Since the measurement noise should not influence
the influence Q, we remove the term KkRK⊤

k to

find our estimate Q̂:

Q̂k = E{zkz
⊤

k −KkRK⊤

k }. (25)

Because Q can be time-varying, the estimate Q̂k at
time tk should rely on recent data. Here a learning
algorithm is used, in which old data is ‘forgotten’
at rate γ:

Q̂k ≈ Q̂k−1 + γ
(

(zkz
⊤

k −KkRK⊤

k )− Q̂k−1

)

.

(26)
The learning rate γ should be small enough to
smooth out the effect of the term zkz

⊤

k −KkRK⊤

k ,
which can vary dramatically from one time step to
the next, but large enough to provide good track-
ing behaviour. Here, γ = ts is used, so that Q̂k

depends mostly on data from the past time unit.
If the filter provides good estimates, then

E{eye
⊤

y } ≈ E{vv⊤} = R, where ey,k = yk − ŷk.

If in some time interval, E{eye
⊤

y } ≪ R, then in
that interval the filter is tracking the noise, imply-
ing that Q̂ is too large. If in some time interval,
E{eye

⊤

y } ≫ R, then the filter fails to track the out-

put (and thus the states), implying that Q̂ is too
small. Thus, any divergence of the filter can be
detected by periodically checking whether

a1R ≤
1

N

k
∑

i=k−N

ey,ie
⊤

y,i ≤ a2R, (27)

where N , a1 and a2 are tuning parameters. If either
inequality is not satisfied, Q̂ should be adapted. It
should be noted that if both inequalities are satis-
fied, this does not guarantee that the filter is track-
ing correctly. For the tests performed in this article,
we used N = 2000, a1 = 1/3 and a2 = 3, and Q̂k is
reset to

Q̂k = Q̂0
‖Q̂k‖

‖Q̂0)‖
· 20 (28)

when Q̂k is too small, or

Q̂k = Q̂0
‖Q̂k‖

‖Q̂0)‖
·
1

20
(29)

when Q̂k is too large. Here ‖ · ‖ denotes the Eu-
clidean matrix norm.
This method is based on the strong assumption

that the filter is tracking accurately, so the formal
validity of this method can be questioned. The es-
timate can be improved by using prior knowledge
of Q. Since E{x1x1} = E{x2x2} and E{x1x2} =
E{x2x1} = 0, we assume that E{w1w1} = E{w2w2}
and E{w1w2} = E{w2w1} = 0. By also assuming
that w3 is independent of w1 and w2 we find that

Qk = E{wkw
⊤

k } =





q1,k 0 0
0 q1,k 0
0 0 q,k3



 , (30)

where q1,k = E{w1,kw
⊤

1,k} and q3,k = E{w3,kw
⊤

3,k}.

4. Tracking of synthetic data

In this section the performance of the AEKF and
AUKF is evaluated by means of simulation. Syn-
thetic data created with Matlab will be used, so
that all errors are exactly known and thus also the
exact performance of the filters.
Tests are performed using signals containing
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• a step in the frequency to simulate very fast
changes in the frequency;

• a monotonuously increasing frequency (chirp
signal) to test tracking behaviour;

• a frequency varying in a large range to test the
operating range.

All signals are contaminated with white Gaussian
noise to simulate measurement noise. The amount
of measurement noise is defined by the signal-to-
noise ratio (SNR), where the SNR is the ratio of
the root-mean-square (RMS) of the true signal and
the RMS of the measurement noise. For an interval
[0, T ], the SNR is

SNR =

√

1
T

∫ T

t=0
y(t)2dt

√

1
T

∫ T

t=0
v(t)2dt

, (31)

usually expressed in decibel (dB), using
20 log10(SNR).
To judge the quality of the frequency estimate,

we define the relative frequency error

ef =
|f − f̂ |

f
. (32)

If the frequency estimate is accurate, then ef << 1.
To judge the quality of the phase estimate the phase
error we look at θ̂− θ, and to show the evolution of
Q̂k, its Euclidean matrix norm ‖Q̂k‖2 is used. As
for the model used here, Q̂k is a diagonal matrix
for all time steps k, the Euclidean norm is equal to
the largest element of Q̂k.

4.1. Signal with step in frequency

The AEKF and AUKF filters are challenged with
the tracking of the signal

y(t) = cos(θ) + v(t), (33)

where

1

2π

d

dt
θ = f(t) =

{

40 Hz for 0 ≤ t < 2

60 Hz for 2 ≤ t < 4
, (34)

and v(t) is white Gaussian noise, such that the
signal-to-noise ratio is 30 dB. The frequency of the
signal is shown in Fig. 4.1.
We use a sample time of ts = 10−3 s and initial

conditions f0 = 44 Hz, θ0 = 0, A0 = 1, P0 = Q0 =
ts · diag

([

1 1 0.01
])

. It has been found by

0 0.5 1 1.5 2 2.5 3 3.5 4
30

40

50

60

70

time (s)

fr
eq
u
en
cy

(H
z)

Figure 1: The frequency of reference signal (33).

trial and error that this value for P0 and Q0 works
well for most signals, so this is used throughout this
article,
The relative frequency error and the phase error

of both filters are shown in Fig. 2.
The signal is tracked accurately, without any

bias. When the step in the frequency occurs, the
AEKF locks onto the new frequency within 50 sam-
ples (0.05 s) and the AUKF within 100 samples
(0.1 s). In steady-state, the phase error is no more
than four degrees.
Fig. 3 shows ‖Q̂k‖2 as a function of time. In

steady state the norm converges, which means that
also Q̂k converges entrywise. When at time t = 2 s
the step in the frequency occurs, the estimate Q̂k

is increased immediately according to 28, showing
that the estimate adapts to the current situation.
At t = 3 s, Q̂k is considered too large and decreased
using 29, which explains why ef also decreases at
t = 3 s.
At a signal-to-noise ratio of 30 dB the filters suc-

ceeded in accurately tracking the phase and fre-
quency, using almost any initial state estimate x̂0,
even insensible ones. When the signal-to-noise ra-
tio is decreased, the range of initial conditions that
leads to a tracking filter becomes smaller. It was
observed that the unscented Kalman filter achieves
tracking for a larger range of initial conditions than
the extended Kalman filter, especially for low SNR.

4.2. Chirp signal

To test the tracking behaviour in transient situ-
ations a test signal is used with monotonically in-
creasing frequency:

y(t) = cos(θ) + v(t), (35)

where

1

2π

d

dt
θ = f(t) =











40 Hz for 0 ≤ t < 1

40t Hz for 1 ≤ t < 3

120 Hz for 3 ≤ t

, (36)
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Figure 2: Tracking signal (33), showing the relative fre-
quency error (a) and the estimation error of the phase (b).
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Figure 3: The Euclidean norm of Q̂k as a function of time,
while tracking signal (33). The converging norm implies that

the elements of Q̂k also converge.

and v(t) is again white Gaussian noise, such that
the SNR is 30 dB.

The frequency of the signal is shown in Fig. 4.
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Figure 4: The frequency of reference signal (35).

The used sample time and initial conditions are
the same as in the previous test, the results are
shown in Fig. 5.
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Figure 5: Tracking signal (35), with signal-to-noise ratio of
30 dB, showing the relative frequency error (a) and the esti-
mation error of the phase (b).

In steady state the estimates are nonbiased, but
when the frequency is increasing, the frequency es-
timate is both biased and lagging behind. The lag
is caused by the fact that the filter can only react to
errors and not anticipate them. The bias is in agree-
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ment with the claim in [15] that the estimates will
be biased if the assumed noise characteristics are in-
correct. The model assumes zero-mean noise, but
for 1 ≤ t < 3 the linearly increasing frequency leads
to E{w3} = E{∆f} = 40 Hz/s, so w3 is nonzero
mean noise. Note that the phase estimate error,
see Fig. 5(b) is again within four degrees, and is
nonbiased.
The frequency bias in the transient case can

be removed by including the extra state x4 =
2π∆f ts into the model. However, one should
only add states when absolutely necessary, because
adding states increases the complexity of the track-
ing/estimation problem and can make the filter less
stable.
In Fig. 5(a) it can be seen that the effect of the

noise on the estimated frequency is decreasing over
time. This is caused by the converging of Q̂k, which
can be seen in Fig. 6. Again, at t = 3 s, Q̂k is
considered too large and decreased using 29.
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Figure 6: The Euclidean norm of Q̂k as a function of time,
while tracking signal (35). The converging norm implies that

the elements of Q̂k also converge.

4.3. Frequency range test

For ASDEX Upgrade, a filter is requested that is
able to track harmonic signals in the range 5 Hz–
20 kHz. It is assumed that on ASDEX Upgrade a
sample frequency of 100 kHz will be used. Because
the system is observable for 0 < f < fs/2, A > 0,
tracking should be possible in the range 0 Hz–
50kHz. However, at frequencies near 0 or fs/2, the
system is almost unobservable, which makes accu-
rate tracking difficult. The observability at low fre-
quencies can be improved by decreasing the sample
frequency, but this also decreases the maximum de-
tectable frequency.

Here we show that the AUKF can track fast
changing frequencies from 0 Hz to 50kHz by ap-
plying the AUKF to the following signal:

y(t) = cos(θ) + v(t), (37)

where

1

2π

d

dt
θ = f(t) = 25000 + 25000 sin(4πt) Hz, (38)

and v(t) is white Gaussian noise, such that the SNR
is 10 dB. The frequency is shown in Fig. 7(a).
The true frequency and the AUKF estimate are

shown in Fig. 7(a). In this figure we can see that
near the Nyquist frequency, the AUKF loses its lock
onto the signal, but quickly regains it when the fre-
quency decreases.
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Figure 7: The results of the frequency range test using the
AUKF and a signal-to-noise ratio of 10 dB, showing the fre-
quency of the signal to be tracked and the AUKF estimate
(a) and the phase error θ̂ − θ (b).

The phase error of the AUKF estimate is shown
in Fig. 7(b). Once the AUKF has locked onto the
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signal, the phase error is typically less then 20 de-
grees. Only near 0 Hz and 50 kHz does the phase
error exceed 20 degrees, which is a result of the ob-
servability issues. It can also be seen that faster
frequency changes lead to larger phase errors.
It can be concluded that a Kalman filter can track

a sinusoid in the range 0 Hz–50 kHz when the sam-
ple frequency is 100 kHz. However, near 0 Hz and
50 kHz tracking becomes very difficult and large
errors will occur.

5. Tracking of NTMs in experiments

In this section the Kalman filters are tested on
real data from the Tokamak à Configuration Vari-
able (TCV), at the EPFL, Switzerland, and from
the Tokamak Experiment for Technology Oriented
Research [16] (TEXTOR), located in Jülich, Ger-
many. The TCV data are Mirnov coil measure-
ments, whereas the TEXTOR data are line-of-sight
ECE measurements [17].

5.1. TCV Mirnov coil data

The filters are tested on the Mirnov coil data of
TCV shot #40605. In Fig. 8 a section of the data is
shown, together with the AUKF estimate. In Fig. 9
the spectogram of the data is shown, together with
the frequency estimates of a discrete-time phase-
locked loop (DPLL), used by the TCV team, and
the AUKF.
The AEKF only succeeds in tracking when a

model is used that includes the second harmonic.
The AUKF is able to accurately track the signal
using a model with only three states.
The data is measured at the sample frequency

fs = 250 kHz, the AUKF uses R = 80, and initial
conditions A0 = 30, f0 = 4 kHz, θ0 = 0 and P0 =
Q̂0 = ts · diag

(

[ 1 1 0.01 ]
)

.
From Figs. 8 and 9 it can be seen that the signal is

contaminated mostly with white noise and a second
harmonic with low energy. When regarding the sec-
ond harmonic also as noise, the SNR is about 7dB in
the interval [0.4s, 2.0s]. The AUKF performs com-
parable to the DPLL, but the DPLL does lock onto
the signal slightly earlier than the AUKF, while us-
ing the same initial frequency. However, it should
be noted that the DPLL contains a band-pass filter
that removes all components of the measured signal
outside the frequency band in which the magnetic
islands are expected. The AUKF does not contain
such a band-pass filter, so the input signal of the

AUKF contains much more noise and other distur-
bances than the band-pass filtered signal, and is
therefore harder to track. However, because the
AUKF does not contain such a band-pass filter it is
able to track signals in a much broader frequency
range than the PLL.

5.2. TEXTOR ECE data

Next, the filters are tested using channel 4 of
the ECE data of TEXTOR shots #107904 and
#108029. The data is filtered with a high-pass filter
with a cutoff frequency of 8Hz, to remove the DC
offset from the signals. For both shots, the AUKF
succeeds in tracking the ECE signal, but the AEKF
does not.

5.2.1. Shot #107904

In Figs. 10(a) and 10(b) two sections of the chan-
nel 4, shot #107904 are shown, together with the
output estimate using the AUKF. The spectrogram
of the complete shot, together with the estimated
frequency of the AUKF is shown in Fig. 10(c).
The data is measured at the sample frequency

fs = 100 kHz, the AUKF uses R = 0.03, and initial
conditions A0 = 0.1, f0 = 2 kHz, θ0 = 0 and P0 =
Q̂0 = ts · diag

(

[ 1 1 0.01 ]
)

.
From t = 2s to t = 2.7s, there is a large dis-

turbance on the signal, caused by ECRH scatter-
ing [18] that is only partially filtered out. This dis-
turbance is not white, and in phase with the rota-
tion of the islands, so the measured signal can no
longer be approximated by a sinusoid. This can
be solved by changing the signal model, but here
it is solved by interpreting the disturbance as mea-
surement noise, which means that the measurement
noise covariance is increased during this period to
R = 0.20. As seen in Fig. 10(a), during this period
the filter cannot produce a nice fit on the ECE sig-
nal, but it does produce a nice sinusoid that is as
close as possible to the measured signal. If the mea-
surement noise covariance is not increased when the
measurement is disturbed by ECRH scattering, the
AUKF produces a better fit on the ECE signal by
oscillating the estimated frequency. Then the out-
put estimate is more accurate, but the frequency
and phase estimates are less accurate.
From t = 1 s to t = 5 s the filter can accurately

track the signal, even when the frequency suddenly
drops at around t = 3.2 s. At the beginning and
the end of the shot, the signal power is too low for
the filter to achieve tracking.
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Figure 8: A segment of the Mirnov coil measurement from the TCV plant and the corresponding output estimate of the AUKF.
Data is courtesy of the TCV team.
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Figure 9: The spectrogram of the TCV Mirnov coil data, together with (a) the frequency estimate using a discrete phase-locked
loop, and (b) the AUKF frequency estimate. Data is courtesy of the TCV team.

5.2.2. Shot #108029

The spectrogram of shot #108029 is shown in
Fig. 11, together with the estimated frequency of
the AUKF. The data is measured at the sample
frequency fs = 100 kHz, the AUKF uses R = 0.02,
and initial conditions A0 = 0.2, f0 = 1 kHz, θ0 = 0
and P0 = Q̂0 = ts · diag

(

[ 1 1 0.01 ]
)

. Again
the AUKF achieves good tracking, apart from a few
occasions where the AUKF momentarily loses the
lock on the signal because of disturbances, but in
each case the lock is quickly regained. Just like in

shot #107904, when the frequency suddenly drops
almost like a step function, the AUKF estimate is
lagging behind, but only for a duration of less than
0.05 s (less than 50 periods). Note that the very fast
frequency variations between t = 5 s and t = 6 s
are being tracked accurately.

Before t = 2 s the signal consists of sawtooth
measurement, which cannot be tracked with a si-
nusoidal signal model. After t = 6 s the signal
power is too low for the filter to achieve tracking.
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Figure 10: Two sections of TEXTOR shot #107904, channel 4 (a,b), together with the AUKF estimate, and the spectrogram
of the complete shot (c), together with the AUKF frequency estimate. Data is courtesy of the TEXTOR team.
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Figure 11: Spectogram of channel 4 of the ECE data of TEXTOR shot #108029, together with the frequency estimate of the
AUKF. Data is courtesy of the TEXTOR team.

6. Conclusion

An Unscented and an Extended Kalman Filter
(UKF and EKF) have been defined for real-time fre-
quency, amplitude and phase estimation using noisy
measurements. These filters have been applied to
synthetic and experimental rotating tearing mode
data from TEXTOR and TCV.

The analysis shows that the UKF shows good
tracking over a wide range of mode rotational fre-
quencies, and is robust to disturbances (like ECRH
scattering) and fast frequency changes. Subject to

the applied noise, the UKF can track modes from
0 Hz to 50 kHz, a much larger range than the fre-
quency band of a PLL. The quality of the estimates
of course improves when the signal-to-noise ratio in-
creases.

Given the wide frequency band of this method,
it could prove relevant for real-time mode analysis
and NTM control on ASDEX Upgrade. The imple-
mentations of the EKF and UKF as discussed here
are not optimised for real-time feedback control ap-
plications yet, as the covariance matrices Q and R
have to be optimized for every machine and sce-
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nario. We also note that the methodology works for
general periodic signals, so it can potentially also be
used for other periodic signals in the plasma, like
Alfvén waves and perhaps sawtooth signals.
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