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Abstract

In the presence of electron cyclotron current drive (ECCD), the Ohm’s law of single fluid mag-

netohydrodynamics (MHD) is modified as E + v × B = η(J − JEC). This paper presents a new

closure relation for the EC driven current density appearing in this modified Ohm’s law. The new

relation faithfully represents the nonlocal character of the EC driven current and its main origin in

the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an ap-

proximated Fokker-Planck equation as well as on full bounce-averaged, quasi-linear Fokker-Planck

code simulations of ECCD inside rotating magnetic islands. The new model contains the model

put forward by Giruzzi et al., Nucl. Fusion 39 (1999) 107, in one of its limits.
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I. INTRODUCTION

The evolution of large-scale instabilities in magnetized plasmas is commonly studied in

the framework of fluid models like single fluid magnetohydrodynamics (MHD) [1]. These

fluid models are obtained by taking moments of the governing kinetic equations. This

results in a hierarchy of equations in which the evolution of each of the moments depends on

higher order moments. At some point this moment expansion is truncated by introducing

closure relations that model higher order moments in terms of lower order moments. In

some cases, MHD instabilities can be affected by particular kinetic processes that determine

important aspects of the velocity space distribution of one or more particle species. Such

cases demand either a hybrid kinetic-fluid description or a closure of the fluid equations

that takes into account these specific kinetic processes. An example is the case of electron

cyclotron current drive (ECCD), which has become the primary tool in present-day tokamak

operation for the control of MHD instabilities [2]. On the time scale of the macroscopic

plasma evolution, the effect of electron cyclotron heating and current drive is described in

the kinetic equation by quasi-linear diffusion of the electron distribution in velocity space.

Because of the high parallel velocity of resonant electrons, electron cyclotron heating and

current drive results in a highly nonlocal modification of the distribution function. In RF

current drive modelling this is dealt with by bounce averaging of the kinetic equation [3],

which assumes that the equilibration over a flux surface is achieved sufficiently quickly, so

that the RF driven velocity space perturbation and current are effectively constant over a

flux surface. Moreover, the velocity-space perturbation is established on a collisional time

scale, which in high temperature tokamak plasmas can be of the same order as the time scale

for the evolution of MHD instabilities. A closure of the MHD equations in the presence of

ECCD should reflect all these aspects.

In a recent paper [4], Hegna and Callen discuss the general framework for the fluid closure

in the presence of RF heating and current drive. They show that the RF quasi-linear diffusion

directly enters the single fluid MHD equations as a power source in the energy balance, and

as a parallel force in Ohm’s law. In addition it affects the closure for the resistivity through

its effect on the electron-ion friction. In the case of ECCD, the quasi-linear diffusion is

dominantly in the direction of perpendicular momentum [2], and the ECCD parallel force

contribution in Ohm’s law is negligible. Instead, the EC current drive is effected mostly
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by the creation of an asymmetric collisionality, known as the Fisch-Boozer effect [5]. This

effect must be contained in Ohm’s law entirely through the proper closure relation for the

resistivity, i.e. the electron-ion friction. Assuming a linear response of the plasma to the

driving forces, the total current density J becomes the sum of the inductively driven current,

(1/η)(E+ v×B), with the usual (neoclassical) Spitzer resistivity η, and the non-inductive

current from ECCD, JEC: i.e. Ohm’s law becomes

E+ v ×B = η(J− JEC). (1)

This is common practice for modeling the effects of ECCD and other non-inductively driven

currents on MHD. The subtraction of the non-inductive currents in Ohm’s law also forms

the basis for the generalized Rutherford equation, which describes the effects of noninductive

current perturbations like ECCD on the evolution of neoclassical tearing modes (NTMs) [6–

8]. To model ECCD stabilization of tearing modes, this modification Ohm’s law (1) is also

used in three dimensional, numerical MHD simulations [9, 10]. The EC driven current is

evolved from a separate kinetic calculation or evolved simultaneously using a closure model.

An ad hoc model for the description of JEC has been proposed by Giruzzi et al. in [11].

In this work a new closure model for the evolution of JEC is derived through approx-

imation of the governing kinetic equation. The resulting model faithfully represents the

nonlocal character of the driven current and its origin in the Fisch-Boozer mechanism [5]. It

contains the model of Giruzzi et al. as one of its limits. This work is structured as follows.

Section 2 presents a short review of the most relevant aspects of ECCD. In particular, the

quasi-linear RF diffusion operator appearing in the Fokker-Planck equation for the electron

distribution function is discussed. Next, the quasi-linear Fokker-Planck equation is reduced

to an analytically solvable equation through a series of approximations that are relevant for

ECCD applied to a tokamak. The analytical solution is used to illustrate the highly nonlocal

character of the EC current generation. These results are used to motivate our new closure

model for the evolution of the EC driven current density. In Section 3, validation of the

proposed closure model is provided. A first validation shows the excellent reproduction of

the analytical solutions for the EC driven current density obtained with the approximated

quasi-linear Fokker-Planck equation derived in Section 2. A second validation is performed

by comparison of results from our new closure model with the evolution of the EC driven

current density inside a rotating magnetic island as obtained from bounce-averaged quasi-
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linear Fokker-Planck calculations [12]. Again good agreement is obtained between our new

closure for the EC driven current density and the Fokker-Planck calculations. The final

section provides a brief summary and discussion of the results. An early report on this

work was made at the 18th Joint Workshop on Electron Cyclotron Emission and Electron

Cyclotron Resonance Heating [13].

II. A NEW CLOSURE RELATION FOR THE EC DRIVEN CURRENT DENSITY

A. Essential features of ECCD

The kinetic description of ECCD is based on the Boltzmann equation. After averaging

over the short-time scales of the electron gyromotion and the waves, the gyrophase-averaged

Boltzmann equation is
∂fe
∂t

= C(fe) +QEC(fe)− v‖∇‖fe, (2)

where fe(t,x, v‖, v⊥) is the gyrophase-averaged electron velocity distribution as a function

of parallel and perpendicular velocities, respectively, C(fe) represents the effect of collisions,

quasi-linear diffusion, QEC(fe), models the averaged effect of the electron cyclotron waves,

and the final term describes the convection along magnetic field lines of localized features

in the electron distribution function with their parallel velocity.

The effect of EC waves, with frequency ω and wave vector k, on the electron distribution

function is well described by quasi-linear theory [2]. For simplicity, we consider the non-

relativistic limit in which the quasi-linear diffusion operator becomes [14, 15]:

QEC(fe) =
∂

∂v
·DEC · ∂

∂v
fe (3)

DEC =
π

2

e2

m2
e

δ(ω − k‖v‖ − nΩe)a
∗
nan (4)

with

an =
1

ω

(

(ω − k‖v‖)v̂⊥ + k‖v⊥v̂‖

)

(

Ẽ−Jn−1 + Ẽ+Jn+1√
2

+
v‖
v⊥

JnẼ‖

)

(5)

where v̂‖,⊥ are unit vectors in the parallel and perpendicular velocity direction, respectively,

Ωe is the electron cyclotron frequency, and Ẽ is the wave electric field with components

of left and right handed circular polarization Ẽ±, respectively, and parallel component Ẽ‖.
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The Jn represent the nth order Bessel function of argument k⊥v⊥/Ωe. In the case of electron

cyclotron resonance, ω − k‖v‖ = nΩe, the ratio of parallel over perpendicular diffusion is

an,‖
an,⊥

=
k‖v⊥
nΩe

≪ 1. (6)

Because under typical experimental conditions the parallel refractive index for electron cy-

clotron waves is |N‖| < 1, the quasi-linear diffusion due to electron cyclotron waves is

dominantly in the perpendicular direction. In particular, for O-mode waves at fundamental

resonance, which is the mode of choice for ECCD in large tokamaks like ITER [16, 17], we

can approximate the quasi-linear diffusion operator as

DEC ≈ Dδ(v‖ − v‖,res)v̂⊥v̂⊥, (7)

where v‖,res = (ω − nΩe)/k‖ is the parallel velocity of the resonant electrons. In the non-

relativistic limit the electron cyclotron resonance ellipse is approximated by a straight line

at constant parallel velocity. Whereas the non-relativistic limit can lead to quantitatively

different results [2], the limit is taken here for the sole purpose of illustrating the main

features of electron cyclotron current drive. In the final model, the fully relativistic resonance

condition will be used in the calculation of the electron cyclotron current drive efficiency.

In spite of the near absence of direct momentum transfer between the electron cyclotron

waves and the resonant electrons, a net current nevertheless is generated since the EC

driven perturbation of the distribution function creates an asymmetric collisionality [5].

The generation of this ‘Fisch–Boozer’ current can be understood as follows. Using the

approximations made above to obtain eq. (7) for the O-mode near fundamental resonance,

and linearizing the Boltzmann equation around the Maxwellian distribution function fM

with temperature Te, the EC quasi-linear diffusion term becomes

QEC(fe) = QEC(fM) ∝ Dδ(v‖ − v‖,res)

(

v2⊥
2v2t

− 1

)

exp

(

−
v2‖ + v2⊥

2v2t

)

. (8)

Here the thermal velocity is vt =
√

kTe/me. We thus find that, at the resonant velocity

v‖,res, the waves drive a perturbation characterized by a bulge of electrons at supra-thermal

perpendicular velocities and a hole at sub-thermal perpendicular velocities. This wave-

driven perturbation carries no current. A net current only arises as a consequence of the

subsequent effect of collisions [5]. In particular, pitch-angle scattering results in a net transfer

of momentum between ions and electrons, because the pitch-angle scattering rate for the
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positive perturbation at supra-thermal perpendicular velocities is slower than that for the

negative perturbation at sub-thermal perpendicular velocities: the hole is filled in more

quickly than that the bulge decays. The result is a net current generation. In the final

steady state a balance is reached between the EC quasi-linear drive and the collisional

dissipation: an electron distribution function is set up, which carries a net parallel current,

yet, which transfers no net momentum to ions.

B. A new closure relation for the EC driven current density

In order to proceed further analytically with the calculation of the Fisch-Boozer current

and the derivation of a new closure relation for the evolution of the EC driven current

density, we approximate the collisions by a Krook-type collision operator

C(fe) = −ν(v)(fe − fM), (9)

with a velocity dependent collision frequency ν(v) = νt(vt/v)
3. The momentum loss that

is implied by this operator represents the momentum transfer from electrons to ions. As

discussed in [5], the proper choice of collision frequency for this problem is given by νt =

(5 + Zeff)ω
4
p ln Λ/4πnv

3
t . In the homogeneous case the solution then is

δfe ≡ fe(v‖, v⊥; t)− fM = QEC(fM)
1

ν(v)
(1− e−ν(v)t). (10)

In most tokamak experiments, however the electron cyclotron wave power deposition is

extremely localized along a field line. When we restrict the ECCD power deposition to a

finite interval 0 ≤ x ≤ LEC along a field line and take t = 0 as the time the power is switched

on, the solution to the Boltzmann equation (2) becomes

δfe =







































QEC(fM )
ν(v)

(

1− e−ν(v)min(x/v‖,res,t)
)

0 ≤ x ≤ LEC

QEC(fM )
ν(v)

(

1− e−ν(v)min(LEC/v‖,res,t−(x−LEC)/v‖)
)

×

e−ν(v)(x−LEC)/v‖,res LEC < x < LEC + tv‖,res

0 x < 0 or x ≥ LEC + tv‖,res

(11)

The spatial and temporal evolution of the EC driven current density JEC along a mag-

netic field line can be obtained from straightforward calculation of the first moment of the
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FIG. 1: The EC driven current density along a field line. The the figure shows the evolution of the

EC driven current density according to the analytical solution of the approximated Fokker-Planck

equation given in eq. 11. The length along the field line, X shown on the horizontal axis, is given

in normalized units of vt/νt. The EC power is deposited over a narrow region to the left of the

figure with LEC = 10−3 × vt/νt. A typical resonant parallel velocity of v‖,res = 2vt has been used.

perturbation δfe of the distribution function:

JEC(x, t) = −e

∫

d3v v‖δfe. (12)

The periodicity of the field lines in a tokamak and the long mean free path of electrons

means that the electrons will pass through the resonance region multiple times during a

collision time. A field line with a non-rational safety factor q fills the flux surface ergodically

and thus passes though the resonant region after a multiple of 2πR which is on average

L = 4π2rR/LEC.

As an illustration we have calculated the solution for the perturbation δfe given by

eq. (11) and the corresponding evolution of the EC current (12) along a magnetic field line

for realistic tokamak parameters. The results are provided in normalized units, with time

normalized to the thermal collision time and length to the distance traveled by a thermal

electron in a collision time, i.e. vt/νt. For typical tokamak parameters the thermal electron

velocity vt is of order 10
7 m/s, the thermal collision frequency νt is of order 10

4 to 105 Hz,

and a typical width of the EC power deposition is of order 2 to 10 cm, which corresponds

to an ECCD power deposition width of order 10−3 × vt/νt. We choose a typical resonant

parallel velocity of v‖,res = 2vt. FIG. 1 shows the EC driven current density established
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after a large number of collision times (> 100), as a function of the length along a field line

crossing through the EC power deposition region. What this figure illustrates in a striking

manner is that the EC driven current is generated while the perturbation of the distribution

function flows out of the EC power deposition region, a tiny region near x = 0 in FIG. 1.

Although EC power is deposited in a highly localized region, ECCD generation is a highly

nonlocal phenomenon.

We thus obtain the following picture for the process of ECCD: The EC waves create a

perturbation in velocity space localized at the resonant parallel velocity, which exists of a

velocity space hole at small perpendicular velocities v⊥ <
√
2vt, and a bulge at high per-

pendicular velocities v⊥ >
√
2vt with a zero net momentum. This perturbation is convected

along the field line out of the EC deposition region with the parallel velocity of the resonant

electrons. As the perturbation is convected, the velocity space hole at low velocities is filled

in more quickly by collisions than the bulge at high velocities is eroded, because of the ve-

locity dependence of the collision frequency. The result is a net current which subsequently

decays at the slower collision rate of the high velocity electrons in the bulge.

In a final approximation to arrive at our new closure relation for the EC driven current

density, we represent the EC wave driven hole and bulge by two delta functions at perpen-

dicular velocities v1 and v2 with associated collision rates νi = νt/(v
2
‖,res + v2i )

3/2, i = 1, 2, so

that the perturbation due to the EC waves takes the form:

δfe ≈ δ(v‖ − v‖,res)×
∑

i=1,2

ci
vi
δ(v⊥ − vi). (13)

Here the amplitudes ci representing the total numbers of particles missing from the hole

and present in the bulge of the velocity space perturbation are driven by the EC waves and

decay due to collisions according to

∂ci
∂t

=











Si − νici 0 ≤ x ≤ LEC,

−νici x > LEC.
(14)

The conservation of particles in the EC diffusion leads to a relation of the sources Si as

S1 = −S2. This is simply the balance between two current density perturbations driven in

opposite directions. The current perturbation associated with v1 is driven in the counter

direction and the other current perturbation associated with v2 in the co-direction (relative
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to the net driven current). These two currents can now be represented by the equations

∂J1

∂t
= −SEC − ν1J1 + v‖,res∇‖J1, (15)

and
∂J2

∂t
= +SEC − ν2J2 + v‖,res∇‖J2, (16)

where SEC is non zero only between 0 < x < LEC. The EC driven current density is now

defined as the sum of these two,

JEC ≡ J1 + J2. (17)

Together with a proper definition of the source term SEC this set of equations (15) − (17)

represents our new closure model for the EC driven current density. In the limit ν1 → ∞, J1

becomes identically zero, and our model reduces to a single-equation model for the evolution

of JEC with a single collision frequency ν2, in the spirit of Giruzzi et al. [11]. The model

proposed by Giruzzi et al. does not include a convective transport term, but relies on a high

parallel diffusivity for the equilibration of the driven current density along a field line. In

addition, the model of Giruzzi et al. includes a finite perpendicular diffusivity in order to

account for the effect of cross-field turbulent transport.

Whereas the set of equations (15) − (17) representing our new closure model for the

EC driven current density is derived in the limit of the non-relativistic resonance condition

and a Krook type collision operator, the spatial and temporal dynamics following from

these equations are representative of the dynamics of a current driven by the Fisch-Boozer

mechanism also in the more general case. We conjecture that with the proper choice of

parameters it also correctly describes the dynamics of the EC driven current density obtained

using the fully relativistic resonance condition and the complete Landau collision operator.

A validation for this conjecture will be provided in the next section. The source term SEC

must be related to the EC current drive efficiency, which is defined as the ratio of the total

driven current over the absorbed power ηEC ≡ IEC/PEC under steady state conditions. For

the homogeneous case, the steady state solution to equations (15) − (17) is

JEC = SEC

(

1

ν2
− 1

ν1

)

. (18)

This implies a relation between SEC and the current drive efficiency ηEC

SEC = ηECpEC
2πRν2
1 − ν2

ν1

(19)
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where pEC is the local (non-flux-surface-averaged) EC absorbed power density. In line with

the assumption made at the outset of a linear response of the plasma current to the different

driving forces, the EC current drive efficiency is obtained in the standard adjoint approach

as [15, 18, 19]

ηEC ≡
∫

Sw · ∇
v
χd3v

∫

meSw · vd3v
(20)

where Sw = −DEC · ∇
v
fe is the wave driven quasi-linear velocity space flux, and χ is the

current response function, which is obtained by solving the adjoint (Spitzer-Härm) equation

C(fMχ) = ev‖fM [15, 19]. Generalizations of the response function χ are available that

include toroidal effects like particle trapping as well as a fully relativistic description [20–23].

We do not derive additional equations for v‖,res or the collision frequencies ν1 and ν2. In case

of the relativistic resonance condition, the v‖,res in the convective term of the model equations

is no longer an exactly defined constant, but is well represented by the parallel velocity at

that position along the resonance ellipse where the power deposition in velocity space is

maximum. The collision frequencies could be obtained from inspection of QEC(fM), but are

more easily obtained from an analysis of the results of a time dependent bounce-averaged

quasi-linear Fokker-Planck calculation [24]. In regimes where the assumption of a linear

response breaks down [25], full bounce-averaged quasi-linear Fokker-Planck calculations may

also be used to parameterize the nonlinear dependence of the current drive efficiency ηEC

including its predicted synergy with the (orbit averaged) parallel electric field [2, 26].

III. MODEL VALIDATION

In a first step of validation of our closure model for the EC driven current density, we

demonstrate that the evolution of the EC driven current density along a field line as predicted

by the equations (15)− (17) captures the behavior of this driven current density as predicted

by the solution given in eq. (11) of the approximated quasi-linear Fokker-Planck equation

and displayed in FIG. 1 with high accuracy. In particular, for the perpendicular velocity

of the velocity space hole we chose v1 = 0, and for the bulge we chose v2 = 2.7vt close to

the maximum of QEC(fM) (8). With the resonant parallel velocity v‖ = 2vt as used in the

example, this corresponds to collision frequencies ν1 = νt/8 and ν2 = νt/38, respectively.

The result shown in FIG. 2 by the dashed curve is an almost perfect match between the

closure model and the solution of the approximated quasi-linear Fokker-Planck equation
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Fokker−Planck
Model (15)−(17)
limit ν

1
 → ∞

FIG. 2: Comparison of the EC driven current density along a field line as obtained from the

proposed closure model defined in eqs. (15) − (17) (dashed curve) with the approximated Fokker-

Planck solution (11) (solid curve). The length along the field line is given in normalized units of

vt/νt. The plasma and wave parameters are identical to those of FIG. 1. The collision frequencies

used in the closure model are ν1 = νt/8 and ν2 = νt/38, respectively. The figure also shows the

result that is obtained from the closure model in the limit of ν1 → ∞ (dotted curve).

(plotted as a solid line). In the same figure, we also show the result that is obtained in

the limit of ν1 → ∞ holding ν2 constant (dotted curve), corresponding to a single equation

model similar to the anisotropic diffusion model of Giruzzi et al. [11]. Note that the very

strong localization of the EC wave power results in a large overestimate of the local current

density in the power deposition region in this limit of ν1 → ∞.

In a tokamak, a field line covers the flux surface ergodically or closes upon itself in

case of rational values of the safety factor q. Along the field line it will pass many times

through the power deposition region, with the currents from each of these passages adding

up. For a highly localized EC power source the average distance between subsequent passages

through the power deposition region is of order 4π2rR/LEC and the average time between

subsequent passages is of the order of a thermal collision time. As a result of the fast

convective transport, the driven current density is almost constant on a flux surface and is

reasonably approximated by the assumption of a homogenous spread of the wave power over

the flux surface. We use this assumption to analyze the temporal dynamics of the EC driven

current density in case of modulated ECCD. Modulation of the ECCD power is applied

to improve the stabilizing effect of the EC driven current density on NTMs. Moreover,
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 power on

FIG. 3: Modulated ECCD. The figure shows the results of calculations for the evolution of the

driven current density during one period of EC wave power modulation. Homogeneous wave power

deposition on the flux surface is assumed. The plasma, wave, and model parameters are identical

to those used in FIGs. 1 and 2. A 50% duty cycle of the wave power modulation is assumed with

a modulation period of (a) 38 × ν−1
t which is equal to the collision time of the fast electrons in

the bulge of the distribution function created by the ECCD and (b) 380× ν−1
t . Solid curves show

the results of the solution (11) to the approximated quasi-linear Fokker-Planck equation, dashed

curves the results from the proposed closure model defined in eqs. (15) − (17), and dotted curves

the results of the proposed model in the limit of ν1 → ∞.

rotation of a magnetic island results in a natural modulation of the flux-surface averaged

power deposition even in case of continuous ECCD. FIG. 3 shows the temporal evolution

of the EC driven current density during a modulation period. The parameters are identical

to those of the previous sets of calculations except that we now solve for the homogeneous

case, so that the convective term drops out of the equations. The full curve again shows

the results of the approximated quasi-linear Fokker-Planck equation and the dashed curve

the results obtained with the closure model for the EC driven current density defined in

eqs. (15) − (17) using the same collision frequencies as before: ν1 = νt/8 and ν2 = νt/38.

Two cases are shown: one with a modulation period equal to the collision time of the fast

particles in the bulge, i.e. Tmodulation = 38ν−1
t (a), and one with a much slower rotation period

Tmodulation = 380ν−1
t (b). In both cases the duty cycle of the ECCD power modulation is

50%. A good agreement is obtained between the results from the approximated quasi-linear

Fokker-Planck and the closure model in all cases. We again compare also with the model
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in the single equation limit ν1 → ∞ indicated by the dotted lines in the figures. The latter

model clearly does not give a good representation of the dynamical evolution of the EC

driven current density, in particular, in the case of fast power modulation.

A. Validation on full bounce-averaged quasi-linear Fokker-Planck calculations

In this subsection we validate our conjecture that the closure model of equations (15)

− (17) also correctly describes the dynamics of the EC driven current density obtained

using the fully relativistic resonance condition and the Landau collision operator. For this

purpose, we compare with the results of a recent paper by Ayten et al. [12], which studied

the dynamical evolution of the EC driven current density inside a rotating magnetic island

by means of full bounce-averaged quasi-linear Fokker-Planck calculations using the fully

relativistic EC quasi-linear diffusion operator and a linearized, Landau collision operator.

A case study was made for parameters that are representative of experiments on m = 3,

n = 2 NTM suppression by ECCD in ASDEX-Upgrade [27]. Full details of the discharge

and plasma parameters can be found in [12]. Here we repeat the most relevant parameters.

The major radius of the magnetic axis in this discharge is at R = 1.70 m, and the position

of the resonant q = 3/2 surface is at a normalized minor radius x = 0.4. The plasma density

and temperature at q = 3/2 are ne = 6.56× 1019 m−3 and Te = 2.7 keV. An effective charge

of the plasma ions of Zeff = 1.6 was used in the calculations. This yields a thermal electron

collision time of τe = 3 × 10−5 s. In line with the bounce averaging of the Fokker-Planck

equation, we apply our model in the homogeneous limit assuming that the parallel convection

is sufficiently fast that the EC driven velocity space distribution and current density are

effectively constant over a flux surface. We thus focus on the temporal evolution of the

driven current density during one island rotation period. The relevant collision frequencies

ν1 and ν2 in our closure model equations (15) − (17) are estimated by fitting the rise of

the current density to steady state on an equilibrium flux surface in the middle of the

power deposition profile. In this case, we obtain ν1 = 88.4 kHz and ν2 = 15.2 kHz. These

numbers are consistent with the only mildly super-thermal character of the ECCD current-

carrying electrons in this case with a toroidal injection angle relatively close to perpendicular

φinj = −8o. The EC wave is injected so that it propagates nearly tangentially to the flux

surfaces in the region of power deposition. Therefore, these collision frequencies are averages
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FIG. 4: ECCD in a rotating magnetic island. The figure shows the evolution of the EC driven

current density during one rotation period of the magnetic island. The current density is shown

at three representative locations: near the O-point, about midway between the O-point and the

separatrix at a normalized island flux coordinate Ω = −0.3, and immediately outside the separatrix.

Solid curves show the results of full bounce-averaged quasi-linear Fokker-Planck simulations [12],

dashed curves the results of our proposed closure model (15) − (17) with the current drive efficiency

obtained from the adjoint calculation implemented in the ray-tracing code, and dotted curves again

the results of the proposed model in the limit of ν1 → ∞. The thin solid lines indicate the times

during a rotation period that the surface is heated by showing the (positive) EC power density in

arbitrary units.

over the absorbed power profile. Ayten et al. note good agreement between adjoint and full

bounce-averaged quasi-linear Fokker-Planck calculations of the current drive efficiency. In

our calculations we will be using an efficiency of ηEC = −0.0085 A/W, obtained from the

fully relativistic, adjoint calculation (20) implemented in the TORAY ray-tracing code [21–

23, 28, 29]. The negative value of ηEC in this case corresponds to co-current drive in the

direction of the plasma current which is directed opposite to the toroidal magnetic field.

The power densities as a function of time at the different flux surfaces are taken from the

Fokker-Planck calculations and were consistent with ray-tracing calculations [12].

The Fokker-Planck calculations of [12] have been obtained with the RELAX bounce-

averaged quasi-linear code [30], which has been extended to include the averaging over the

perturbed flux surfaces inside a magnetic island. We will compare the predictions from the

closure model equations (15) − (17) and a source determined by eq. (19) with the evolution
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of the EC driven current density from the Fokker-Planck simulations in the case of a rotating

magnetic island on a number of representative flux surfaces: near the O-point of the magnetic

island, at a surface midway in the island, and at the separatrix. The power deposition region

is much smaller than the 8 cm wide magnetic island (full distance between separatrices

measured on the low field side). Two simulations are performed, one corresponding to

an island rotation frequency of 23 kHz consistent with the experimentally observed mode

rotation, and another one with a significantly smaller rotation frequency of 3 kHz. In the

first simulation, the rotation frequency is of the same order as the collision frequency of the

EC current-carrying electrons (ν2 = 15.2 kHz), while in the second simulation the rotation

frequency is significantly lower. The results are given in FIG. 4. The full curves correspond

to the results of the full bounce-averaged quasi-linear Fokker-Planck calculations and are

taken from Figure 11 of Ayten et al. [12]. The dashed curves represent the results obtained

with our closure for the EC driven current density, and the dotted curves the results obtained

in the single equation limit ν1 → ∞. Our closure model for the EC driven current density

clearly provides a good representation of the dynamic evolution of the EC driven current

density inside a rotating magnetic island. In particular, it provides an accurate model for

the delayed response of the driven current evolution in reaction to the EC power deposition.

In the single equation limit ν1 → ∞, similar to the model proposed by Giruzzi et al. [11],

the immediate response of the driven current to the EC power density clearly gives a much

less accurate representation of the time evolution of JEC.

In the case of the 23 kHz high frequency rotation, an immediate and opposite response

in the current density obtained from the full bounce-averaged quasi-linear Fokker-Planck

simulations is observed when the flux surface moves through the power deposition region.

This is a consequence of the trapping of resonant electrons, which results in an immediate

generation of an oppositely directed current: the so-called Ohkawa current [31]. The Ohkawa

current is not described by our closure model which is designed to model the Fisch-Boozer

current drive. However, the Ohkawa effect is included in the adjoint calculation and the full

bounce-averaged quasi-linear Fokker-Planck modeling of the EC current drive efficiency. For

the parameters considered here, the Fisch-Boozer mechanism is the dominant current drive

effect with the Ohkawa current forming a small correction. In cases where the Ohkawa cur-

rent dominates, the present closure model could provide a reasonable simulation by choosing

ν1 = ∞.
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IV. SUMMARY AND DISCUSSION

The main result of this paper is formed by equations (15) - (17) and (19), which provide

a new closure model for the EC driven current density that faithfully represents the non-

local character of the driven current and its origin in the Fisch-Boozer mechanism [5]. In

single fluid MHD modelling, this closure model is to be used in combination with the usual

modification of Ohm’s law (1). In the model, the EC driven current density is the sum of

two contributions representing the EC driven quasi-linear modification of the electron dis-

tributing function: a hole at low perpendicular velocities and a bulge at high perpendicular

velocities. The dominant transport is provided by parallel convection of these perturbations

with the parallel resonant velocity. This parallel convection is the main transport mechanism

that will result in almost constant (in space) driven current density over closed magnetic

surfaces.

The new closure model for the EC driven current density has been validated on the

analytical solution of the approximated Fokker-Planck equation discussed in Section 2. This

validation addressed the strongly non-local character of the evolution of the EC driven

current density along a magnetic field line, which is a result of the fast parallel motion of

the electrons responsible for the EC driven current density. In practice this leads to almost

constant (in space) driven current density over closed magnetic surfaces, an assumption that

lies at the basis of the usual bounce-averaged quasi-linear Fokker-Planck code modelling of

ECCD. In the implied homogenous limit of EC power deposition, the dynamic evolution of

the driven current density in response to a modulated power source has been calculated. The

proposed closure model is shown to capture with great accuracy the dynamical evolution as

calculated with the approximated quasi-linear Fokker-Planck equation.

A further validation of the new closure model for the EC driven current density has been

provided by comparison of flux surface averaged predictions of the model with full bounce-

averaged quasi-linear Fokker-Planck code simulations of ECCD inside rotating magnetic

islands. The Fokker-Planck code results used in this comparison, were obtained with the

RELAX code and are taken from a recent paper by B. Ayten et al. on the Fokker-Planck

code modelling of ECCD for NTM suppression in ASDEX Upgrade [12]. The closure model

is shown to give a very good representation of the driven current evolution. The only

exception is formed by a small immediate response of the driven current density to the EC
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power deposition as a consequence of the Ohkawa effect due to EC wave induced particle

trapping [31].

In the limit that the collisionality of the electrons in the hole goes to infinity, i.e. ν1 → ∞
in eq. (15), the new model reduces to a single-equation closure, similar to the model proposed

by Giruzzi et al. [11]. The anisotropic diffusive model of Giruzzi et al. does not include the

parallel convection, which in our proposed model is the dominant mechanism responsible for

fast equilibration of the driven current density over a closed flux surface. Instead, the model

of Giruzzi et al. relies on a high parallel diffusivity for the effective flux surface averaging.

In addition it includes a perpendicular diffusivity to account for the cross-field transport as

a consequence of plasma turbulence. In case of narrow EC power deposition, this cross-field

transport becomes important [32] and can be added in a trivial manner in our model. The

direct response of the EC driven current to the EC power deposition as implied by the limit

ν1 → ∞ does not correctly capture the dynamic evolution of the EC driven current density

in case of fast modulation of the EC wave power. Such a fast modulation of the wave power

occurs naturally on the magnetic surfaces inside rotating magnetic islands, when ECCD is

applied for NTM stabilization.

Finally, we note that in [33] an alternate approach is followed to simulate the effect of

ECCD on tearing modes in a nonlinear 3D MHD simulation: instead of accounting for the

modification of the resistivity, the (sub-dominant) localized RF parallel force as introduced

in [4] is included in Ohm’s law. In this case, compressional Alfvén waves are found to play a

crucial role in the equilibration of the current density along magnetic field lines. In the case

of ECCD, this method neglects the dominant Fisch-Boozer current which is the result of

the quasi-linear diffusion in the perpendicular velocity direction. The Fisch-Boozer current

is correctly modeled by the closure model derived in this paper.
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