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1 Introduction

Many processes in physics are described by partial di�er-
ential equations (PDEs). Typically, the parameters de-
scribing these PDEs depend on the spatial coordinate.
The estimation of these spatially dependent parameters
is important for understanding the physical behavior of
these PDEs.

The identi�cation of PDEs is treated in the class of in�-
nite dimensional systems or Distributed Parameter Sys-
tems (DPS). In the DPS literature the problem of esti-
mating parameters is extensively treated in the mono-
graph by Banks et al. [3], and references therein. In ad-
dition, di�erent methodologies exist to identify spatially
varying parameters in PDEs [18], of which a number fo-
cus speci�cally on parabolic PDEs [4,19,22]. Their em-
phasis is on the regularization of the least-squares cost-
function used to estimate the parameters, to assure well-
posedness in Hadamard's sense, i.e., to guarantee the
existence of its solution, the uniqueness of this solution
and its stability with respect to the measurement data
[38]. In addition, regularization is often used to make
the optimization problems convex and to constrain the
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solution in some sense [16]. Moreover, di�erent methods
for reducing the in�nite dimensional PDEs to �nite di-
mension exist and are discussed in the above mentioned
references. Generally, they are using some discretization
of the spatial coordinate [14,32] or basis functions [2,6].

A di�erent approach to estimate the parameters is to
solve the problem in the frequency domain via the
Laplace Transform [8]. This reduces the PDE to an
parameterized Ordinary Di�erential Equation (ODE).
These ODEs can be approximated or sometimes even
be solved analytically, thereby avoiding approximation
errors. The solutions are generally of non-rational or
fractional form [7], of which the parameters can be
identi�ed using frequency domain identi�cation tech-
niques [10,17,24,37]. The disadvantage of this approach
is that the non-rational form of the model can compli-
cate the identi�cation signi�cantly. On the other hand,
the use of periodic excitations enables the removal of
the unexcited noisy frequency lines from the measured
data, hence high Signal-to-Noise ratios (SNR) can be
obtained at the excited frequency lines by averaging the
signals over consecutive periods. In addition, it is no
longer required to use rational approximations in the
frequency domain making the identi�cation easier.

In this paper, the following second order parabolic PDE
with spatially varying parameters on a one-dimensional
domain is considered

∂z

∂t
= fD (x, θ)

∂2z

∂x2
+fV (x, θ)

∂z

∂x
+fK (x, θ) z+Q (x, t)

(1)
where the spatial coordinate is denoted by x. We assume
that the functions fD (x, θ), fV (x, θ), and fK (x, θ) de-
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pend on the unknown parameters θ, which we want to
identify.

A speci�c process described by (1) is the radial heat-
transport inside the tokamak plasma [11], a toroidal nu-
clear fusion device. For the optimization of this radial
heat-transport, which determines the e�ciency, the dif-
ferent pro�les need to be identi�ed, i.e. fD, and possibly
fV and fK .

In the tokamak the initial conditions are unknown, hence
only measurements are considered for "t ≫ the domi-
nant time constant" such that the transients are negli-
gible compared to the forced response. The source (mi-
crowave heating) term periodically excites the plasma
and is de�ned as

Q(x, t) =


q (x)

K∑
k=1

Ak cos (Ωkt+ ϕk) x1 ≤ x ≤ x2

0 elsewhere

(2)
where Ak, ϕk, and Ωk are the amplitude, phase, and
frequency respectively. The spatial dependence of the
source q (x) is unknown, but q (x) ̸= 0. The plasma tem-
peratures, z, can be measured locally by microwave ra-
diation, which is prone to additive normally distributed
noise. Moreover, boundary conditions exist such that (1)
has a unique solution. However, these boundary condi-
tions are subject to debate and are assumed to be un-
known. This means that for the parameter estimation
only measurements are available.

The estimation of parameters from noisy measurements
only is known as an Errors-in-Variables problem (EIV).
In the EIV literature it is well known that the least-
squares estimator is not consistent [33], i.e. the parame-
ter estimates will be biased. Moreover, this bias depends
on the SNR, which decreases with the distance to the
source Q (x, t). This is caused by the low-pass character-
istic of (1), which also causes the higher frequencies to
be more noisier than low frequencies. This problem can
be partly overcome using a low-pass �lter to suppress
the noisy �high-frequency� components in the measure-
ments [34]. However, the optimal cut-o� frequency of
this �lter depends on the unknown system parameters.

In this paper a frequency domain sampleMaximumLike-
lihood Estimator (SMLE) is used for this EIV problem.
The SMLE is based on the Probability Density Func-
tion of the noise, allowing for a consistent estimate under
weak assumptions [23]. Moreover, it naturally weights
the di�erent frequency components avoiding the neces-
sity of a low-pass �lter. In the SMLE framework the con-
�dence bounds on the estimated parameters can be cal-
culated and model validation tests exist. However, the
SMLE requires knowledge about noise properties of the
measurements. A disadvantage of the SMLE is that its

optimization problem is more complex and is no longer
convex in contrast to linear least-squares estimators.

Here we choose to estimate a set of small sub-domains,
instead of modeling the entire domain. On each sub-
domain a complex valued non-rational analytic model
description is used, hence avoiding discretization errors
[5]. The advantage of this approach is that the decou-
pling in sub-domains assures that errors do not propa-
gate from one sub-domain to the others. In addition, the
SMLE optimization problem remains solvable, because
only a few parameters need to be estimated.

A sub-domain needs to consist of at least three measure-
ments. The reason is that two measurements act as the
boundary conditions (inputs) as such de�ning the solu-
tion of the second order PDE. Then, at least one mea-
surement point between the boundaries (output) is nec-
essary to compare it with the solution of the PDE at that
location, which is determined by the parameters, the
model structure, and the boundary conditions. In prin-
ciple the number of measurements can be extended, but
then a Multiple-Input Multiple-Output system needs to
be identi�ed. Therefore, in this paper three adjacent
measurements are used to de�ne a sub-domain. Note,
that we only consider sub-domains that are outside the
interval [x1, x2], i.e. domains that do not contain an ex-
citation source q (x) (see (1) and (2)). The reason is that
the exact dependency of q (x) on x is unknown.

A general framework for di�erent spatial dependencies
and geometries is discussed, but results are only shown
for sub-domains on which parameters can be modeled as
constants. Consequently, only piecewise smooth pro�les
are identi�able, which is generally true for the considered
application.

An identi�cation scheme consists of the following three
components: a model of the system, derived in Section
2; a cost function minimization scheme based on a re-
alistic noise model, explained in Section 3; and simula-
tions which are generated by means of a �nite di�erence
model such that the result can be validated. The latter is
discussed in Section 4. Finally, a number of conclusions
are summarized and discussed.

2 Modeling

This section derives the transfer functions based on a
smart choice of the boundary conditions. The most im-
portant concept is the replacement of boundary condi-
tions by measurements. In addition, derivations are done
without specifying any spatial dependency.

2.1 Considered Partial Di�erential Equation

The one-dimensional, second-order linear PDE intro-
duced in (1) is excited by the local source term Q (x, t).
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The PDE is modeled by the homogeneous form of (1)
outside this source domain. It is also possible to solve
the inhomogeneous PDE, allowing the use of a domain
with a source. However, the inhomogeneous PDE results
in a more complex relationships and therefore will not
be discussed.

The Laplace transform of (1) simpli�es the PDE towards
a complex valued Ordinary Di�erential Equation (ODE)
of the form

0 = fD (x, θ)
d2Z

dx2
+fV (x, θ)

dZ

dx
+(fK (x, θ)− s)Z (3)

with Z = L{z} and s the Laplace variable. The func-
tions fD (x, θ), fV (x, θ), and fK (x, θ) depend on the
spatial coordinate x and the time-invariant unknown pa-
rameters θ. In many cases this ODE can be solved ana-
lytically, with the general solution given by

Z (x, s) = C1 (s) ξ (x, θ, s) + C2 (s) ζ (x, θ, s) , (4)

where C1 (s) and C2 (s) denote the free variables set
by the boundary conditions. The choice of the spatially
dependent functions fD (x, θ), fV (x, θ), and fK (x, θ)
in (3) determine the solutions ξ (x, θ, s) and ζ (x, θ, s),
which are the complex eigenfunctions of (3). Solutions
for many di�erent choices of fD (x, θ), fV (x, θ) and
fK (x, θ) exist, such as constant, and linear functions.
An extended list of these analytic solutions can be found
in [27]. The next step is to derive the local transfer
functions.

2.2 Boundary Condition description

This paper considers a set of small sub-domains, which
prevents the errors from propagating. Moreover, the
boundary conditions are no longer approximated but
measured, in contrast to other strategies such as the
in�nite domain boundary condition reported in [7]. Ev-
ery domain uses three adjacent frequency spectra of the
measurements z to estimate the local parameters. The
outer two measurements act as the boundary condi-
tions i.e. Z (xi−1, s) and Z (xi+1, s). These two bound-
ary conditions allow for the calculation of C1 (s) and
C2 (s). Rearranging and de�ning Z (xi, s) as the output
measurement results in the following Multiple-Input
Single-Output system (θ and s are omitted):

Z (xi) =

(
ξ (xi+1) ζ (xi)− ζ (xi+1) ξ (xi)

ζ (xi−1) ξ (xi+1)− ζ (xi+1) ξ (xi−1)

)
Z (xi−1)

−
(

ξ (xi−1) ζ (xi)− ζ (xi−1) ξ (xi)

ζ (xi−1) ξ (xi+1)− ζ (xi+1) ξ (xi−1)

)
Z (xi+1) ,

(5)
with i = 2, ...,m − 1, where m denotes the number of
sensors. The inputs and outputs are de�ned as U1 (s) =

Z (xi−1, s), U2 (s) = Z (xi+1, s), and Y (s) = Z (xi, s)
on the interval xi−1, xi+1:

Y (s) = G1 (θ, s)U1 (s)−G2 (θ, s)U2 (s) . (6)

In (5), the choices of ξ (x, θ, s) and ζ (x, θ, s) are delib-
erately unde�ned, as di�erent dependencies of fD, fV ,
and fK can be used. Here, we only consider constant
parameters.

2.3 Constant Parameters

This section derive the transfer functions in the case of
constant parameters over a small domain. Consequently,
ξ (x, θ, s) and ζ (x, θ, s) in (5) are constant over the do-
main. The local PDE description is given by

∂z

∂t
= D

∂2z

∂x2
+ V

∂z

∂x
+K z, (7)

where D denotes the di�usivity, V the convective veloc-
ity, andK the damping. The eigenfunctions are �xed by
the choice of local constant spatial dependencies i.e.

ξ (x, θ, s) = exp (λ1x) and ζ (x, θ, s) = exp (λ2x) , (8)

where λ1,2 are the eigenvalues of the underlying ODE:

λ1,2 =
−V ∓

√
V 2 + 4D (s−K)

2D
. (9)

As the combination of (5) and (9) result in a non-rational
Multiple-Input Single-Output system with complex ex-
ponents and square roots, identifying the parameters is
not straightforward. Therefore, a change of variables is
introduced to facilitate the parameter estimation.

2.4 Change of Variables

The parameters will be estimated by minimizing a cost
function. The computation time and possibly avoidance
of local minima can be improved by simplifying the equa-
tions to be evaluated. Therefore, a substitution is intro-
duced such that the eigenvalues are simpli�ed, avoiding
parameter divisions, i.e.

λ1,2 = −a∓
√
a2 + b+ c s, (10)

with a =
V

2D
, b = −K

D
, and c =

1

D
.

This parameter set will be denoted as θ =
[
a b c

]T
and the estimated set by θ̂. Although not discussed here,
similar simpli�cations are possible for other choices of
the spatial dependent functions.
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In the next section, not only the parameters are esti-
mated, but also their covariance. Consequently, the co-
variance matrix of the estimated parameters can be re-
calculated using

Cov
(
D̂, V̂ , K̂

)
= JD Cov

(
θ̂
)
JT
D

with JD =
1

ĉ2


0 0 −1

2ĉ 0 −2â

0 −ĉ b̂

 . (11)

3 Sample Maximum Likelihood Estimator

In this section, the Errors-in-Variables (EIV) problem
is discussed, for which the sample Maximum Likelihood
Estimator (SMLE) o�ers a solution. It is also discussed
how to minimize the sample Maximum Likelihood cost
function, how to construct con�dence bounds on the es-
timated parameters, and how to validate the estimated
models.

Maximum Likelihood Estimation is a method for es-
timating parameters given some statistical properties,
where the MLE maximizes a known likelihood function.
The likelihood function can be interpreted as a Proba-
bility Density Function (PDF), but with respect to the
measured data. For example, if the di�erence between
the output and a predicted output based on the model
and input is studied, the remainder in the absence of
model errors is fully characterized by the likelihood func-
tion of the noise. The sample likelihood function di�ers
from the likelihood function in the sense that the real
noise (co-)variances are unknown. Hence, they need to
be replaced by sample variances, which can be deter-
mined using a pre-processing step.

3.1 Error Model: Errors-in-Variables

The transfer functions introduced in (6) are based on lo-
cal spatial measurements. This means that an EIV ap-
proach is necessary to handle the noise on the measure-
ments. In this paper, the EIV problem is solved via the
sample Maximum Likelihood Estimator (SMLE) in the
frequency domain. It is based on additive circular com-
plex normally distributed noise in the frequency domain
[23], which is the result of Gaussian noise in the time
domain [12].

In the SMLE, the true unknown noise (co-)variances are
replaced by sample estimates obtained from the peri-
odic signal. This is achieved by calculating the average
over the di�erent periods and variances per frequency
line resulting in the deterministic spectra and the esti-
mated noise spectra. A minimum number of 4 periods
is necessary to make a parameter estimate, however, if

at least 7 periods are used other desirable properties of
the SMLE are also retained (see [31] for the details). In
principle, also measurements containing transients can
be used to obtain the (co-)variances using the local poly-
nomial method, but at the cost of a more complex pre-
processing step (see [26]).

There also exist di�erent approaches to handle an EIV
problem often relying on multiple experiments and spe-
ci�c assumptions on the noise. An overview of the dif-
ferent methods can be found in [33]. In contrast, to the
frequency domain (sample) MLE also MLEs in time do-
main exist [1,9], which handle the spectral factorization
and possible transients di�erently [33]. Moreover, MLEs
can also be constructed for non-Gaussian noise distri-
butions [13]. However, in contrast to the non-Gaussian
MLE, the MLE for Gaussian noise are extensively stud-
ied in e.g. [23,35].

3.2 Maximum Likelihood Cost

The sample MLE cost function is derived on the basis
of the system model and the error model. The sample
log likelihood cost function VSML is used [23]. It has the
same global minimum as the SMLE for complex nor-
mally distributed noise, but is computationally less in-
tensive. It is de�ned as

VSML =
1

F

F∑
k=1

|e (Ωk, θ)|2

σ2
e (Ωk, θ)

, (12)

with Ωk the excited frequencies and F the number of
frequencies used. The error e (Ωk, θ) is de�ned as

e (Ωk, θ) = Y (Ωk)− (G1 (θ)U1 (Ωk)−G2 (θ)U2 (Ωk)) ,
(13)

where the transfer functions G1 and G2 are evaluated
at Ωk. The variability, which takes the di�erent noise
contributions into account, is given by (dependency on
Ωk and θ are omitted)

σ2
e (Ωk, θ) = σ2

Y + σ2
U1

|G1|2 + σ2
U2

|G2|2

−2 Re
(
G1σ

2
U1U2

G2 + σ2
Y U1

G1 − σ2
Y U2

G2

)
, (14)

where the variances and covariances are estimated for
every Ωk using M realizations (periods). The complex
conjugate of G is denoted as G. The parameters are es-
timated by minimizing VSML

θ̂ = argmin
θ

VSML (Ωk, θ) . (15)

Minimizing this cost function gives the estimated pa-
rameters. For �ltered white noise disturbances the mini-
mizer of (12), based on the non-rational transfer models,
has exactly the same asymptotic (F → ∞) properties as
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the SMLE for rational transfer function models. For ex-
ample, it is consistent and asymptotically normally dis-
tributed (see [23] for the details). The cost function (12)
can be naturally interpreted as a weighting of the er-
ror with the uncertainty of the measurements. Measure-
ments with small noise variances have a higher weight-
ing and vice versa. If σe is constant for all Ωk, then (12)
reduces to a non-linear least-squares (NLS) estimator
(output error).

3.3 Optimization and con�dence bounds

The minimization of (12) is in principle non-convex. On
the other hand, only a few parameters need to be esti-
mated. Therefore, the entire relevant parameter space
can easily be searched for the cost function's minimum.
In addition, if the noise levels are reasonable and the
parameters are optimized in terms of θ, gradient based
algorithms converge to the global minimum for many
initialization values. These gradient methods are com-
putationally cheap, especially if an analytic Jacobian is
used.

The analytical Jacobian is also used to estimate the con-
�dence bounds on the parameters. Section 3.2 explains
that minimizing the cost function (12) provides the best
parameter set. The uncertainty of the parameters is de-
termined using the Jacobian from a �rst-order Taylor
series expansion

Jθ =
∂

∂θ

(
e (Ωk, θ)

σe (Ωk, θ)

)
. (16)

The resulting covariance matrix on the di�erent trans-
formed parameters is given by

Cov
(
θ̂
)
≈

(
M − 1

M − 3

)[
Re

(
2JH

θ Jθ
)]−1

, (17)

with M the number of realizations (periods) [25]. This
correction is necessary, because estimated sample vari-
ances are used instead of the real (but unknown) vari-
ances. The uncertainty on the real valued parameters
can be calculated by (11).

3.4 Model validation

A cost function analysis is used to detect model errors.
If the noise is indeed normally distributed, no model
errors are present, and if a number of weak assumptions
are ful�lled [23], then the expected value of the sample
Maximum Likelihood cost function equals the number of
frequency lines F minus the number of free real-valued
parameters nθ divided by two i.e.

Vnoise =
(
F − nθ

2

)
. (18)

In addition, the theoretical variance of the SMLE
cost equals Vnoise. However, as variances are esti-
mated using M repeated experiments, a correction
is necessary to take this extra uncertainty into ac-
count i.e. E {VSML} = (M − 1) / (M − 2)Vnoise and

var {VSML} = (M − 1)
3
/
(
(M − 3) (M − 2)

2
)
Vnoise.

The estimated variance is used to construct con�dence
bounds. Model errors generally lead to a higher value of
the cost function at the global minimum.

3.5 Input design and choice of domain

The SMLE developed in this paper always considers a
domain of three measurement points, of which the lo-
cations can be non-uniformly distributed. In principle,
the larger the domain the better the estimate of the pa-
rameters. The reason is that the suppression of the am-
plitude increases with the distance due to the source.
Hence, the amplitude di�erence between the inputs and
output is also larger. However, the larger the domain,
the more stringent the assumption of constant parame-
ters becomes. This means there is a trade-o� between the
sensor distance and the assumption of constant parame-
ters. These considerations are more important than the
overall number of sensors used, because every domain is
treated separately in this approach. The validation test
and con�dence bounds can be helpful in making a choice
for the sensor locations. If the model (of constant pa-
rameters) is rejected by the validation test, the model
assumption is incorrect. In that case the sensor locations
should be closer to each other. On the other hand, if the
con�dence bounds are large then increasing the distance
between the sensors could improve the accuracy.

The other important aspect is the source de�ned in (2).
The theoretical minimum number of sinusoidal compo-
nents in the source should be F > nθ

2 . However, ev-
ery extra sinusoidal component increases the accuracy
of the estimated parameters. The domain to be identi-
�ed is preferably close to the source, but should not con-
tain the source. In case the domain has some distance
to the source, the di�usive process acts as a low-pass �l-
ter, which generally reduces the optimal frequencies Ωk

with respect to the parameter accuracy when compared
with a similar domain closer to the source. In addition,
the (unknown) parameters on the domain, and between
the source and the domain, directly in�uence the choice
of the optimal excitation frequency. This directly follows
from (9) if s = iω, ω → ∞ then V and K become neg-
ligible. On the other hand, K can be estimated using
sine components at a very low-frequency, which follows
from s → 0, and V is best identi�ed somewhere in the
intermediate region.

It is clear, that selecting the optimized identi�cation ac-
curacy is complex and depends on many factors. More-
over, it depends on which parameter needs to be iden-
ti�ed accurately and which domains need to be identi-
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�ed accurately. The accuracy can be evaluated using the
Fisher information matrix. As such this matrix plays an
important role in designing optimal excitation signals
and sensor placement. However, the exact design of the
optimal excitation signal and sensor placement is com-
plicated, and will not be considered in this paper. The
reader is referred to [28,36] for a treatment of sensor
placement and excitation design in DPS. On the other
hand, the design of optimal excitation signals for trans-
fer functions is treated in, e.g. [29,30]. Note, that also
the crest factor and randomness of the excitation signal
should be considered to reduce non-linear e�ects [23].

4 Results

This section shows a number of analysis steps to vali-
date the estimation procedure presented in the previous
sections through a Monte Carlo Analysis. Then, a �nite
di�erence simulation presents the estimation results for
varying pro�les of D and V . The models estimated us-
ing a �nite di�erence simulation are validated by means
of a cost function analysis.

4.1 Estimator and con�dence bound validation

The possibility to construct con�dence bounds on the
estimated parameters is an important advantage of the
SMLE. However, the implementation of any estimation
algorithm can be error-prone. Therefore, it is important
to validate the implementation. This especially holds for
schemes which use an analytic Jacobian. A number of
trivial tests, such as Finite Di�erenceModel comparison,
convergence to the true minimum, and comparison of
the Fourier transforms were done.

Next to validating the model, the estimated con�dence
bounds on the estimator need to be veri�ed. The SMLE
has a number of advantages when compared to the least-
squares estimators. The estimates remain consistent if
the additive complex circular normal noise is �ltered or
the di�erent noise sources are correlated (covariance),
because the noise models are also estimated based on the
realizations of the periodic signals. Under the conditions
of �ltered or colored noise, the estimator should �nd a
consistent estimate and should approximate the con�-
dence bounds accordingly. This can be tested by means
of Monte Carlo simulations. The noise sources have been
�ltered and have been correlated. The original model
is used and di�erent noise realizations (10000) with the
same variance and mean are simulated. The con�dence
bounds were validated under these conditions. It turned
out that the parameter b = −K/D is extremely sensi-
tive to noise. This is caused by the necessity of excita-
tion signals with very low Ωk and the presence of V and
D. Therefore, the damping K is �xed at zero in the rest
of this paper.

4.2 Finite di�erence simulations

Finite di�erence simulations are used to validate the
methodology. Only the estimated di�usivity D and con-
vective velocity V are considered as the damping K
is very uncertain for reasonable excitation frequencies.
Both the di�usivity pro�le and convective pro�le contain
a step (simulated by an erf function), but at di�erent lo-
cations. The reason for this choice of pro�les is to show
that the domains can be identi�ed independently from
the pro�le outside the domain. The problem of identi-
fying the parameters with discontinuities is not treated
here, but can be found in e.g. [20]. In the speci�c exam-
ple of tokamak plasmas the steps have experimentally
been observed and can be interpreted as transport bar-
riers [15].

The excitation source Q (x, t) is placed at x = 0.1 and
hence in�uences the estimates in the gray area. The
sensors are positioned at x = 0.1, 0.15, ..., 0.95, only
x = 0.75 is not present. The source is a multi-sine with
equal amplitude exciting the harmonics from 20 to 400
Hz. In total 40 periods are observed (2 s). Noise is added,
which is normally distributed and is for 20% uncorre-
lated and 80% correlated (over di�erent xi), which is
a realistic situation. Although, gradient based methods
work well for lower noise levels, at higher noise levels
it sometimes converges to a local minimum. Therefore,
a simple grid search algorithm is applied. The resulting
local estimates are presented in Fig. 1.

The SMLE is compared to the non-linear least-squares
(NLS) estimator (12) with σe = 1, which is compara-
ble to an output error approach in the time-domain [21]
(Parseval's theorem). At low noise levels their perfor-
mance is very similar. If the measurements become more
noisy, due to a larger distance to the source, the esti-
mates diverge from the true values. However, the con�-
dence bounds for the SMLE still give correct con�dence
bounds. On the other hand, at higher noise levels the
NLS estimates diverge signi�cantly from the true val-
ues and perform worse than the SMLE. Moreover, the
estimated D seems relatively insensitive for a step in
fV (x). In addition, the estimates of the non-symmetric
domains using the measurements at x = [0.65, 0.7, 0.8]
and x = [0.7, 0.8, 0.85], which are plotted at x = 0.7 and
x = 0.8 respectively, perform as expected. Although, the
performance at the steps seems good, it needs to be de-
cided on the basis of the validation test.

4.3 Model validation of �nite di�erence simulation

In Section 3.4 a model validation test is introduced,
which is used here to validate the estimates of the �nite
di�erence simulation. The value of the cost function at
the global minimum should equal the degrees of free-
dom (18) within some con�dence region. This is veri�ed
in Fig. 2, where not only the values of the cost function
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Fig. 1. Comparison between the SMLE and the non-linear
least-squares estimator (NLS) (σe = 1). The true pro�les
(solid lines) end estimates of D and V are presented includ-
ing the 95% con�dence bounds (SMLE only). Some NLS es-
timates of V become very large, are not included). The esti-
mate is always plotted at the central measurement xi of the
domain. The measurements are generated with a �nite dif-
ference model of 4000 grid points, time step of 0.1 ms, where

the boundary conditions are ∂z(x=0)
∂x

= 0 and z (x = 1) = 0.
The amplitude of the ground frequency |Z (xi,Ω1)| and the
amplitude of the highest excited frequency |Z (xi,Ω20)| are
shown. The other amplitudes of the excited frequencies are
situated in between. In addition, the standard deviation of
the noise in the frequency domain |σnoise (xi,Ωk)| = σy is
presented, which is constant for all frequencies. In compar-
ison also the SNR in the time domain is presented, which

is de�ned as SNRtime (xi) = 20 log10

(
zrms(xi)

noiserms(xi)

)
. The

crosses represent the measurement locations.

are plotted but also the cost function as function of the
parameters at one spatial location.

Fig. 2(a) shows the cost function, due to the parame-
ter transformation introduced in Section 2.4 many ini-
tialization values will allow for a gradient based method
to converge to the global minimum or its neighborhood.
Fig. 2(b) shows that most models describe the data well.
However, at lower noise levels than the noise level cho-
sen here, the estimated models at the step in fD (x) and
to a lesser extend at the step in fV (x) are rejected by
the validation.
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Fig. 2. (a) Contour plot of the cost function values as function
of the transformed parameters a and c at a speci�c spatial
location. Note, that the original parameters are de�ned in
terms of θ so D is plotted from 1 to 200 and a is a more
complicated combination of D and V . (b) The values of
the cost function at the global minimum (×), VSML for the
di�erent spatial estimates (×). The dashed lines are the 95%
con�dence bounds based on the expected variance of VSML.

5 Conclusions and Discussion

This paper presents a new methodology to identify
the spatial dependent parameters. The estimation is
performed in the frequency domain, allowing analytic
models to be used for simple dependencies. A trans-
fer function is derived, based on three measurement
points such that unknown boundary conditions can be
handled. Moreover, a sample Maximum Likelihood Es-
timator is used to estimate the parameters. It takes the
noise into account, which is present at the inputs and
the output. This allows for consistent estimates of the
parameter values and their uncertainties.

The SMLE performs better than the non-linear least
squares estimator at high noise levels. A validation is
applied showing that most estimates are accepted. The
local estimation with three parameters ensures a simple
and robust minimization of the cost function as only a
few parameters need to be estimated. The local estimates
also overlap, resulting in some redundancy, which can
further improve the estimation procedure by using the
overlap information.

Extending the methodology to higher dimensions is not
straightforward. The main problem is foreseen in terms
of the boundary conditions of a domain. The out and in-
�ow of energy between two measurement locations needs
to be described, which probably would require some in-
terpolation. In addition, the required number of mea-
surements increases to at least four in 2D. This means
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that the SMLE needs to be extended accordingly.
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