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In more than three decades a large amount of models and mechanisms have been proposed to describe a
very beneficial feature of magnetically confined fusion plasmas: the L-H transition. Bifurcation theory can
be used to compare these different models based on their dynamical transition structure. In this paper we
employ bifurcation theory to distinguish two fundamentally different descriptions of the interaction between
turbulence levels and sheared flows. The analytic bifurcation analysis characterises the parameter space
structure of the transition dynamics. Herewith, in these models three dynamically different types of transitions
are characterised, sharp transitions, oscillatory transitions and smooth transitions. One of the two models
has a very robust transition structure and is therefore more likely to be more accurate for such a robust
phenomenon as the L-H transition. The other model needs more fine-tuning to get non-oscillatory transitions.
These conclusions from the analytic bifurcation analysis are confirmed by dedicated numerical simulations,
with the newly developed code Bifurcator.

PACS numbers: 52.25 Fi, 52.25 Xz, 52.55 Dy, 52.55 Fa

I. INTRODUCTION

In 1982 the ASDEX team discovered the so-called
’High confinement mode’ or H-mode1, in which the
energy confinement of a magnetically confined fusion
plasma becomes, typically, twice as good (compared to
the standard ’Low confinement mode’ or L-mode). Al-
though this very beneficial, L- to H-mode transition has
been seen in most present day tokamaks, there is no con-
sensus on the exact mechanism, or combination of mech-
anisms, responsible for this L-H transition2.

In the last three decades the variety of proposed L-H
transition models grew extensively. However, the obser-
vation of the L-H transition in all tokamaks suggests that
the responsible mechanism is very robust. Moreover, the
type of dynamics during the transition is very charac-
teristic. Therefore, the transition dynamics and the ro-
bustness of all proposed L-H transition models should
be investigated. Bifurcation analysis3 is a useful tool to
check the possible transition dynamics within the model.
Moreover, it characterizes the parameter space of these
possible transition types, and therewith the sensitivity of
the model to parameter changes, i.e. its robustness.

Although there may be different mechanisms determin-
ing the growth rate and the saturation mechanism of the
turbulence, irrespective of the type of turbulence we re-
strict our description to the evolution of a radial profile
of the turbulent fluctuation level, assuming some average
over the fluctuations, consisting of a linear term describ-
ing the growth of the turbulence and a nonlinear term
describing the saturation mechanism, similar to Refs. ??.
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I.e., the turbulence evolution can be described by a dif-
ferential equation describing the magnitude of the turbu-
lence level, containing two generic terms, one for linear
growth rate and one for the non-linear saturation mech-
anism.
Presently, there is consensus about the influence of

sheared E × B-flows on turbulence4. Microscale simu-
lations show that sheared E×B-flows can tear apart the
radial extent of turbulent eddies5. The E×B-flow shear
reduction mechanism can then act either on the linear or
the nonlinear term of the turbulence evolution equation.
These two fundamentally different ways to model the in-
teraction between sheared E × B-flows and turbulence
are investigated in this paper with the use of bifurcation
analysis.
Both descriptions do occur in literature. The investi-

gation of the influence of sheared flows on turbulence was
initiated by Biglari in 19906. From here, the two sepa-
rate directions where followed. Firstly, Carreras7–10 and
Diamond11,12 followed an analysis where the flow shear
reduces the growth rate of the turbulence. In 2003 the
zonal flows were added to this discription13,14. Recently,
two complementary bifurcation analyses of this model
were done by Dam15 and Zhu16. Therefore, the influence
of these small scale, spatial and temporal, fluctuations of
the E×B-flow on the bifurcation structure is omitted in
this paper.
The anomalous transport due to the turbulence in-

creases linearly with the fluctuation level as suggested
by Refs.17–22. According to the nonlinear description
the anomalous transport is reduced by the flow shear
∝ (1 + αω2

s )
−1 where ωs is the shearing rate which was

proposed by Hinton23, and has been further investigated
in Refs.17,18,24 and used in the L-H transition models of
Refs.21,25.
Recently, a different description of anomalous trans-
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port reduction was introduced by Miki26, where the mean
flow shear has a double effect on the transport. Firstly,
it reduces the transport coefficient directly, and secondly
it reduces the transport indirectly via the suppression of
the growth rate of the turbulence. In this paper both
effects are considered separately as two different descrip-
tions of the same effect.
Thus, there is consensus that sheared E×B-flows re-

duce the anomalous transport, however there is no con-
sensus yet about the way it should be modelled. There-
fore, in this paper two different descriptions of the effects
of sheared flows on the transport are compared on the
basis of their bifurcation behaviour. In Sec. II the two
transport models are introduced. In Sec. III the analytic
bifurcation analysis is described. In Sec. IV a numerical
code is introduced specially designed for bifurcating sys-
tems, and the resulting numerical bifurcation analysis of
the considered models is shown in Sec. V.

II. TURBULENT TRANSPORT MODELS FOR THE L-H

TRANSITION

The degree of confinement is determined by the 1-
dimensional transport in a tokamak along the minor ra-
dius of the torus, i.e. from the hot core of the toroidal
plasma towards the colder edge. The radial transport
of particles and heat is determined by the particle- and
heat- fluxes respectively, in the form of a continuity equa-
tion. We consider a layer near the edge of the plasma that
is relatively thin compared to the plasma minor radius.
We approximate this layer, just for conciseness, with a
slab geometry, such that these equations become

∂n

∂t
= −∂Γ

∂r
(1a)

∂

∂t

(

nT

γ − 1

)

= −∂q

∂r
(1b)

where we assume equal temperatures of the ions and elec-
trons, the absence heat sources inside the layer, and that
the combination of particle sources, sinks and pinches
inside this layer is not drastically changed by the L-H
transition. Therefore, the particle and heat fluxes are
given by

Γ = −D
∂n

∂r
(2a)

q = −χn
∂T

∂r
+

ΓT

γ − 1
(2b)

The particle flux, Γ, is governed by some effective parti-
cle diffusion due to the anomalous transport of electrons
and ions. The heat flux, q, is a combination of some
effective radial thermal conduction and heat advection
due to the net mass-flow described by the particle flux,
with γ the adiabatic index. A change from low confine-
ment to high confinement can therefore be described by
a change in the transport coefficients; particle diffusiv-
ity, D, and heat conductivity, χ. The minimum amount

of transport is determined by neoclassical effects, on top
of that anomalous transport depends on the turbulence
level. According to Refs.17–22 the anomalous transport
increases linearly with the turbulence level E ,

D = Dmin +
(

Dmax −Dmin

) E
Emax

, (3)

where Emax = γL/αsat is the steady state turbulence
level without any flow shear suppression. γL is the linear
growth rate of the turbulence and αsat depends on the
saturation mechanism corresponding to that turbulence.
Thus, in general the turbulence evolves according to

∂E
∂t

= γLE − αsatE2, (4)

where the time scale of the turbulence evolution is faster
than the diffusive time scale. It is generally accepted2

that the turbulence level is reduced by E×B-flow shear.
This paper addresses the comparison between the two
fundamental possibilities in reducing the turbulence. Ei-
ther, the flow shear reduces the growth rate of the
turbulence7–14,

∂E
∂t

= γL

(

1− α̃|V ′
E×B

|2
)

E − αsatE2, (5)

which is named the linear model in this paper, or it en-
hances the saturation mechanism of the turbulence which
is consistent with the descriptions in Refs.17,18,21,23–25,

∂E
∂t

= γLE − αsat

(

1 + α̃|V ′
E×B

|2
)

E2. (6)

which is named the nonlinear model in this paper. A
radial electric field in a slab geometry causes a poloidal
E × B-drift, VE×B = Er/B, such that the turbulence
suppression term can be renormalised, α̃|V ′

E×B
|2 = αZ ′2,

where Z is the normalised radial electric field,

Z =
ρpeEr

Ti
, and ρp =

mvth
qBp

. (7)

Since the L-H transition occurs on a very fast time scale,
a proper model for the L-H transition should include the
evolution of the flow on this fast time scale. The evolu-
tion of the radial electric field is determined by the sum
of all possible radial currents in the edge of the plasma,

ε0
∂Er

∂t
= −

∑

Jr (8)

An extensive list of all the possible mechanisms gener-
ating a radial current present in literature is given in
Appendix A. All these terms are summarised into an
evolution equation for the normalised radial electric field,

ε
∂Z

∂t
= µ

∂2Z

∂r2
+ cn

T

n2

∂n

∂r
+

cT
n

∂T

∂r
−G(Z) (9)

where the left-hand side (LHS) includes the polarization
current. The right-hand side (RHS) is arranged into a
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second derivative term, the terms depending on the pro-
files of density and temperature, and all the other terms
are incorporated in the large polynomial G(Z), as de-
scribed in Appendix A. For the description of the transi-
tion behaviour of this model it is only required that the
function, G(Z), has an inflection point. Since we are only
interested in the transition behaviour of this model, we
zoom in at this inflection point by taking only the Tay-
lor expansion around this inflection point, Z = Zs, into
account,

G(Z) ≈ a+ b(Z − Zs) + (Z − Zs)
3. (10)

The considered models now consist of a closed set of
four coupled nonlinear equations, three partial differen-
tial equations (PDEs), Eqs. (1a), (1b) and (9), and one
ordinary differential equation (ODE) for the turbulence,
Eq. (5) or Eq. (6). The co-ordinate system in which the
set of equations will be evaluated is chosen as follows: the
outer edge of the plasma at the scrape-off layer (SOL)
side is fixed at x = 0. The inner boundary of the consid-
ered spatial domain is located at x = −∞, this is allowed
because compared to the size of the transport barrier the
inner boundary is far enough away. At this inner bound-
ary all the particles and heat enters the system (there are
no additional sources within the domain). These influxes
can be used as control parameters of the system:

Γ(x = −∞) = constant = Γ−∞

q(x = −∞) = constant = q−∞ (11)

Z ′(x = −∞) = 0

At the other boundary of the system, i.e. the outer edge of
the plasma, the temperature, density and radial electric
field are forced to drop toward zero with a certain e-
folding length into the scrape-off layer,

T ′
e

Te
=

−1

λT
,

n′
e

ne
=

−1

λn
,

Z ′
e

Ze
=

−1

λZ
, (12)

with constant gradient lengths λT , λn and λZ of the same
order of magnitude, and where from now on the subscript
”e” is used for SOL edge values. In the next section
the possible transition types within these two models are
analysed analytically, and confirmed by numerical bifur-
cation analysis in Sec. V.

III. BIFURCATION ANALYSIS

For the investigation of transition dynamics from one
steady state to another it is necessary to characterise the
possible steady states. Since the three PDEs of both
models are the same, we start by analysing those steady
state equations. First of all, we do not expect the L-H
transition to be initiated by some specific difference be-
tween the two transport coefficients, D and χ. Therefore
we can make the following simplification: χ = D/ζ(γ−1),

with ζ a proportionality factor, leading to the following
steady state transport equations:

−D(E)∂n
∂r

= Γ−∞ (13a)

−D(E)
γ − 1

(

n

ζ

∂T

∂r
+ T

∂n

∂r

)

= q−∞ (13b)

The term proportional to µ in Eq. (9) smoothens the
spatial jump between the L-mode core and the H-mode
edge. Since clear identification of the pedestal region is
desirable to discriminate L-mode from H-mode, the as-
sumption that µ → 0 is used in this analytic bifurcation
analysis. In the numerical bifurcation analysis of Sec. V
the deviations for small µ are taken into account. There-
fore the radial electric field steady state equation reduces
to,

cn
T

n2

∂n

∂r
+

cT
n

∂T

∂r
−G(Z) = 0 (13c)

-Α
-1�2

Α
-1�2 Z'

DL

DNL

Dmin

Dmax

FIG. 1: The transport coefficients as function of the
radial electric field shear for

the linear model (L), i.e. Eq. (17) for |Z ′| <
√

1/α,
and the nonlinear model (NL), i.e. Eq. (18).

Combining3 the above equations leads to,

−G(Z)D(E) = T−∞D(Ee)2
Γ−∞λ2

n

(cnn̂
−2 + cgn̂

−ζ−2), (14)

where n̂ = n0/n0e, is the steady state density normalised
to its edge value, n0e = Γ−∞λn/D(Ze). T−∞ = (γ −
1)q−∞/Γ−∞ is the core boundary value of the steady
state temperature, and cg = (ζcT − cn)/(1 + ζλT /λn).
The difference between the two models arises due to the
turbulence level ODE. In case of the linear model the
steady states are
{

E = 0, stable for Z ′ >
√

1/α,

E =
γL
αsat

(

1− αZ ′2
)

, stable for Z ′ <
√

1/α.
(15)

For the nonlinear model the steady states are,
{ E = 0, always unstable,

E =
γL
αsat

1

1 + αZ ′2 , always stable.
(16)
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Using these expressions for the turbulence the resulting
steady state diffusivities as function of Z ′ of both models
can be compared, as is also shown in Fig. 1.

DL(Z ′) = Dmin +
(

Dmax −Dmin

)(

1− αZ ′2), (17)

DNL(Z ′) = Dmin +
Dmax −Dmin

1 + αZ ′2 . (18)

This nonlinear description of the transport reduc-
tion is exactly equivalent with what is proposed in
Refs.17,18,21,23–25. The bifurcation analysis of this non-
dynamic transport reduction was done in Ref.27. Since
the steady states of both those models are equal, the bi-
furcation dynamics of both models are expected to be
qualitatively equivalent, as will be shown below.
Evaluating Eq. (14) at the edge boundary, and using

the Robin boundary conditions in Eqs. (17) and (18)
leads to the following steady state criterion,

D(Ze)
2 = − Γ2

−∞λ2
n

q−∞(γ − 1)

1

cn + cg
G(Ze)D(Ze), (19)

such that both sides of the equation can be parameterised
by Ze as is shown in Fig. 2. The RHS corresponds to the
tilted dashed line with a slope,

θ =
Γ2
−∞λ2

n

q−∞(γ − 1)

1

cn + cg
. (20)

The LHS is slightly different for both models as is indi-
cated by the two curves (L and NL). The intersection
between the LHS-curve and the RHS-line indicated with
the black dot determines the edge value of the radial elec-
tric field, Ze, and therewith the transport coefficient at
the edge of the plasma corresponding to either L-mode

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

D
2 =
-
Θ
G

D

L

NL

FIG. 2: Both sides of the steady state Eq. (14) can be
parameterised by Ze. The RHS corresponds to the
tilted dashed line. The LHS corresponds to the solid

curve for the nonlinear model, and the dashed curve for
the linear model, where the arrows indicate increasing
Ze, and α = 1.0. The intersection, marked by the black

dot, determines the edge steady state.

or H-mode. For large θ (as shown in Fig. 2) the intersec-
tion occurs for large diffusivity (squared) at the edge, i.e.
L-mode, and for small values of θ the intersection occurs
at small edge diffusivity, i.e. H-mode. The parameter θ
is for instance controlled by the heat flux, q−∞, and is
therefore consistent with experiments where an increas-
ing heating power is used to bring the plasma from L-
mode to H-mode.

The bifurcation theory introduced in Ref.3 showed that
the stability of the steady states changes at those values
of the edge radial electric field where the slope of the
curves, indicated with L and NL, are vertical, i.e. the
Hopf bifurcation. Thus for decreasing θ the black dot
of Fig. 2, i.e. the steady state Ze solution, moves along
the curve (either L or NL) until those curves have a
vertical slope (as indicated in e.g. Fig. 3(a) the right most
point for the nonlinear model and Fig. 4(a) for the linear
model). At that value of θ the Hopf bifurcation makes
the L-mode unstable. Depending on the stability of the
H-mode at that point, two things can happen. If the H-
mode is stable, than the system quickly transits (on the
time scale of ε) to the stable H-mode. If the H-mode is
also unstable (as is shown in Fig. 3b), then the system
will oscillate according to a stable limit cycle.

The different possibilities for the nonlinear model are
shown in Fig. 3. In part a, the H-mode is stable at the
Hopf bifurcation of the L-mode steady state, and there-
fore sharp transitions will occur. In panel b the H-mode
is unstable and therefore the system will follow the limit
cycle solution. In panel c the Hopf bifurcations disap-
peared and the stable L-mode smoothly transits to the
stable H-mode. These three different types of transitions
(sharp, oscillatory and smooth), are arranged by the pa-
rameter b of Eq. (10).

In contrast, for different values of b the transition dy-
namics (increasing and decreasing q−∞) of the linear
model does not change. As is shown in Fig. 4 for the
same range of values of b as for the nonlinear model, Fig.
3. In all three cases the H-mode is unstable at the point
of the Hopf bifurcation of the L-mode, and therefore the
system will always have an oscillatory phase during the
transition from L-mode to H-mode and back.

These observations about the possible transition dy-
namics are summarised in Fig. 5 where the parameter
spaces (b, q−∞) of both models are shown with the Hopf
bifurcation curves separating the L-mode, H-mode and
oscillatory regimes.

In Fig. 5(a) the parameter space of the nonlinear model
is shown. In the middle region the oscillations separate
the L-mode from the H-mode. To the left the Hopf bi-
furcations switch order and sharp transitions with hys-
teresis arise, because the Hopf bifurcation of the H-mode
(i.e. H-L transition) occurs at lower threshold values of
the heat flux than the L-H transition. To the right the
Hopf bifurcations disappear and the region of L-modes is
smoothly connected to the regime with H-modes. This
bifurcation structure of the nonlinear model is very ro-
bust, i.e. no small changes in all the parameters consid-



5

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

HaL

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

HbL

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

HcL

FIG. 3: The edge steady state electric field of the nonlinear model with α = 1.0 for three different values of b. (a)
b = −1.2, sharp transition between the stable L-mode and the stable H-mode. (b) b = −0.1, limit cycle solutions
where both L-mode and H-mode are unstable. (c) b = 0.7, The stable L-mode transits smoothly into a stable

H-mode for increasing heat flux.

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

HaL

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

HbL

-GHZeLDHZeL

DHZeL
2

L-mode

H-mode

HcL

FIG. 4: The edge steady state electric field of the linear model with α = 1.0 for three different values of b. In all
three panels there is a regime without stable solutions for decreasing θ in between the stable L-mode and stable

H-mode leading to oscillatory transitions.

ered in this model changes this picture qualitatively. Fig.
5(b) shows the parameter space of the linear model, and
in this case the L-mode and H-mode are always separated
by a regime of oscillations. However, the linear model
is very sensitive to the parameter α. The bifurcation
structure changes qualitatively when changing α, there-
fore the possible transition dynamics within this model
changes. For α = 1.0 only oscillatory transitions are pos-
sible as is shown in Fig. 5(b), however if α is reduced
the E = 0 (i.e. D = Dmin) steady state moves further
and further away towards higher values of the input heat
flux (i.e. smaller θ), as is shown in Fig. 6 (α = 0.1).
Therefore, the characteristic bifurcation structure reap-
pears again, such that for small α the three different types
of transitions (sharp, oscillatory and smooth) are present
in this model too, in the characteristic ordering of a co-
dimension 3 bifurcation3, as is shown in Fig. 7.
Thus similar transition dynamics can be found in both

models. However, in the linear model bifurcation dy-
namics is very sensitive to α. In contrast the nonlinear
model is very robust and shows qualitatively the same
transition structure for all values of α.
To support the conclusions that can be drawn from

the analytical bifurcation analysis a dedicated code has
been created for the simulation of bifurcating systems of
PDEs and/or ODEs, called Bifurcator. The next section

gives a short summary of the design of Bifurcator and its
capabilities.

IV. BIFURCATOR

At its core, Bifurcator is a numerical solver for non-
linear ODEs, optimised to meet the accuracy and per-
formance demands of studying bifurcating systems. Bi-
furcating systems of PDEs, like those describing the L-H
transition in fusion plasmas, need to be discretised into
a system of ODEs first. While this takes some effort, it
allows the user to select the discretisation method most
suitable for the problem at hand.
The time integration methods on the other hand are

tailored for solving large stiff systems that typically
arise from discretising diffusive transport equations like
those describing the transport in tokamak edge plasmas.
Specifically, Bifurcator employs various implicit Runge-
Kutta (Radau, DIRK and Gauss) methods with an adap-
tive time stepping strategy to capture all physically rel-
evant time-scales efficiently. Since these methods are
implicit, the time integration does involve solving non-
linear systems. This is done using Newton iteration and
requires the user to also define the Jacobi-matrix of the
discretised system of equations. The adaptive time step
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size is very helpful as the majority of the time the sys-
tem evolves on a diffusive timescale, while the sudden
transitions between metastable states occur in timescales
orders of magnitude shorter.

Finally, a bifurcation detection scheme is implemented.
In this scheme, Bifurcator obtains the steady state so-
lution for a given set of parameters and varies one pa-
rameter over a given interval with some (user-defined)
increment. By defining an appropriate “order” parame-
ter for the model, Bifurcator can then detect transitions
from one state to another (e.g. from L-mode to H-mode).
Whenever such a jump is detected, Bifurcator backtracks
to the last solution in the same state as the initial solu-
tion, reduces the parameter increment and then again
solves the equations at the new parameter value. This
allows Bifurcator to approach the critical value of the
scanning parameter up to arbitrary accuracy.

All the features mentioned above are model-
independent; the user only needs to supply a discreti-
sation of the equations to be analysed, and optionally an
order parameter that describes the transition of interest
for the bifurcation detection. At this moment, seven dif-
ferent bifurcating models are already implemented within
Bifurcator.

Bifurcator is configured through a combination of in-
put files and command line arguments. These tell the
program what model to analyse, which parameters and
the time integration settings to use and optionally which
parameter to perform a parameter scan in.

The features mentioned above make Bifurcator ideal
for studying the models presented in this paper. In
the next section the bifurcation detection scheme is used

-1.5 -1.0 -0.5 0.5 b

0.2

0.4

0.6

0.8

q-¥

L-mode

H-mode

Oscillations

HaL

-1.5 -1.0 -0.5 b

1

2

3

4 q-¥

L-mode

H-mode

Oscillations

HbL

FIG. 5: The Hopf bifurcations for α = 1.0 in the
(b, q−∞) parameter space, for (a) the nonlinear model

and (b) the linear model.

-GHZeLDHZeL

DHZeL
2

D
2 =
-
Θ
G

D

L

NL

FIG. 6: The radial electric field edge steady state
condition for both models with α = 0.1

to analyse numerically the bifurcating behaviour of the
models.

V. NUMERICAL BIFURCATION ANALYSIS

The numerical bifurcation analysis consists of many
simulations of the considered models during which the
heat flux parameter q−∞ is increased (for L-H transi-
tions) or decreased (for H-L transitions) in small steps.
It is important to simulate every step until the system is
in steady state, so no ramping of the heat flux during the
simulations, because that could cause additional dynam-
ics. Since the systems are known to exhibit hysteresis
it is important during a parameter scan to start every
simulation from the steady state profiles of the previous
step.
Simulations of the nonlinear model shows L-modes

where the radial electric field profile is close to zero ev-
erywhere (LHS of Fig. 8) and the turbulence level stays
close to Emax, and H-modes where an electric field well is
formed near the edge of the plasma (middle of Fig. 8) and
locally the turbulence is greatly reduced. Increasing the
heat flux, q−∞, in small steps results in L-H transitions
that are either sharp (from one step to the next), smooth

-1.0 -0.5 b

0.1

0.2

0.3

0.4

0.5

0.6 q-¥

L-mode

H-mode

FIG. 7: The bifurcation parameter space of the linear
model with α = 0.1
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(slowly changing every step), or oscillatory. An example
of these oscillations is shown on the RHS of Fig. 8, the ra-
dial electric field oscillates covering the shaded area and
correspondingly the energy profiles (U = nT/(γ− 1)) os-
cillate leading to an oscillating outflux, qe(t), for a con-
stant influx, q−∞, as is shown in the inset.

From the bifurcation analysis of the nonlinear model
in Sec. III it resulted that the different types of L-H tran-
sitions (i.e. sharp, oscillatory and smooth) are ordered by
the parameter b. This result is confirmed by the Bifurca-
tor simulations shown in Fig. 9. On the right-hand side
the series of blue points corresponds to a parameter scan
of q−∞ in which the system smoothly went from L-mode
profiles to H-mode profiles without any bifurcation. In
the intermediate regime of b-values the system stays in
L-mode up till the value of q−∞ marked by the orange
points, increasing the heat flux one additional step and
the system enters an oscillatory phase marked by the
green points. The system keeps oscillating for increasing
heat flux until it reaches a stationary H-mode marked
by the red points. In the left most part of the parameter
space, the L-mode (orange) and the H-mode (red) are di-
rectly adjacent to each other indicating a sharp transition
from an L-mode stationary state to an H-mode stationary
state for a small increase of the heat flux. Since, in this
b-parameter range, the back transitions from H-mode to
L-mode occur at different values of the heat flux due to
the hysteresis, these are separately indicated as the lower
branch of red-orange points.

As was noted in Sec. III this nonlinear turbulence
model is in steady state exactly the same as the flow
shear model analysed in Ref.3. Although the dynami-
cal equations are different the same bifurcation structure
is therefore expected. Indeed, as is shown in Fig. 10,
the bifurcation structure of this model is qualitatively

0

U
n
Z
E

-¥
0

-¥

FIG. 8: Three qualitatively different final states of the
nonlinear model (α = 1.0) i.e from left to right, L-mode,
H-mode and the oscillatory phase. Four profiles, energy
(black), density (orange), electric field (red), turbulence
level (purple) and one time trace of the edge heat flux

(green) are indicated.

the same. The exact values are somewhat shifted, how-
ever the robustness of the bifurcation structure is shown
again. The three types of stationary state of this flow
shear model without the turbulence dynamics are shown
in Fig. 11.

The change from nonlinear reduction of the turbulence
by sheared flows to the linear model, does change the bi-
furcation structure as was shown in Sec. III. The region
of oscillations opened up, to all values of b, such that only
oscillatory transitions from L-mode to H-mode are pos-
sible. The numerical parameter scans in the heat flux do
indeed show a transition from L-mode into the oscillatory
phase for all values of b as is shown in Fig. 12. However,
for very high values of the heat flux the profiles do set-
tle in an H-mode steady state that is, however, not fully
stationary and keeps oscillating a bit. Since in this part
of parameter space we are far away from the organizing
center of the co-dimension 3 bifurcation other bifurca-
tions may become visible. Only when α is reduced such
that the influence of the sheared flow becomes much less,
then the original bifurcation structure corresponding to
the co-dimension 3 bifurcation reappears as is shown in
Fig. 13 for α = 0.1. The corresponding profiles of the
possible stationary states are shown in Fig. 14.

Thus, the predictions from analytic bifurcation theory
are confirmed by dedicated numerical simulations. The
exact values of the transitions are slightly different in the
numerical simulations than in the analytic analysis. This
is mainly due to the assumption of µ = 0 in the bifur-
cation analysis, and the finite value of µ = 0.05 in the
simulations, because this term directly enters in the equa-
tion determining the steady state, Eq. (14). However, the
bifurcation structure is very robust and is therefore still
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q-¥

FIG. 9: Simulated parameter space of the nonlinear
model (α = 1.0), where stable L-modes (orange) and
stable H-modes (red) are either adjacent to each other
(left part) indicating sharp transitions, separated by

oscillatory phases (green region), or smoothly connected
(blue trace). Note that on the left-hand side two

branches of sharp transition occur, the upper branch
corresponds to sharp L-H transitions and the lower one

to H-L transitions indicating the hysteresis.
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FIG. 10: Numerical bifurcation structure of the flow
shear model without turbulence level evolution27,

α = 1.0
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FIG. 11: Three qualitatively different final states of the
flow shear reference model without turbulence

dynamics27. From left to right: L-mode, H-mode and
the oscillatory phase. Three profiles, energy (black),

density (orange), electric field (red) and one time trace
of the edge heat flux (green) are indicated. (α = 1.0)

intact.

VI. CONCLUSION AND DISCUSSION

Two fundamentally different descriptions of the turbu-
lence reduction by sheared E×B-flows are compared on
the basis of their bifurcation structure. The first descrip-
tion reduces the growth rate of the turbulence, and the
second description enhances the saturation effect of the
turbulence. These two descriptions are incorporated into
a transport model evolving the energy, density and radial
electric field (and therewith the E×B-flow).
On the basis of (analytical and numerical) bifurcation

analysis the influence of both turbulence descriptions on
L-H transition dynamics are compared. The nonlinear
model has a very robust bifurcation structure in which
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FIG. 12: Numerical bifurcation structure of the linear
model for α = 1.0. Only transitions from L-modes into
the oscillatory phase are observed for all values of b.
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FIG. 13: Numerical bifurcation structure of the linear
model for α = 0.1 corresponds to the characteristic

co-dimension 33 bifurcation structure.

three different types of transition dynamics can be iden-
tified, i.e. sharp, oscillatory and smooth transitions. In
contrast, the linear model is sensitive to variations in α
(the parameter indicating the effectiveness of the turbu-
lence suppression by sheared flows). Only if this parame-
ter is fine-tuned towards low values the same three types
of transition dynamics can be identified. For large values
of α the numerical analysis shows only transitions from
L-mode to an oscillatory phase. Since the L-H transi-
tion is a very robust phenomenon observed in many mag-
netically confined fusion devices, it is expected that the
underlying model is also very robust, which makes the
nonlinear model more likely to be the better description.

Another reason why the analysis of transition dynam-
ics is important, is because different types of transi-
tion dynamics are observed in experiments, as Carlstrom
nicely notes in his review28. Most often the transi-
tion occurs spontaneously when increasing the heating
power, but in low-density discharges at JT-60U29 and
DIII-D so-called ’transitionless H-modes’ were observed.
These smooth transitions from L-mode to H-mode with-
out clear bifurcation are also seen in low-density dis-
charges at JET30–32, and also ’smoother’ transitions are
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FIG. 14: Three qualitatively different final states of the
linear model with α = 0.1. From left to right: L-mode,
H-mode and the oscillatory phase. Four profiles, energy
(black), density (orange), electric field (red), turbulence
level (purple) and one time trace of the edge heat flux

(green) are indicated.

observed at ASDEX Upgrade33. Additionally, Carlstrom
points out the ’dithering’ transitions observed at ASDEX
Upgrade34, however nowadays there is lots of investiga-
tion into all types of oscillatory transitions, at DIII-D35,
ASDEX Upgrade36,37, EAST38,39, JET40, TJ-II41 and
HL-2A42. Most probably some of these oscillations are
caused by the same mechanism, but there could also be
multiple mechanisms at play leading to oscillatory be-
haviour around the L-H transition. Lately, the predator-
prey type of oscillations between turbulence and zonal
flows is used frequently to describe oscillatory behaviour,
as in the papers of Miki26,43–46 these type of oscillations
are embedded into a similar transport model as discussed
in this paper. However, this paper shows that without
the zonal flow interaction there are also oscillations inside
this model, therefore Miki’s model probably has multi-
ple types of oscillations depending on their parameter
setting. Therefore, it is essential to do the bifurcation
analysis of that model too. As is true for all proposed
L-H transition models.

Appendix A: Radial currents

The evolution of the radial electric field has been sub-
ject to debate since the discovery of the H-mode. A large
variety of physical mechanisms possibly influencing the
radial electric field in magnetically confined plasmas are
described in literature. Not one of them has been ap-
pointed to be the initiator of the L-H transition. Their
relative importance to one another is still under discus-
sion. In this appendix a number of radial current drive
effects is listed.

ε0
∂Er

∂t
= −

∑

Jr = e
∑

(Γe − Γi) (A1)

Since, only the dependence on the normalised radial elec-
tric field is important for this analysis, we copied the ex-
pressions from the relevant literature directly and only
indicate the dependence on the normalised radial electric
field Z = ρpeEr/Ti. First of all, a changing electric field
in time causes the generation of a neoclassical polar-

ization current,

Jpol =
ρc2

Bθ

∂Er

∂t
, (A2)

i.e. Eq. (3) of Ref.47, and simulated by Refs.48,49. Usually,
this term is moved to the LHS of Eq. A1 and combined
into the term ε∂Z/∂t of Eq. (9). Furthermore, there are
three types of viscosities driving current. Firstly, the
shear viscosity,

Jvisc = −ε0ε⊥∇ · µi∇Er (A3)

i.e. Eq. (3) of Ref.50, which leads to the term µ∂2Z/∂r2

in Eq. (9). This term is also discussed in Ref.51 and
reviewed in Ref.52. Secondly, the bulk viscosity gen-
erates a radial current, due to the inhomogeneity of the
magnetic field,

Γbv
i = fbvνiρpni

Z − Z0

1 + Z2
(A4)

i.e. Eq. (2.44) from review53 and similar to Refs.52,54.
Initially investigated in Refs.55–57. And thirdly, the
gyroviscosity generates a radial current according to
reviews52,54. However, no expression for this effect is
given.
Moreover, the anomalous cross field flux has a bipo-

lar part leading to a radial current,

Γanom
e = −Den

(

n′

n
+ α

T ′

T
+

Z

ρp

)

(A5)

i.e. Eq. (3) of Ref.58, which initially investigated this ef-
fect for the L-H transition. Later it was also used by
Ref.57, and reviewed in Refs.52–54. The first two terms
are directly influenced by the density and temperature
profiles and are therefore explicitly taken into account in
the considered models, see Eq. (9). The third term is
absorbed into the function G(Z). A similar expression
of current generation is due to the collisional process of
ripple diffusion, described in Eq. (19) of Ref.52,

ΓNC
i ≃ −ε2

√
εhnv

2
D

∫ ∞

0

dw
w5/2e−wν(w)

ν2 + 3
2

√

ε
εh
w2

rot

×

(

n′

n
+ (w − 3/2)

T ′

T
− Z

ρp

)

.(A6)

Another often proposed radial current generation mecha-
nism is the ion orbit losses or loss cone losses, initially
described in Eq. (2) of Ref.51,

Γlc
i =

1√
ε

ni

τii
ρpF̂ e−Z2

. (A7)
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and similar expressions are reviewed in Refs.52–54. A
more general expression for the ion orbit loss rate de-
pending on the collisionality is first given in Ref.59, and
later used in Eq. (1) of Ref.57,

Γlc
i =

niν
√
ερpi√

ν∗i + Z4
e−

√
ν∗i+Z4

(A8)

In the limit of ν∗i → 0 Eq. (A7) is recovered. Further-
more, Reynolds stresses can cause a radial flux of ions,
Γv∇v
i , as explained in Ref.52. This effect is employed

for the L-H transition by Ref.60, and reviewed by53,54.
Moreover, the influx of neutrals and their charge ex-

change reactions leads to a difference in radial flux of
ions compared to electrons, as is firstly used in Ref.61,
and extensively investigated in Ref.62, and reviewed in
Ref.52 in Eq. (52d),

Γcx
i = −n0〈σcxv〉niρp(Z0 + Z − qVp/εvth). (A9)

Finally, the radial electric field can be manipulated by
biasing the plasma with a external voltage50,63,

Jext = constant (A10)

Altogether, this leads to Eq. (9) where the sum of Eqs.
(A4)-(A10) is represented by G(Z). For this model to
describe L-H transition physics it is necessary that this
long polynomial has an inflection point somewhere, and
that in the neighbourhood of this point the transport
coefficients do vary. Therefore, it is sufficient to take
into account only the Taylor expansion around the inflec-
tion point to be able to describe L-H transition physics,
G(Z) ≈ a+ b(Z − Zs) + (Z − Zs)

3, similar to Refs.64,65.
The coefficients a, b and Zs of this Taylor expansion
depend, via the different contributions to Eq. (A1) dis-
cussed in this appendix, on a large number of quantities
that can in principle be determined experimentally, al-
beit with varying accuracy. Additionally, the influence
on the L-H transition by global changes to the plasma,
such as triangularity and the direction of the single-null
divertor, could also be understood as changes to some of
the contributions to Eq. (A1). To determine which pa-
rameters can be used as experimental control parameters
for the L-H transition, the relative importance of all these
effects need to be determined at the edge of the plasma.
Since many terms described in this appendix scale with
the density, an educated guess could be that the density
may be used to control the type of L-H transition.
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21Gürcan Ö D, Diamond P H, Hahm T S and Singh R, Physics of
Plasmas 14 042306 (2007)

22Calvo I and Carreras B A, Physics of Plasmas 14 102507 (2007)
23Hinton F L, Physics of Fluids B: Plasma Physics 3 696 (1991)
24Zhang Y Z and Mahajan S M, Physics of Fluids B: Plasma
Physics 4 1385 (1992)

25Hinton F L, Staebler G M and Kim Y B, Plasma Physics and
Controlled Fusion 36 A273 (1994)

26Miki K, Diamond P H, Gürcan Ö D, Tynan G R, Estrada T,
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Tynan G R, Physics of Plasmas 20 082304 (2013)

47Hinton F L and Robertson J A, Physics of Fluids 27 1243 (1984)
48Shurygin R V and Dewar R L, Plasma Physics and Controlled
Fusion 37 1311 (1995)
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