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Abstract. In a tokamak-based fusion power plant, possible scenarios may include

regulated sawtooth oscillations to remove thermalized helium from the core of the

plasma. During a sawtooth crash, the helium ash and other impurities trapped in the

core are driven by the instability to an outer region. However, in a fusion plasma,

high energy ions will represent a significant population. We thus study the behaviour

of these energetic particles during a sawtooth. This paper presents the modelling

of the redistribution of fast ions during a sawtooth reconnection event in a tokamak

plasma. Along the lines of the model for the evolution of the flux surfaces during

a sawtooth collapse described in Ya. I. Kolesnichenko and Yu. V. Yakovenko, Nucl.

Fusion 36, 159 (1996), we have built a time-dependent electromagnetic model of a

sawtooth reconnection. The trajectories of the ions are described by a complete gyro-

orbit integration. The fast particles were evolved from specific initial parameters (given

energy and uniform spread in pitch) or distributed initially according to a slowing-down

distribution created by fusion reactions. Our modelling is used to understand the main

equilibrium parameters driving the motions during the collapse and to determine the

evolution of the distribution function of energetic ions when different geometries of

reconnection are considered.
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1. Introduction

In a tokamak-based fusion power plant, thermal helium and impurities will tend to

accumulate in the core region of the plasma [1]. By moving the bulk of the core

plasma to an outer region, the sawtooth instability has the unique feature to flush

impurities retained in the core outward. Active control of the sawtooth period and

amplitude provides the capability to optimize this desired consequence of the sawtooth.

The motivation behind this work is to build scenarii where a controlled version of the

instability is used to improve the performances of the fusion plasma.

In fusion devices, the high energy ions represent a significant part of the plasma

energy and of the current drive: we are thus interested in the consequences of the

sawtooth on these fast ions. Understanding of the effects of the sawtooth collapse on the

fast ion population is of importance for the development of a coherent control strategy

of the sawtooth cycle that would take into account the production of alpha-particles

and the deposition of energy and current from the auxiliary heating systems. The

redistribution of the fast ions will also change their interaction with the background

plasma and possibly destabilize Toroidal Alfvén Eigenmodes (TAE), Neoclassical

Tearing Modes (NTM) or Energetic Particle Modes. We would like to avoid these

side-effects.

Many experimental and theoretical studies have recently been dedicated to the

control of sawtooth oscillations [2]. A sawtooth crash is triggered when the m = 1,

n = 1 resistive internal kink mode is destabilized [3], where m and n are the poloidal

and toroidal mode numbers, respectively. This instability corresponds to an almost rigid

displacement of the plasma core with m = 1, n = 1 helicity. All heating and/or current

drive methods like Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating

(ICRH) and Electron Cyclotron Resonance Heating (ECRH) can alter the trigger of

the sawtooth, either by modifying the magnetic shear s = (r/q)(dq/dr) at the resonant

surface with safety factor q = 1 or by acting on the local distribution of the fast ions

[4].

In this paper, we investigate the influence of the sawtooth on the fast ions when

different initial magnetic geometries of the equilibrium are considered. Since we are

interested in sawteeth in plasmas that are heated and stabilized by the fusion born

alpha-particles, we consider, as described in [5], that the plasma is operated in the

stable region between sawtooth and fishbone instabilities. We develop a numerical model

of the sawtooth collapse based on the original full reconnection pattern suggested by

Kadomtsev [6] with the dynamical evolution of the electromagnetic fields during the

collapse as introduced by Kolesnichenko et al. in [7]. We then calculate the full particle

orbits in these time evolving fields in order to analyze the effect of a sawtooth collapse

on different populations of thermal and energetic ions. Compared with previous work,

we use realistic magnetic equilibria and the particle motions are fully described along

their orbits, allowing the modelling to account for the effect of the Larmor orbits and

the orbit widths of the ions. This is applied to understand the effect of the collapse on
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different orbit categories (passing or trapped), at different approximate radial regions

(core or around q = 1), and for a large range of kinetic energies (up to 3.5MeV).

This paper is structured as follows. The model for the dynamical evolution of the

electromagnetic field during a sawtooth collapse is discussed in Section 2. In Section

3, the algorithm used for the numerical integration of the particle orbits is presented

together with a validation of the implementation. A comprehensive analysis of the

effect of the sawtooth collapse on the different kinds of particles is then presented in

Section 4. The main emphasis is on the degree to which the different particles follow the

redistribution of the magnetic flux during the collapse. All calculations are performed

starting from JET-like equilibria. Section 5 then presents the effect of a sawtooth

collapse on a slowing down distribution of fusion produced alpha-particles. Finally,

Section 6 summarizes the conclusions of this study.

2. Dynamical modelling of the sawtooth collapse

2.1. Pre-collapse equilibrium and resonant surface

As a starting point for this work, we have used tokamak equilibria as obtained from

the equilibrium code FINESSE [8]. The typical parameters considered are those of

a JET-like configuration, where P0 ∼ 1.1 × 105Pa is the pressure on the magnetic

axis, IP ∼ 2.5MA is the global toroidal plasma current and Baxis ∼ 3.3T is the total

field on axis. The simulations were performed with the current in the same positive

direction as that of the toroidal field. Co-passing particles are considered orbiting in

the direction of the toroidal field. Reversing the current direction would exchange the

behaviour of the co- and counter- passing particles. The Shafranov shift is ∼ 0.15m

for β = (2µ0 〈P 〉)/ 〈B2〉 ∼ 1.1% (where 〈P 〉 is the volume averaged pressure of the

plasma, B is the magnetic field). We obtain from the equilibrium code the total

field with its poloidal and toroidal components: B = Bpol + Bϕ. The poloidal field

is related to a flux ψ, that is the (divided by 2π) poloidal magnetic flux, so that

Bpol = (1/R)(eϕ × ∇ψ). The equilibrium code also gives us a mesh in the poloidal

plane: it provides the horizontal coordinate X(ψ, θ) = R(ψ, θ) − R0 and the vertical

one Z(ψ, θ). Here R0 = (Rmax + Rmin)/2 is the center of a Fourier decomposition

in geometric poloidal angle (see [8]) of the last closed flux surface (Rmax and Rmin

being respectively the maximum and minimum values of the major radius along this

flux surface) and θ is a straight field line poloidal angle. On a given flux surface, the

safety factor q = dϕ/dθ then describes the pitch of a field line (ϕ being the toroidal

angle). Since we consider particles evolving close to q = 1, it is of interest to consider

their position with respect to this helicity by using the helical angle ω = θ − ϕ. For

convenience, we use a length index r (effective radial position) to label flux surfaces. It

is defined as r =
√
S(ψ)/π where S(ψ) is the area of the surface enclosed by the poloidal

contour of the flux surface ψ.

Let BH be the magnetic field that the plasma would have in case of a uniform q = 1
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helicity. The equilibrium configuration, and in particular the equilibrium poloidal field

Bpol, allows us to give a description of this reference helical field: BH = qBpol + Bϕeϕ
(eϕ being a toroidal unit vector). We can relate this field to a poloidal flux ψH , so that:

qBpol = (1/R)(eϕ ×∇ψH).

We then define an auxiliary field B∗ = B − BH = (1 − q)Bpol that describes the

deviation of the equilibrium field from the q = 1 helicity. We finally introduce the

function ψ∗, poloidal flux of the auxiliary poloidal field B∗ (auxiliary flux or so-called

helical flux [9]). These are related by B∗ = (1/R)(eϕ×∇ψ∗). In our calculations, we first

derive the auxiliary flux in the equilibrium by integrating according to our definitions:

ψ∗(t = 0) = ψ∗eq(ψ) =

ψ∫
ψ0

(1− q)dψ (1)

All dynamics during the collapse is simply described by the evolution of ψ∗(t) . Under

the assumption that the shaping of the plasma is unaffected by the reconnection, ψ∗ is

again a function of ψ only after the sawtooth.

An illustration of reconnection occurring during a sawtooth collapse according to

Kadomtsev [6] is given on figure 1. Surfaces that have identical auxiliary flux ψ∗ values

on both sides of the separatrix (effective radial position rx, see figure 2) reconnect during

the crash. This results in an incompressible flow of plasma. The reconnection actually

takes place in a narrow layer where a strong current appears. The mixing radius rmix
is the post-crash position of the separatrix (where, after the collapse, a discontinuity in

q is present).

2.2. Dynamics of the sawtooth collapse

The initial MHD instability (m = 1, n = 1 kink motion) may be triggered by the

properties of the fast ion distributions or the current density profile as affected by current

drive. We assume it is accompanied in its nonlinear phase by complete reconnection of

the auxiliary magnetic field around the q = 1 resonant flux surface, finally resulting in

a new axi-symmetric state of the plasma.

Our modelling is based on the one from Kolesnichenko et al. in [7]. In this

model, (r, ω = θ − ϕ, ϕ) are the helical coordinates with the ϕ angle being the toroidal

coordinate. The entire collapse consists of two phases: a first phase (which we will call

the crash phase) in which the auxiliary field is reconnected while the core or the plasma

is moved radially outward as displayed on figure 2. This phase ends when the core

reaches the mixing radius and the reconnection is completed, but leaves the plasma in

a helically perturbed state. In a subsequent phase the axisymmetry is restored. These

two phases constitute the entire collapse.

The evolving flux surfaces are mathematically described in the (r, ω) coordinates

by the equations given in [7]. A shape parameter α is introduced that determines a

continuous change of the shape of the flux surfaces. α evolves from 0 at the beginning

to atan(2) at the end of the crash (first phase) when reconnection is complete. Then
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Figure 1. Radial profiles, before and after the collapse, of the auxiliary flux

(middle plots) and corresponding safety factor profiles (top plots) and pressure profiles

(lower plots) according to Kadomtsev theory. Two different safety factor profiles

are considered: one with low shear (left) and one with higher shear (right). In our

modelling, the discontinuity of the magnetic field (and thus in q) appears during the

second phase of the collapse.

it increases up to α = π when axi-symmetry of the field is restored. The temporal

evolution is obtained by assuming a linear evolution of α with time:

t

τcr
=

α

atan(2)
; 0 ≤ α ≤ π (2)

We thus have α(t) = (atan(2)/τcr)t where the crash time τcr is the duration of the first

phase. This first phase is the phase with the highest drifts and its duration is the one

usually obtained from experimental measurements.

We define ξ as the magnitude of the displacement of the original magnetic axis.

The complete reconnection of the flux surfaces inside the q = 1 surface implies that

the process will stop at a given flux surface position, the mixing radius rmix, which

defines the extension of the zone where the electromagnetic fields are perturbed. The

radius of the external circle of the separatrix is at position rx(t). The displacement of

the center of the plasma column is evolved during the time of the crash according to:

ξ(t) = (1/2)rx(t) tan (α(t)) for 0 ≤ tan (α(t)) ≤ 2 and ξ(t) = rmix for tan (α(t)) > 2.

This modelling is based on ideal MHD and thus allows to set up the crash and

collapse times arbitrarily. The reconnection dynamics can be either mostly resistive (see

[9]) or collisionless (see [10]). Since we assume that we operate in conditions of a DT

experiment in JET, we may use the collisionless estimate for the complete reconnection

time:

τcr '
τA
ρsq′

with ρs =

√
(Te + Ti)/mi

Ωci

(3)
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Figure 2. Evolution of the position of the core (ξ) and of the separatrix (rx) during

the collapse of the low shear scenario (left graphs) of figure 1. The insert illustrates the

calculation [equation (6)] of the electric potential at one instant; the full line indicates

the reference surface ω = 0 and ω = π where Φ = 0.

Here τA ∼ R/vA is an Alfvén time and Ωci = (Zie)B0/mi. The crash times that we

consider in this study are τcr ∼ 144µs in section 4 and τcr ∼ 90µs in section 5. The

total collapse is assumed to last about 2.78τcr.

Using the shapes of ψ∗ from the model in [7] and the area conservation principle from

[6] we thus can build a complete phenomenological “movie” of the collapse described by

the perturbed magnetic potential ψ∗(r, ω, t).

2.3. Magnetic field and electric field

We get the overall magnetic field by using B = BH + (eϕ×∇ψ∗)/R. We may write the

electric fields associated with this magnetic field evolution as:

E =
ψ̇∗
R

eϕ −∇Φ (4)

Most of the plasma during the collapse can be considered frozen in the magnetic field

and described by ideal MHD, except for the small region where the reconnection of the

field lines occurs and where a current is flowing (moving “reconnecting zone” where the

inner and outer separatrix touch each other). We now assume that the electric potential

is constant along the helical direction so that ∇Φ ·BH = 0. Ideal MHD yields E ·B = 0

and, using (4), we obtain a characteristic equation:

∂Φ

∂X
B∗X +

∂Φ

∂Z
B∗Z = ψ̇∗Bϕ/R (5)
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Figure 3. The upper figures show the projection of the electric potential Φ in the

poloidal plane at time t/τcr ' 0.86. The lower figures represent the direction of

the electrostatic drift vE and the color scale its intensity along the outward radial

direction. The particles who follow mainly vE stay attached to the field and thus are

redistributed. The left figures are at position ϕ = 0 while the right ones are for ϕ = π.

We can integrate (5) along a contour where ψ∗ is constant. Denoting dl∗ the length of

a contour element, this yields for the electric potential the expression:

Φ =
∫

ψ∗contour

Bϕψ̇∗
RB∗

dl∗ + Φ0(ψ) (6)

The constant may be a flux surface quantity and should be related to a rotation-

induced equilibrium profile of the electrostatic potential. However, since it has been

shown previously ([11]) that plasma rotation has little impact on the fast ions during a

collapse, we have decided to arbitrarily set the potential to zero for the angular position

corresponding to a specific “helical” surface: we set Φ = 0 for the positions ω = 0 and

ω = π (see figure 2).

We integrate (6) in the poloidal plane for given values of toroidal position ϕ. After

transforming θ to ω and averaging over several ϕ values to increase numerical accuracy,

this allows us to express Φ as a function of r and ω. The total electric field is then

expressed in tokamak cylindrical coordinates by using equation (4).

An illustration of the radial motions resulting from the corresponding electrostatic

drift vE is given on figure 3 at t/τcr ' 0.86. To understand how particles may escape the

radial redistribution, one should consider that a particle that would be freely circulating

in the ω direction and does exactly one turn during the crash while staying at a constant

flux surface position (constant r) would almost average out the radial component of the

E×B drift (vEr) to zero: this is shown on the left part of figure 4.



Redistribution of fast ions during sawtooth reconnection 8

ω
 (

ra
d)

<v
Er

> (m/s)

 

 

0.1 0.2 0.3 0.4

0

2

4

6

−5000 0 5000

0.1 0.2 0.3 0.4
−4

−2

0

2

r (m)

<
v E

r>
 (

m
/s

)
0.1 0.2 0.3 0.4

0

2

4

6

ω
 (

ra
d)

<ω 
vE

> (rad/s)

 

 

−5 0 5
x 10

4

0.1 0.2 0.3 0.4
−5

0

5
x 10

4

r (m)

ω
v E

 (
ra

d/
s)

 

 

δ
r
=0.0503

δ
r
=0.151

δ
r
=0.29

δ
r
=0.385

Figure 4. Toroidally averaged values of radial (vEr) and helical (ωvE) electrostatic

drifts at time t/τcr ' 0.86. Upper left: estimate at one instant of vEr in the (r,ω)

coordinates. Lower Left: when averaging along all ω positions, the resulting radial

drift is almost zero. Upper right: an estimate in the (r,ω) coordinates of ωvE at one

instant during the collapse. The lower right figure shows that, for a given helical

position, when averaging along several radial positions, ωvE may be lowered for larger

orbit widths (the values are given here at ω ' 2.45).

3. Motion of fast ions

3.1. Description of the particle motion

In a plasma, it is convenient to decompose the speed as v = v⊥ + v‖, where the ‖
component is obtained by projection along the magnetic field line. For the study of

motions in a tokamak, we also use below the decomposition v = vpol + vϕ where vpol
is the component of the particle speed in the poloidal plane (vpol = vXeX + vZeZ). We

use tokamak cylindrical coordinates (X = R − R0, Z, ϕ), so that eϕ = eX × eZ. eX

and eZ are the orthogonal unit vectors in the poloidal plane. The position of a particle

is defined as r = XeX + ZeZ + Rϕeϕ. In these coordinates, the acceleration can be

expressed as: d2r
dt2

= (R̈ − Rϕ̇2)eX − (Rϕ̈ + 2Ṙϕ̇)eϕ + Z̈eZ. For an ion of charge (Zie),

we project the terms of the momentum equation along the toroidal direction:(
d2r

dt2

)
ϕ

=
1

R

d

dt
(Rvϕ) , Eϕ =

1

R

(
∂ψ

∂t
− ∂Φ

∂ϕ

)

[v ×B]ϕ =
1

R
(vpol · ∇ψ)

Furthermore, since:

∂ψ

∂t
+ vpol · ∇ψ =

dψ

dt
− vϕ

1

R

∂ψ

∂ϕ
,
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we may combine these results to rewrite the momentum equation of a particle:

1

R

d

dt
(Rvϕ) =

Zie

m

1

R

(
dψ

dt
− ∂Φ

∂ϕ
− vϕ
R

∂ψ

∂ϕ

)
,

and thus:

d

dt
(Rmvϕ − (Zie)ψ) = −(Zie)

[
∂Φ

∂ϕ
+
vϕ
R

∂ψ

∂ϕ

]
(7)

We may note that a consequence of this result is that, in an axi-symmetric configuration,

the quantity on the LHS of equation (7), pϕ = Rmvϕ − (Zie)ψ is conserved. pϕ is the

toroidal canonical angular momentum [12], that we can use as an estimate of the average

flux surface position of a fast particle with given pitch and energy. On the plots given

in this paper, we have divided the various values of pϕ by the elementary charge e for

simplicity. Thus the values plotted are actually that of pϕ/e (in 2πWb) except on figure

8 where the values in the top plot have been normalized to the thermal redistribution.

The graphics only mention pϕ on the axes (without units) for clarity.

Since the magnetic field does not exert any work on the particle, the evolution of

the kinetic energy Ekin may be described as: Ėkin = (Zie)v · E. This expression can be

used to express the rate of change of the total energy E = Ekin + Epot of the particle in

terms of the variations of the fields by noting that:

dE
dt

=
dEkin

dt
+ (Zie)

dΦ

dt
= (Zie)v · E + (Zie)

(
v · ∇Φ +

∂Φ

∂t

)
Then, using equation (4) of our modelling, we may write:

dE
dt

= (Zie)

[
vϕ
R

(
∂ψ

∂t

)
+

(
∂Φ

∂t

)]
(8)

The relative change in kinetic energy Ekin proves to be small during the collapse for high

energy ions. Finally, a quantity of interest is the magnetic moment of a particle, defined

as the magnetic flux through the current ring of its Larmor orbit: it can be related to

the perpendicular energy of the particle so that: µ = mv2⊥/(2B) and Ekin = µB + E‖.
We will also be using the variable λ0 = µBaxis/Ekin, an approximate constant of motion

related to the pitch angle of the particle (Baxis being the total magnetic field on the

shifted axis in the equilibria).

3.2. Algorithm: full-orbit solution in cylindrical coordinates

Evolving the momentum equation in time can be done in a rather simple way by first

integrating to obtain the speeds at half time step. We need to use the velocity vector

v = vXeX + vZeZ + vϕeϕ to integrate and get the position. However, in cylindrical

coordinates, the derivative of the velocity vector is written as:

dv

dt
=

d(vXeX)

dt
+

d(vZeZ)

dt
+

d(vϕeϕ)

dt
=


˙vX − vϕϕ̇
v̇Z

v̇ϕ + vXϕ̇


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The momentum equation in these coordinates is thus:

m


˙vX
v̇Z
v̇ϕ

 = (Zie)(E + v ×B) +m


vϕϕ̇

0

−vXϕ̇


We then define a corrected magnetic field:

Bcyl = B−


0

(m/(Zie))ϕ̇

0

 and bcyl = Bcyl/Bcyl

Using a leap-frog scheme, we then may write:

vn+1/2 = [I−MU ]−1[I + MU ]vn−1/2 + [I−MU ]−1E
Zie

m
∆t (9)

with : [I−MU ]−1 =
(
I + U2bcylbcyl

> + UM
)
/(1 + U2)

where the fields values on the RHS of (9) are taken at time n and:

U =
(Zie)Bcyl

m
∆t/2

M =
1

Bcyl


0 Bϕ −BcylZ

−Bϕ 0 BX

BcylZ −BX 0


Unfortunately, this scheme does not have a very good stability to field interpolation

errors. Furthermore, to compensate inaccuracies related to our numerical modelling of

the electromagnetic fields, we enforce E ·B = 0 for all particles by adjusting the value

of the toroidal component of E: Eϕ = −(EXBX + EZBZ)/Bϕ. To avoid accumulation

of errors along the trajectory, it is found useful to correct periodically the speed value

according to its amplitude derived from the total energy of the particle. We use equation

(8) to periodically rescale the next speed value according to: vnext =
√

2Ekin/mi(v/v).

The algorithm with correction has proved to be fast and efficient both in equilibrium

and perturbed fields. The overall set of codes for modelling both fields and particle

motions are named EBdyna go and are validated during collapse simulations by evolving

independently pϕ using equation (7) and comparing the value with the intrinsic one

related to the particle speed and position (figure 5).

3.3. Guiding center drift and different categories of orbits

The guiding center position is recovered by using: rGC = r − (m/(Zie))(B × v)/B2.

The drift of the guiding center of the particles related to the geometry of the magnetic

field may be expressed in a low-β plasma configuration as: vD = (2Ekin − µB) (b ×
∇B)/(ZieB

2). The fast particles will tend to drift across the flux surfaces. We denote

with δr their orbit width.

We basically consider six categories of particles. We first define σv, the sign of v‖
when the amplitude of the parallel speed is maximum. We also define the parameter
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Figure 5. Illustration of the consistency of the evolution of pϕ for a counter-passing

ion of 40keV (above): the error between the calculated value from the particle position

and the one from equation (7) remains below 0.2%. The crash time was τcr ∼ 49µs and

we see the core expulsion (fast-growing phase of ξ). The second and third graphs show

the change in pϕ and ψ induced by the change of radial position (outward motion) of

the ion. In the lower graph, δEtot represents the difference between integrated value

of Etot from equation (9) and the value derived from equation (8).

Table 1. Orbit classification

orbit type σv chfs σlfs σb
co-passing 1 1 1 0

counter-passing -1 1 1 0

stagnation LFS any 0 1 0

stagnation HFS any 1 0 0

trapped any 0 1 1

potatoes any 1 1 1

chfs that is set to one if, at any time during its orbit, the particles is crossing the mid-

plane (Z = Zaxis) on the high field side (HFS) and zero if it does not. We also use σlfs
to identify if the particle is exploring the low field side (LFS). Finally, we define the

bounce parameter σb that is set to one if the sign of v‖ changes during the orbit and

zero otherwise. The resulting classification is summarized in the table 1.
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Figure 6. Illustration of the redistribution in effective radial position of the thermal

helium. The numbers identify two zones of the plasma: the core (region 1) and the

volume enclosing q = 1 and the mixing radius region (region 2). The spread observed

in radial position is due to the finite orbit width δr of the ions. This is why we use pϕ
as a flux surface label for ions of higher energies.

4. Redistribution of the ions during the sawtooth collapse

4.1. Adherence to the perturbation

An illustration of the redistribution in effective radial position of the thermal helium

is given in figure 6. These particles are almost frozen in the field and follow the

reconnection pattern. We may consider two main regions for studying the redistribution:

the core (1) from which particles are expelled and the region surrounding q = 1 and the

mixing radius (region 2) where particles are pushed inward.

As was done in [7], we may write the motion of a particle in the helical direction

(ω = θ − ϕ) as the average of the contribution of three components, related to the

electrostatic drift, the longitudinal motion and the “curvature and gradB” drift (vD):

〈ω̇〉 = ωvE + ωψ + ωvD (10)

The study of ωψ and ωvD in equilibrium gives us a useful tool to predict the behaviour

of an ion during the collapse. As was shown on the left side of figure 4, when we

consider the electromagnetic fields at one instant during the crash, the independent

drift helical motion ωvD may average to zero the radial drift when a particle experiences

a fast complete helical turn. We thus compare the drift precession motion against a

characteristic frequency of the crash: ωcr ∼ π/τcr (half a turn in the ω direction being

considered enough to detach many particles).

On the other hand, the particles with high ωψ will tend to stay “attached” to field

lines (or ψ∗ contours) during the reconnection. A particle may escape the reconnection
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Figure 7. Orbits (dashed lines) in the equilibrium field of 2.2MeV ions against

contours of ∂θ/∂Z (thin lines in the background). The thick black line ∂θ/∂Z = 0

separates the positive (LFS) and negative (HFS) regions. Trapped ions with a specific

pitch angle λσ may spend the same time in the positive gradients as in the negative

regions, so that ωvD ' 0.

only if ωvD > ωcr and if |ωvD |/|ωψ| is high enough. We evaluate the values of precession

in the equilibrium by using the following expressions:

ωψ =

〈
∂θ

∂X
v‖X +

∂θ

∂Z
v‖Z −

v‖ϕ
R0 +X

〉
'

〈
v‖
〉

(q − 1)

R
(11)

ωvD =

〈
∂θ

∂X
vDX +

∂θ

∂Z
vDZ −

vDϕ
R0 +X

〉
(12)

The time that a particle spends in various regions of positive or negative values of

∂θ/∂Z will strongly influence ωvD . This is illustrated on figure 7. As was shown in

[7], ωψ will mostly increase with the distance from the helicity of the resonant surface

|q− 1|. Another effect is the orbit width of the particles. Large values of δr will reduce

ωvE (thus reducing the effect of the crash, see figure 4).

In this section, simulations have been performed with an initial uniform density

distribution of fast helium. We have studied populations of identical kinetic energy and

the spread in pitch angle was given by a uniform distribution in parallel velocity.

4.2. Behaviour of trapped energetic ions

For trapped particles, all three terms in equation (10) are significant and of similar

magnitudes. The main result of the previous work of Kolesnichenko et al. ([7], [13]

and [14]) is that, when equaling the crash time with half the drift precession period, a

critical energy threshold is obtained:

Ecrit ' r1R0(Zie)B0ωcr ; ωcr = π/τcr (13)
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Figure 8. Upper long plot: evolution of ∆̃pϕ = ∆pϕ/∆pϕ(Ethermal) with average

kinetic energy. ∆pϕ(Ethermal) is the change of pϕ for the thermal helium. The values

are thus normalized to the effect on the thermal populations. We have distinguished

ions initially in region (1) and in region (2). The dashed line marks Ecrit (beyond

which less than half of trapped particles are redistributed) and 2Ecrit. Four lower

plots: compared redistribution in pϕ of helium at 50keV (left) and 300keV (right).

The top ones show change in pϕ for region (1), the bottom for region (2). The results

are grouped by ∆pϕ.

This roughly corresponds to 150keV (for τcr ∼ 144µs) in our simulations and we may

define it from our simulations as the energy beyond which more than half of the trapped

particles are not redistributed. Experimental evidence of this threshold may be found

in [16].

To quantify in simulations the relative change of flux surface, we evaluate the

quantity ∆pϕ = pϕfinal − pϕinitial in regions (1) and (2). Our numerical simulations

give us the plot shown on top of figure 8 (in arbitrary units). The particles which have

an energy below Ecrit can be considered as “flux-surface-attached particles”. A clear

detachment from the sawtooth of a large majority of the trapped particles is seen by

allowing them to do a complete helical turn in the ω direction because of their drift

precession: the threshold is then 2Ecrit (300keV) with our convention. Between Ecrit
and 2Ecrit, there is a “transitional” behaviour of the trapped particles, from attached to

detached. Numerical simulations indicate that Ekin > 2Ecrit is more likely to correspond

to ωvD > ωcr (figure 9) for most pitch angle values. The change of radial redistribution

with energy is detailed for all populations on the lower graphs of figure 8.



Redistribution of fast ions during sawtooth reconnection 15

0.85 0.9 0.95 1 1.05
−0.2

−0.1

0

∆
p
ϕ
(1
)

0.85 0.9 0.95 1 1.05

0

0.05

0.1
∆
p
ϕ
(2
)

0.85 0.9 0.95 1 1.05
−4
−2

0
2

x 10
4

ω
v D

 (
ra

d/
s)

0.85 0.9 0.95 1 1.05
0

0.2

δ r (
m

)

λ
0

 

 

150 keV
300 keV
450 keV
800 keV

−ω
cr

+ω
cr

Figure 9. Trapped ions redistribution with respect to their pitch angle λ0. Trapped

ions around λσ ∼ 0.92 may have a helical drift motion close to zero. As a consequence,

they stay attached to the perturbation for energies up to ∼ 600keV. This is shown in

the two upper graph, where we have differentiated the core (region 1) from the outer

(region 2) particles. On the third graph, the two horizontal green lines indicate the

values −ωcr and ωcr. The fourth graph gives an estimate of the orbit width of the

trapped ions.

As illustrated on figure 7, when exploring regions of positive and negative ∂θ/∂Z,

a trapped particle may feel on average no precession drift. There is thus evidence of a

small fraction of velocity space that has ωvD ∼ 0 for a specific pitch angle, λσ (figure

9). For intermediate energies in the range Ecrit to 4Ecrit, this implies that this very

specific population will be redistributed. When increasing energy beyond 4Ecrit, we

finally observe the detachment of almost all trapped particles. This is related to their

large orbit width: we have indeed seen previously that the attachment to the perturbed

field is reduced when δr gets as large as more than half the mixing radius (figure 4).

On figure 9, there is also evidence of deeply trapped (λ0 > 1) inward-redistributed

particles of high energies in region (2). These are probably captured from the outside

by the sawtooth crash that tends to “attract” particles in the mixing radius region.

4.3. Behaviour of passing energetic ions

The attachment of intermediate energy (300keV) passing particles (compared with

trapped ones) is clearly seen on the four lower plots of figure 8. Passing ions of high

energies (beyond Ecrit) have a drift precession ωvD that is on average higher than that of



Redistribution of fast ions during sawtooth reconnection 16

0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

∆
p
ϕ

co passing

<r
ini

> (m)

0 0.2 0.4 0.6
0

2

4

6

|ω
v D

|/|
ω

ψ
|

<r
ini

> (m)

0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4
counter passing

∆
p
ϕ

<r
ini

> (m)

 

 

50 keV
450 keV
1200 keV
2800 keV

0 0.2 0.4 0.6
0

2

4

6

|ω
v D

|/|
ω

ψ
|

<r
ini

> (m)

Figure 10. The upper plots shows the change in pϕ as a function of the orbit-averaged

initial radial position of the passing particles. On the lower plots, we represent an

estimate of |ωvD |/|ωψ|. The geometry of the field and of the passing particle orbits has

clearly an influence on their redistribution at high energy. On the left is plotted the

redistribution of the co-passing and on the right that of the counter-passing. The two

vertical dashed lines mark the q = 1 radial position and the mixing radius position.

the trapped particles. However they have a much larger value of longitudinal precession

ωψ. They thus tend to stay attached to the pattern of the reconnecting fields lines.

Both co- and counter- passing particles feel on average almost exactly the same effect

from their parallel motion. When we consider figure 10, we can estimate that we have a

detached behaviour of a majority of the passing ions for energies beyond Ecc ∼ 1.2MeV.

On figure 11, we notice that the geometry of the field has an impact on the threshold

Ecc. A difference is seen between the low shear case (Ecc ∼ 1.2MeV) and the high shear

case (Ecc ∼ 2MeV). The threshold may be related to an average ratio of the precessions

over the reconnecting region: |ωvD | > 0.7|ωψ|.
As a side note, we also remark that the co-passing population and the counter-

passing population do not have exactly the same redistribution pattern. The

differentiation between the two populations is however complex and closely related to

their initial radial position and depending on the magnetic geometry. In our example,

we had a uniform initial density of energetic ions over the reconnecting region. The

counter-passing ions thus seem to be “detached” on average more easily when energy

increases. However, the main parameter to consider to determine the differentiation of

the behaviour of the co- and counter- passing particles is actually their average initial

effective radial position (figure 10).
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Figure 11. The upper plots shows the change in pϕ as a function of the average energy

of the ions. On the lower plots, we see that passing ions may escape the perturbation

for values of ωvD/ωψ sufficiently large. We have marked a threshold at Ekin > Ecc where

the average redistribution of the passing particles has been divided by 2 compared with

the thermal behaviour. On average on the entire mixing region, the counter-passing

fast ions feel a less pronounced effect of the sawtooth.

5. Overall effect of the collapse on a population of fusion-born alphas

5.1. A typical equilibrium burning plasma

In this section, we consider a future hypothetical DT experiment on JET. The alpha-

particles produced by fusion reactions have a very high energy (3.5MeV) compared with

the background plasma (8keV). The energy is transferred from the alphas to the plasma

by collisions (first with electrons, then with ions) in about τs ∼ 0.5s. We evaluate the

source of fast alphas from fusion as Sα ∼ 〈σv〉n2
i /4 (see [15]). The distribution of alpha-

particles is modelled by a localized slowing down distribution according to their energy

(see [12]). We denote E0 the birth energy of the alpha-particles (3.5MeV), ni the bulk

ion density, mi the average bulk ion mass and we use the distribution functions:

fαh0 =
τs
2π
Sα

[
ni
ne

+
(
v

vc

)3
]−1

, E ≤ E0

fαh = fαh0 exp

[
−mα(E − E0)

Tmi

]
, E > E0

where the critical velocity vc is defined as the change of collisional regime for the alphas

from electron-dominated (v > vc) to ion-dominated (v < vc). We extend the initial

spread of alphas to about 2/3 of the radius of the plasma, considering that only these

particles will intersect the reconnecting region. In this simplified picture, the alphas are

considered to slow down on the average surface on which they are born: any diffusion
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Figure 12. Redistribution of alpha-particles in the low shear case. Top figures: change

in pϕ for alpha-particles initially in the core region (1). Bottom figures: same for the

q = 1 region (2). On the left are gathered Ecrit < Ekin < Ecc particles, on the right

particles beyond Ecc.

is neglected. It should be reminded here that the peaking of the density of alphas in

the core is what is going to make the difference when considering the global effect of

the collapse on the fast ions. In a flat density configuration, there would be almost no

overall effect of the collapse on the alpha-particles.

We have done simulations of sawtooth with τcr ∼ 90µs. The resulting energy

thresholds for detachment of fast helium populations are then approximately Ecrit ∼
240keV for the trapped alphas and Ecc ∼ 1.5MeV for the passing particles (low shear

case, q0 ∼ 0.94). The source of alphas Sα was rescaled to have similar peaking in both

equilibria considered.

5.2. Separation of populations for ions of higher energies

Simulations confirm detachment of the trapped alpha-particles at energies beyond Ecrit
and of a majority of passing alpha-particles at energies beyond Ecc: this is illustrated

on figure 12 for the low shear case.

Figure 13 shows the change of density of alpha-particles before and after the collapse

for the case of both a low and a higher shear equilibrium. The increase of density in

high-energy co- and counter- passing alphas occurs at distinct radial locations (on the

outer and inner side of the initial q = 1 surface, respectively). As was shown in our

analysis in the previous section, the amplitude of 〈|q − 1|〉 or 〈dq/dr〉 rmix (averaging

over the reconnecting region) is an important parameter to quantify the behaviour of

the passing alpha-particles. Low values of this parameter result in the detachment of
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Figure 13. Compared redistributions of alphas between the low shear case (q0 ' 0.94

on the left) and the high shear case (q0 ' 0.88 on the right). The upper graph illustrates

the density redistribution of particles below Ecrit. The middle one shows the relative

local change of density (δn = nend−nini) for trapped particles beyond Ecrit. The lower

graph shows the redistribution for passing alpha-particles beyond Ecc ∼ 1.5MeV. To

illustrate the effect of the shear the value of Ecc is in both graphs that of the low shear

case.

passing fast ion: comparing low and higher shear equilibria, we observe a moderate

difference (about a factor 2) in the increase of the density around the mixing radius.

However, this may be decisive when deriving a post-collapse stability analysis. In figure

13 we can also see that the greater strength of the crash in the higher shear case (second

row, right) is reflected in a larger inward transport of trapped particles.

Considering the global efficiency of the crash in terms of helium removal and fast

particles confinement, the overall population below Ecrit is about halved in the core,

while the high energy population is maintained at higher levels. This can be seen on the

upper part of figure 13 where we can assume that the helium ash will follow the bulk

of the plasma. The magnetic shear in the core and around the q = 1 flux surface will

be of importance to predict the redistribution of the fast helium. In the usual case of

a decreasing density of the passing fast alphas from core to edge, a lower shear in the

reconnecting region allows for a better confinement during the collapse.

6. Conclusions

We have implemented a numerical model to simulate the effect of a sawtooth collapse on

a population of high energy ions. This computational tool has been successfully applied

to different magnetic configurations with a population of fusion-born alpha-particles.
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When particles have high enough drift precession ωvD , they may escape the pattern

of the reconnecting surfaces: there are thresholds in kinetic energy for “detachment”

of different populations of ions. For trapped ions, we have confirmed the existence of

Ecrit for detachment of almost all trapped ions except for a small population around the

specific pitch angle λσ (that leads to ωvD ∼ 0). The peculiar behaviour around λσ is

concealed at intermediate energies due to large orbit width δr and fast bounce motion.

At higher energies, the large orbit width of the trapped particles mostly prevents their

redistribution.

Regarding the passing ions, the threshold Ecc is found at higher energies (beyond a

few Ecrit) and its value depends on the magnetic shear in the core region. Our modelling

indicates that, in a low shear configuration, the detachment of the majority of the

passing ions occurs progressively over a large range of kinetic energy.

Our study has not addressed reversed shear configurations and the change of orbit

category induced by the redistribution. This will be the topic of future studies. Future

work will also investigate the induced change on stability of TAEs and NTMs.
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