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Abstract

In this paper, a number of new approximations are introduced to estimate the perturbative

di�usivity (χ), convectivity (V ), and damping (τ) in cylindrical geometry. For this purpose the

harmonic components of heat waves induced by localized deposition of modulated power are used.

The approximations are based on semi-in�nite slab approximations of the heat equation. The main

result is the approximation of χ under the in�uence of V and τ based on the phase of two harmonics

making the estimate less sensitive to calibration errors. To understand why the slab approximations

can estimate χ well in cylindrical geometry, the relationships between heat transport models in slab

and cylindrical geometry are studied. In addition, the relationship between amplitude and phase

with respect to their derivatives, used to estimate χ, is discussed. The results are presented in

terms of the relative error for the di�erent derived approximations for di�erent values of frequency,

transport coe�cients, and dimensionless radius. The approximations shows a signi�cant region in

which χ, V , and τ can be estimated well, but also regions in which the error is large. Also, it is

shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On

the other hand, errors resulting from the simpli�ed assumptions are also discussed showing that

estimating realistic values for V and τ based on in�nite domains will be di�cult in practice.

This paper is the �rst part (Part 1) of a series of three papers. In Part 2 and Part 3 cylindrical

approximations based directly on semi-in�nite cylindrical domain (outward propagating heat pulses)

and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.
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I GENERAL INTRODUCTION

I. GENERAL INTRODUCTION

The e�ciency of future thermo-nuclear fusion reactors will be largely determined by the

level of transport of heat and particles in the magnetically con�ned plasma. Magnetically

con�ned plasmas are organized in nested surfaces of constant pressure and magnetic �ux,

which can be labeled by a dimensionless radius ρ, ranging from 0 at the magnetic axis to

1 at the last closed �ux surface. The thermal transport is oriented perpendicular to these

surfaces; consequently, thermal transport can be modeled in terms of a one-dimensional

transport equation in ρ.

When one derives the di�usivity of a species j (χj) from the local power balance in

steady state, the o�-diagonal terms in the transport matrix, i.e., heat �uxes driven by, e.g.,

the density gradient and the temperature gradients of other species, contribute to the heat

�ux of species j. These contributions pollute the thus derived di�usivity, which is therefore

usually called χeff
j . An alternative and cleaner method to derive χj is to periodically perturb

the plasma and describe the thermal transport as a linearized equation around steady state.

This is the subject of this paper, which appears in three parts (Part 1, Part 2, and Part 3).

In this method, one analyzes heat pulses in the plasma induced by localized deposition

of modulated power. The perturbed heat �ux can be described by a linearized equation

containing a di�usive, convectivity, and damping part, with an incremental di�usivity (χinc
j ),

an e�ective convection speed Vj, and a damping term τj, respectively. The o�-diagonal terms

in the transport matrix act as a convectivity term; e�ects like the modulated electron-ion

heat exchange and modulated ohmic heating are adequately captured in a damping term τ

[1�3]. These parameters as function of ρ are called pro�les. The heat pulse propagation and

dispersion carry the information for the estimation of the pro�les of χinc
j , Vj and τj.

In this paper, various new approximations are presented for determining χinc
j , Vj and

τj. The quality of the individual approximations depend on ρ, the frequency ω, and the

transport coe�cients themselves. Hence, not only di�erent approximations are necessary

for di�erent values of the transport coe�cients, but also a selection method to select the

proper approximation is necessary. Although the vast majority of perturbative transport

studies so far were done for the electron channel, the methods described in this paper apply

to any species j (electrons, ions, impurity species). In the remainder of the text we will drop

the subscript "j" and the superscript "inc."
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I GENERAL INTRODUCTION

Perturbative analysis of thermal transport in magnetically con�ned plasmas started as

early as in the 1970s, using heat waves that originated from the sawtooth instability [4, 5].

The �rst equations to analyze the perturbated transport were derived in this period, e.g., [6].

These were extended in the 1980s [7, 8] and the 1990s [9]. These equations use the harmonic

components of the temperature perturbations at di�erent radial locations to determine the

perturbative thermal di�usion coe�cient χ, which are now commonly used equations to

analyze transport [1, 10�13]. They use the amplitude A and phase φ in terms of the spa-

tial logarithmic amplitude derivative A′/A and spatial phase derivative φ′. However, these

equations only approximate the thermal di�usion coe�cient χ of the underlying cylindrical

Partial Di�erential Equation (PDE) by either assuming a slab-geometry or by assuming φ′

to be independent of ρ, i.e., φ′′ = 0, such that it can be used to derive a direct equation

for χ. As such, these approximations do not approximate the thermal di�usion coe�cient

χ well in a plasma subject to strong cylindrical e�ects. In addition, the exact region in

which χ is well approximated by these equations is not clear, which is caused by the fact

that the quality of the approximation depends on the unknown χ to be estimated. More-

over, these equations only approximate the thermal di�usion coe�cient and do not take

the convectivity into account. The argument has been put forward that the convectivity

and damping are negligible if a high enough modulation frequency is used. Although this

argument is mathematically correct, at such high frequencies the heat waves will penetrate

less deep, i.e., the amplitude of the perturbation will be smaller, whereas the noise level can

be considered constant. Hence, measurements at these frequencies are more susceptible to

noise, which leads to more uncertainty on the estimated di�usivity. Moreover, experiments

are always performed at �nite modulation frequencies such that the e�ect of convectivity

and damping terms cannot be entirely excluded.

Working at low frequencies implies that in many cases the convectivity and the damping

need to be taken into account. In addition, the increase in the size of fusion reactors and

the corresponding increase in con�nement time require a decrease in modulation frequen-

cies at roughly the same rate. Decreasing the modulation frequencies also implies that the

cylindrical e�ects become more dominant. Therefore, in this paper a large number of new

approximations is derived, which estimate the di�usivity, the convectivity, and the damping

in regions with strong cylindrical e�ects. These approximations can be used in any fre-

quency range and as such χ, V , and τ can be estimated with much more precision than for
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I GENERAL INTRODUCTION

instance the method presented in [1, 14], where the limit of high frequency, resulting in noisy

measurements, is necessary to determine χ �rst after which V and τ can be studied. In addi-

tion, these approximations also show a better performance in regimes with weak cylindrical

e�ects (slab-like). More importantly, the quality of the approximations in relation to the

original assumed model can be veri�ed using the corresponding approximations of damping

and possibly convectivity.

The new approximations still assume that the transport coe�cients are independent of

ρ and some still assume a semi-in�nite domain. In addition, it is assumed that density

gradients are negligible, which is one additional assumption compared to the cylindrical

approximation derived in [9]. These assumptions simplify the problem signi�cantly such

that explicit approximations can be derived much more easily and still will allow for an

approximation of the varying χ (ρ) pro�le. On the other hand, these assumptions introduce

errors on the estimates, which need to be considered. For instance, these assumptions

will limit the ability to estimate the convectivity and damping signi�cantly. Nevertheless,

including the damping and convectivity is important to arrive at better estimates of the

di�usivity. To understand this, it is important to study and discuss these errors in detail,

which requires an understanding of the original PDEs describing transport as introduced

in [15�17]. As primarily the electron thermal di�usion coe�cient is determined using the

previously methods we limit ourselves to the discussion of the models related to the electron

thermal transport.

This equation commonly used to describe the thermal transport does not address the un-

derlying (turbulent) transport mechanisms directly, but rather tries to capture the e�ective

thermal transport. Physics calculations suggest that the e�ective thermal transport is the

result of the complex dynamics between streamers and zonal �ows [1]. When zonal �ows

and drift-turbulence co-exist, the transport coe�cients, e.g., χ (or heat-�ux q) have a T ,

∇T and k dependence, in which k is the inverse length scale of the turbulent �uctuations

[11, 18, 19]. The k-space is an important tool to study the turbulent transport and the rela-

tionship between zonal �ows and drift waves [18, 20, 21]. However, in this set of papers only

the e�ective thermal transport is estimated (around an equilibrium) and not the underlying

turbulent transport is estimated explicitly. In addition, the unnatural e�ect of the in�nite

domain boundary conditions and symmetry boundary conditions (�nite domain) can have

on the transport description in k-space domain related to the damping of the modes is not
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I GENERAL INTRODUCTION

discussed here (see [18]).

It is important to understand the underlying boundary conditions under which these

approximations are derived. Therefore, not only the notion of the logarithmic temperature

derivative is introduced, but also the notion of transfer functions is discussed to clarify the

underlying assumptions and shed light on how A′/A and φ′ are related to the measured

amplitude A and φ. These transfer functions can also be used to test the quality of the

approximation if other assumptions hold than under which these approximations have been

derived.

The new approximations are based on the use of multiple harmonics, continued fractions,

and asymptotic expansions. The multiple harmonics are necessary to determine the di�u-

sivity, in the presence of convectivity and damping. On the other hand, it is well known that

the solutions to the underlying cylindrical PDE can be expressed using higher transcendental

functions [22], e.g., Bessel functions and Con�uent Hypergeometric Functions. The ratio's

of transcendental functions can often be well approximated by continued fractions [23, 24]

and asymptotic expansions [25, 26].

There is a profound di�erence in cylindrical domains between heat waves traveling to-

wards the edge (outward) or towards the plasma center (inward) in terms of their boundary

conditions, thus also in terms of their solutions. Therefore, a clear distinction is made

between inward and outward approximations. The outward approximations based on the

semi-in�nite domain include the cylindrical approximations derived in [7�9]. Interestingly,

the phase only equation [5] and the cylindrical approximation [9] are also found as the

simplest approximation using the technique of continued fractions.

In total more than 20 new approximations have been derived. The di�erent approxi-

mations are compared for di�erent values of ω, ρ, χ, V , and τ . It turns out that in the

case V = 0 it su�ces to combine two approximations for each case, i.e., one that estimates

χ well in a strong cylindrical geometry and one in a weak cylindrical geometry (slab-like)

to achieve small errors. However, to achieve the most accurate result a larger number of

approximations are necessary. For the combined problem of the estimation of χ, V , and τ

the new approximations show a signi�cant region in which χ can be approximated well, but

also regions in which no suitable approximation exists.

To increase the readability, this paper has been split into three parts. This part, Part 1,

deals with semi-in�nite slab approximations. Part 2 deals with semi-in�nite (outward propa-
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gating heat pulses) cylindrical approximations. Finally, Part 3 will deal with approximations

for inward propagating heat pulses in cylindrical geometry.

II. INTRODUCTION TO PART 1

This paper, Part 1 of a series of three papers, deals with semi-in�nite slab approxima-

tions. It is structured as follows. Section III gives an overview of the relevant models

and simpli�cations of electron thermal transport in fusion reactors, which are necessary for

the continuation of the paper. In Section IV the relationship between simpli�ed models

to determine the parameters, boundary conditions, and A′/A and φ′ are explained; transfer

functions, logarithmic temperature derivatives, and double spatial derivatives of A and φ are

treated. Then, in Section V the concept of multiple harmonics is explored to determine new

(and old) approximations to directly calculate the di�usivity, convectivity, and damping. In

Section VI the explicit approximations derived so far are compared for di�erent values of

χ, V , and τ , and the selection of the best approximation is discussed. Then Section VII

discusses the estimation of V and τ and common errors originating from in�nite domain

assumptions. Finally, in Section VIII the main results are summarized and discussed.

III. MODELING OF THERMAL TRANSPORT

In this section, the main assumptions and models used for perturbative transport analysis

of the electron transport are summarized. In addition, it is shown that analyzing the ther-

mal transport in slab-geometry allows for the determination of the di�usivity in cylindrical

geometry.

A. Conservation of energy and particles

In this paper, only a periodically modulated electron heating source (Pmod) will be con-

sidered. Usually this will be modulated Electron Cyclotron Heating. However, any localized

electron heating could be used, i.e Lower Hybrid Heating or Ion Cyclotron Heating in a

suitable minority heating scheme. Therefore, it is reasonable to consider only the coupled
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III MODELING OF THERMAL TRANSPORT

equations of particle density and electron heat transport de�ned in, e.g., [1, 15, 27, 28]:

∂n

∂t
= −∇Γ + Sp, (1)

∂

∂t

(
3

2
nT

)
= −∇q +∇

(
5

2
T Γ

)
+

1

n
Γ∇ (nT ) + Sh, (2)

where q denotes the heat �ux, Γ the particle �ux, T the electron temperature, n the density,

and Sp the particle sources. Based on [16] the source term Sh includes the electron-ion energy

equipartition Sie, the external heating power density Sf contributing to the energy balance,

Sr the radiation losses due to Bremsstrahlung, Sohm ohmic heating power, and Pmod. This

leads to

Sh = Sf + Sohm − Sr − Sie + Pmod. (3)

In this paper, it is assumed that all source terms except Pmod in Sh are static (do not depend

on time) or their variation in time is assumed to be negligible compared to the perturbation

induced by Pmod. Moreover, only perturbations of the thermal transport are considered,

thus ∂n/∂t = 0. The exact descriptions for the heat �ux q and particle �ux Γ are unknown.

However, classically they are modeled by the laws of Fick [27]

Γ = −D∇n (4)

and Fourier

q = −nχ∇T. (5)

Variations of these laws exist, for instance by considering a convective velocity term U in q

[1], i.e.,

q = −nχ∇T − nUT. (6)

Based on these equations it is possible to derive a one-dimensional Partial Di�erential Equa-

tion (PDE), which can be used to identify the electron di�usivity χ.

B. Perturbative transport analysis

Generally thermal transport inside a fusion reactor is modeled as radial (1D) transport

in a cylinder due to the magnetic con�ned plasma topology [1]. This allows for rewriting

(2), using (6), in terms of partial derivatives with respect to ρ

8 October 2, 2014



III MODELING OF THERMAL TRANSPORT

∂

∂t

(
3

2
nT

)
=

1

ρ

∂

∂ρ

(
ρnχ

∂T

∂ρ
+ ρnUT

)
+

1

ρ

∂

∂ρ

(
ρ

5

2
T Γ

)
+

1

n
Γ

1

ρ

∂

∂ρ
(ρnT ) + Sh, (7)

where the dependencies on the dimensionless radius ρ have been omitted. Although non-

linear dependencies exist, e.g., Te and ∇T , it is assumed that the temperature perturbation

in Sh used to analyze the transport is small enough to assume linearity around the equilib-

rium temperature. In such cases the simpli�ed PDEs given in (7) must be seen as the result

of a linearization of transport equations [1]. In such a linearization, other e�ects can also

be captured in the di�usivity, convectivity, and a damping term, e.g., the electron-ion heat

exchange can be adequately captured in a damping term. In addition, non-linear depen-

dencies of for instance χ on T and ∇T is then partly accounted for in the convective term

and/or damping. Therefore, the one-dimensional parabolic PDE is generally expressed in a

simpli�ed form describing cylindrical geometry

∂

∂t

(
3

2
nT

)
=

1

ρ

∂

∂ρ

(
ρnχ (ρ)

∂T

∂ρ
+ ρnV (ρ)T

)

− 3

2
nτinv (ρ)T + Sh, (8)

where V = U + 7
2

Γ
n
and τinv = 2

3
1
n

(
Γ′ − n′

n
Γ
)
denote the convectivity and damping in

cylindrical geometry based on (7) only. The damping is denoted by its inverse, i.e., τinv ≡ τ−1

and the prime, in e.g., n′, denotes the spatial derivative with respect to ρ. The reason for

this change of variables is that τinv is bounded making it easier to represent in plots. In

addition, it also is easily transformed back to the well known damping τ = 1/τinv. However,

if τ is needed it can simply be calculated τ = 1/τinv. The di�usivity χ (ρ), the (e�ective)

convectivity V (ρ), and the (inverse) damping τinv (ρ) in front of T , T ′, and T ′′ can be

identi�ed by only considering electron temperature perturbations.

Unfortunately, (8) is di�cult to use in practice to estimate χ from measurements. There-

fore, a number of simpli�cation steps are applied [9]. Only measurements are considered

for which the transients due to the initial condition can be neglected. It is assumed that

the parameters are constant with respect to time and ρ. Thus the parameters are assumed

to be homogenous or uniform [1, 9]. In addition, only spatial regions are considered where

Pmod = 0, i.e., outside the region where the heating is deposited to perturb the plasma such
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that (8) is simpli�ed to

∂

∂t

(
3

2
nT

)
=

1

ρ

∂

∂ρ

(
ρnχ

∂T

∂ρ
+ ρnV T

)

− 3

2
nτinvT. (9)

This equation is often used in the literature [1, 9] to analyze heat wave propagation in a

cylindrical geometry. Alternatively, for large ρ the slab geometry representation of (9) is

used to analyze transport in a cylindrical geometry [1, 7, 9].

C. Slab geometry representation and its relationship to cylindrical geometry

In slab-geometry the following representation is used to determine χ explicitly [1]

3

2

∂T

∂t
= χ

∂2T

∂ρ2
+ Vs

∂T

∂ρ
− 3

2
τinvsT, (10)

where χ, Vs, and τinvs are independent of ρ.

It is important to realize that the e�ective convectivity V 6= Vs and the inverse damping

τinv 6= τinvs represent something di�erent in (10) and (9). This can be investigated by

transforming (9) assuming n′ = 0:

∂

∂t

(
3

2
T

)
= χ

∂2T

∂ρ2
+

(
V +

χ

ρ

)
∂T

∂ρ

− 3

2

(
τinv −

2

3

V

ρ

)
T. (11)

This means that only when ρ → ∞, V = Vs and τinv = τinvs. Hence, (10) will be a proper

approximation of (9) when n′ is negligible and the variations χ/ρ and V/ρ are small with

respect to V and τinv, respectively. The di�usivity term χ in front of T ′′ is una�ected by

this change of geometry. On the other hand, the di�usivity term in cylindrical geometry

now also appears as a pseudo convectivity χ/ρ in slab geometry. The pseudo convectivity

also points out a simple problem regarding the comparison of the power balance di�usivity

χPB as de�ned in [1]

χPB = − q

n∇T
(12)

and the heat pulse di�usivity χ in cylindrical geometry, which is often denoted as χHP .

The power balance (12) is generally analyzed in slab-geometry such that the term χ/ρ is
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not taken into account. This already results in χPB 6= χHP . Therefore, χPB will not be

considered in this paper.

In the next section, based on (10) direct expressions for χ are derived to analyze the

transport coe�cients in a cylindrical geometry.

IV. SIMPLIFIED MODELS FOR DESCRIBING THERMAL TRANSPORT

In this section the classic relationships to determine χ are derived. Therefore, the Laplace

transform of (10) is used

3

2
sΘ = χ

d2Θ

dρ2
+ Vs

dΘ

dρ
− 3

2
τinvs Θ, (13)

where s is the Laplace variable and Θ (ρ, s) is the Laplace transform of T (ρ, t) [29]. The

Laplace variable can in practice only be measured on the imaginary axis, thus s = iω. The

general solution of (13) is given by [30]

Θ (ρ, s) = C1 (s) exp (λ1ρ) + C2 (s) exp (λ2ρ)

with λ1,2 = − Vs
2χ
∓

√(
Vs
2χ

)2

+
3

2

s+ τinvs
χ

. (14)

The boundary constants C1 (s) and C2 (s), which are independent of ρ, are determined by

the choice of the boundary conditions.

There are basically three approaches to derive approximations for χ, which distinguish

themselves by the choice for C1 (ω) and C2 (ω) in (14): 1) transfer functions, in which

both C1 (s) and C2 (s) are �xed explicitly; 2) the logarithmic temperature derivative, i.e.,

(∂Θ/∂ρ) /Θ, in which only one boundary constant is �xed explicitly by introducing the spa-

tial logarithmic derivative of the amplitude A and the spatial derivative of φ; 3) An approach

in which �xing C1 (s) and C2 (s) are avoided by introducing double spatial derivatives to A

and φ. However, as a solution of a second order PDE is only de�ned by two boundary con-

ditions; there must be a clear relationship between these three approaches. This is derived

in this section giving insight in how A and φ are related to their spatial derivatives.

A. Description between measurements: transfer function

The transfer function approach may be less familiar in the fusion literature [31�33],

but it is extensively used in the �eld of system identi�cation [34, 35]. From the available
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fusion literature on transfer functions it may seem that only rational functions based on

measurement data are applicable. However, as will be shown here, transfer functions can

also be used to describe simpli�ed models for PDEs [36], which are of non-rational form.

The most important advantage of this technique over the other two techniques is that

it only depends on the measurements. Hence, it is no longer required to approximate the

spatial derivative of phase φ and the spatial logarithmic amplitude derivative of A. The

derivation will be performed for heat waves traveling towards the edge (outwards).

The �rst boundary constant C2 (s) will be �xed by assuming an in�nite domain. This

choice is commonly used [1, 9] as it simpli�es the solution signi�cantly such that approxi-

mations for χ can be easily derived.

The in�nite domain boundary condition is de�ned as follows, if ρ→∞, then Θ→ 0. This

means that at ρ =∞ all perturbations need to have vanished. Since, we follow the standard

convention that for z ∈ C, arg (z) ∈ (−π, π] and arg (
√
z) = 1

2
arg (z), the two eigenfunctions

in (14) satisfy exp (λ1ρ)→ 0 and |exp (λ2ρ)| → ∞ for ρ→∞. Hence, C2 (s) = 0, otherwise

the solution (14) would not converge to zero at large ρ. Then, the solution (14) is simpli�ed

to

Θ (ρ, s) = C1 (s) exp (λ1ρ) . (15)

The other boundary condition is chosen to be the temperature at the spatial location ρ1, i.e.,

Θ (ρ, s) = Θ (ρ1, s), which in contrast to the assumption of an in�nite boundary condition

is only a weak assumption. The domain on which the transport coe�cients are estimated

cannot contain a source term. However, this domain should still be limited by some boundary

condition. Hence, Θ (ρ1, s) is used, which is a measured quantity. The boundary constant

is then given by

C1 (s) = exp (−λ1ρ1) Θ (ρ1, s) . (16)

This determines the solution of (14), Θ (ρ, s), such that

Θ (ρ, s) = exp (λ1 (ρ− ρ1)) Θ (ρ1, s) . (17)

The solution at a second measurement point ρ2 > ρ1 is denoted by Θ (ρ2). Then (17) can

be re-expressed as
Θ (ρ2, s)

Θ (ρ1, s)
= exp (λ1 (ρ2 − ρ1)) . (18)

The left hand-side is built from the measured complex valued Fourier coe�cients at mea-

surement locations ρ1 and ρ2. On the right hand side are the unknown parameters contained
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in λ1. After the transport coe�cients χ, V , and τinv have been determined, the transport

coe�cients can be substituted in (18). Then the right hand side can be directly compared

to the measured left hand side to determine the quality of the estimated parameters. Simi-

larly, the transfer functions for a cylindrical domain can be derived. In practice, the Laplace

variable s can only be measured on the imaginary axis such that s = iω.

A simpli�ed case of (18) in which V = 0 and only one harmonic is used i.e., s = iω

is �xed. Thus, the temperatures at �xed ω at two spatial locations can be expressed as

Θ (ρ1) = A1e
iφ1 and Θ (ρ2) = A2e

iφ2 such that the transfer function (18) can be rewritten as

A2e
iφ2

A1eiφ1
= exp

(√
3

2

iω + τinvs
χ

∆ρ

)
, (19)

where ∆ρ = ρ2 − ρ1. Applying the natural logarithm and taking the square of (19) results

in

ln

(
A2

A1

)2

− (φ2 − φ1)2 + 2 ln

(
A2

A1

)
i (φ2 − φ1)

=
3

2

iω + τinvs
χ

∆ρ2. (20)

The di�usivity χ can only be calculated properly if the phase is unwrapped, which means

that possible additional 2π rotations between ρ2 and ρ1 need to be accounted for. Now by

considering the imaginary part of (20), χ can be determined

χs4 =
3

4

ω
ln(A2)−ln(A1)

∆ρ

(
φ2−φ1

∆ρ

) . (21)

The notation χs4 is used instead of χ, to distinguish this speci�c form of χ as in this

paper many other approximations are found to calculate χ. The damping τinvs can also be

calculated by considering the real part

τs4 =
ω

2

(
ln (A2)− ln (A1)

φ2 − φ1

− φ2 − φ1

ln (A2)− ln (A1)

)
. (22)

It is clear that two measurement points su�ce to determine χ using slab-geometry, in the

presence of damping and under the assumption that the transport coe�cients are indepen-

dent of ρ. This description does not require any approximation of the derivatives A′ and φ′

as is used in [9].

13 October 2, 2014



IV SIMPLIFIED MODELS FOR DESCRIBING THERMAL TRANSPORT

B. Logarithmic temperature derivative

The logarithmic temperature derivative is de�ned as the ratio of the spatial derivative

of the temperature and the temperature (in the frequency domain), i.e., Θ′ (ρ) /Θ (ρ). This

means only one boundary condition is necessary. The other boundary condition is implicitly

contained in the resulting A′ and φ′. The solution needs to be simpli�ed to �nd an explicit

equation for χ and so again a semi-in�nite slab-geometry is chosen, i.e., C2 = 0 in (14).

Taking the spatial derivative of Θ (ρ) results in

∂Θ (ρ)

∂ρ
= C1 (s)λ1 exp (λ1ρ) , (23)

such that
Θ′

Θ
= λ1. (24)

The temperature is written again in terms of its harmonic components, i.e., Θ = A exp (iφ)

and Θ′ = A′ exp (iφ) + iφ′A exp (iφ) such that the left hand side of (24) becomes

A′

A
+ iφ′ =

Θ′

Θ
, (25)

which is independent of the chosen geometry such that it also holds in cylindrical geometry.

Substituting (25) into (24) and taking the spatial derivative results in

d

dρ

(
A′

A

)
+ iφ′′ = 0. (26)

Hence, the second spatial logarithmic derivative d (A′/A) /dρ = 0 and the second spatial

derivative φ′′ = 0 even in the presence of V , because λ1 is independent of ρ. This means

that in slab-geometry the spatial derivatives always satisfy

A′

A
=

d

dρ
(ln (A)) ≡ ln (A2/A1)

∆ρ
, φ′ ≡ φ2 − φ1

∆ρ
. (27)

This also follows directly from the transfer function description. This is shown by squaring

(25) and if again it is assumed that V = 0, the right-hand side is exactly the same as the

right hand side in (20) (
A′

A

)2

+ 2
A′

A
φ′i− (φ′)

2
=

3

2

ωi+ τinvs
χ

. (28)

The left-hand side can be made explicit by introducing a boundary condition. In case

Θ (ρ, s) = Θ (ρ1, s) is used the left-hand side of (28) needs to equal the left-hand side of

14 October 2, 2014



IV SIMPLIFIED MODELS FOR DESCRIBING THERMAL TRANSPORT

(20). This results in A′/A and φ′ in slab-geometry to be de�ned as (27), which also shows

the equivalence of the transfer function representation and the logarithmic temperature

derivative.

When τinv = 0, (20) or (28) can be expressed in terms of the amplitude and phase

measurements at two locations [5�9]

χs1 =
3

4

ω

(φ′)2 , (29)

χs2 =
3

4

ω

(A′/A)2 , (30)

and

χs3 =
3ω

(A′/A+ φ′)2 , (31)

where φ′ and A′/A are given according to (27). From a mathematical point of view: if an

assumption is made on the parameter dependence (here that the transport coe�cients are

independent of ρ) and boundary conditions, then the properties of the spatial derivatives A′

and φ′ follows automatically as is shown here. On the other hand, if one makes a choice for

the approximation of the derivatives, then automatically one has assumed a certain spatial

dependence on the parameters and boundary condition. As such, �tting φ′ and A′ di�erently

from (27) is a direct violation of the assumption that the parameters are independent of ρ.

On the other hand, if more complicated relationships are used, e.g., cylindrical geometry,

the derivatives A′/A and φ′ are not so easily expressed in terms of A2, A1, φ1, and φ2.

C. Double spatial derivatives of A and φ

It is also possible to use only spatial derivatives of A and φ. As a second order PDE

is used, these relationships include the double spatial derivatives A′′ and φ′′. This ap-

proximation is found by substituting Θ = A exp (iφ), Θ′ = A′ exp (iφ) + iφ′A exp (iφ), and

Θ′′ = A′′ exp (iφ) + iφ′A′ exp (iφ) + iA′φ′ exp (iφ) − (φ′)2A exp (iφ) + iAφ′′ exp (iφ) in (13)

and by dividing by A exp (iφ).

In slab-geometry this is not so useful as it has already been shown in (26) that φ′′ and

d
dρ

(
A′

A

)
equal zero. However, by expressing (13) in terms of double spatial derivatives it is

easily shown that the three approaches are equivalent and that the boundary conditions and

spatial dependencies are again contained within the spatial derivatives.
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In cylindrical geometry (7) also Θ′ and Θ′′ can be substituted resulting in (for the imag-

inary part) [9]

χ (ρ) =
1.5ω −

(
2.5Γ

n
+ Γ

)
φ′

φ′′ +
(

2A
′

A
+ 1

ρ
+ n′

n
+ χ′

χ
+ U(ρ)

χ

)
φ′

(32)

for completeness also Γ and n (which are assumed constant in this paper) are included.

In this representation Γ and n and its gradient n′ can be included. On the other hand,

(32) is only feasible in practice by assuming χ to be constant such that χ′/χ = 0 and

assuming the convectivity zero, i.e., U (ρ) = 0. More importantly, the double derivatives

will be extremely di�cult to approximate in practice due to noise and the spacing between

measurement channels. Therefore, φ′′ is assumed to be zero in [9], and χ can be calculated

using the simpli�ed form of (32), i.e.

χc =
1.5ω

(2A′/A+ 1/ρ+ n′/n)φ′
. (33)

The assumption of φ′′ = 0 basically means that (33) is not a true cylindrical approximation

as φ′′ is not zero under the in�uence of cylindrical geometry. The advantage of χc compared

to the rest of the approximations derived in this paper is that it can include density gradients,

which are assumed constant in this paper (n′ = 0).

V. DERIVATION OF EXPLICIT APPROXIMATIONS

Here, a new approximation for determining the χ, V , and τinv is introduced based on the

use of two harmonics. The approximation is based on slab-geometry. However, including the

convectivity in slab geometry allows for a partial compensation of the pseudo convectivity

χ/ρ introduced when transforming cylindrical geometry into slab geometry in (11) making

it more applicable to estimate χ in cylindrical geometry.

Every harmonic �xes two degrees of freedom, which means in practice that either χ and

τinv or χ and V can be estimated if only one harmonic is used. Therefore, to estimate χ, V

and τinv together, it is necessary to use at least two harmonics. This is easily understood

if the solution is derived. Therefore, consider the semi-in�nite slab-geometry solution again

(repeated equation, hence same number)

Θ′

Θ
= λ1. (24)
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The principal square root in λ1 can be split in its real and imaginary part using

λ1 = − Vs
2χ
− (α + βi) (34)

where

(α + βi)2 =

(
Vs
2χ

)2

+
3

2

(τinvs + iω)

χ
, (35)

Hence,

α2 − β2 =

(
Vs
2χ

)2

+
3

2

τinvs
χ

(36)

and

2αβ =
3

2

ω

χ
. (37)

The coe�cients α and β can also be used to express A′/A and φ′ de�ned according to

(27), by taking the real and imaginary part of λ1 using (24), (34), and (25), i.e.

A′

A
= −

(
Vs
2χ

+ α

)
φ′ = −β. (38)

The constants α and β are determined by rewriting (36) and (37)

4χ2α4 −
(
V 2
s + 6χτinvs

)
α2 =

9

4
ω2, (39)

4χ2β4 +
(
V 2
s + 6χτinvs

)
β2 =

9

4
ω2. (40)

Both (39) and (40) are fourth order equations yielding four solutions for α and four for β.

Fortunately, not all of these solutions are feasible, because under natural assumptions ω > 0

and χ > 0 and a semi-in�nite domain, φ′ is negative. This means that according to (38),

β > 0. In addition, following the de�nition in (37) the product of α and β is always positive,

hence α > 0.

There are three degrees of freedom (unknowns) in (35), which means that at least two

harmonics ω1 and ω2 must be used. Consequently, one derivative is unnecessary, e.g., φ
′ (ω1)

or A′ (ω2) /A (ω2). However, χ can be determined by only using φ′ (ω1) and φ′ (ω2), because

(40) only contains two unknowns χ and CV = (V 2
s + 6χτinvs) such that

χφ =
3

4

√√√√(ω1φ′ω2

)2 −
(
ω2φ′ω1

)2

φ′2ω1
φ′2ω2

(
φ′2ω1
− φ′2ω2

) , (41)

using the notations φ′ω1
= φ′ (ω1) and φ′ω2

= φ′ (ω1). The de�nition of the spatial phase

derivatives in (41) is given by (27). This formula is based on the phase only, hence insensitive
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to calibration errors. However, useful amplitude information is ignored, which can reduce

the accuracy of the estimate signi�cantly. The convectivity Vs is found by solving for α in

(39) and substituting it into (38) such that

Vφ = −2χφ
A′

A
−

√√√√CV +
√
C2
V + 36χ2

φω
2

2
, (42)

where CV is found by solving (40)

CV =
9

4
ω2 (φ′)

−2 − 4χ2
φ (φ′)

2
. (43)

The damping τinvs is calculated from CV

τφ =
CV − V 2

φ

6χφ
. (44)

It is not possible to calculate the convectivity or damping from the phase only, unless either

the damping or convectivity is considered negligible. In the noiseless slab-geometry case,

it does not matter if ω1 or ω2 is used for ω in A′

A
and φ′. However, in practice generally

the best choice is to use a weighted average as described in [37]. Easier to implement, but

less accurate is to use ω1 as it has generally the best Signal-to-Noise ratio (SNR). This also

means that the second harmonic is generally more sensitive to noise, which can introduce an

error and reduce the accuracy. On the other hand, by designing proper modulation signals

this e�ect can be minimized. This is typically done by choosing a duty cycle di�erent from

50% such that a similar �rst and second harmonic is created with similar SNRs, e.g., [38].

In addition, as convectivity and damping is included in this approximation it is no longer

necessary to work in the limit of high frequency allowing lower excitation frequencies to be

used with a better SNR. Here, only one variation has been given to calculate χ, Vs, and τinvs

using mainly the phase. There exists a number of variations using also A′ (ω1) /A (ω1) and

A′ (ω2) /A (ω2).

In the special case that τinvs is considered to be zero a single harmonic su�ces to estimate

both χ and Vs. This can be derived from (36) and (37), which results in

χV =
3

2

ωA′

A((
A′

A

)2
+ (φ′)2

)
φ′

(45)

and

VV =
3

2

ω
(

(φ′)2 −
(
A′

A

)2
)

((
A′

A

)2
+ (φ′)2

)
φ′
. (46)
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These approximations together with the well known equations in the literature will be used

to approximate χ, V , and τinv in cylindrical geometry.

VI. ESTIMATING χ UNDER INFLUENCE OF V AND τinv

In this section, the explicit approximations for χ, i.e., (29), (30), (31), (21), (41), and (33)

are compared for di�erent values of ρ, ω, χ, V , and τinv. For the comparison the true values

of A′/A and φ′ in a semi-in�nite cylindrical geometry are used based on heat waves traveling

outwards (away from the center). These are generated using the analytical solution of (9),

which has been validated using a �nite di�erence simulation of (9) with Θ (ρ� 1) = 0.

It is cumbersome to make a comparison for �ve parameters (ρ, ω, χ, V , and τinv). How-

ever, it is possible to reduce this to four parameters by normalizing the transport coe�cients

with ω, e.g., (13) with s = iω can be re-expressed as

3

2
iΘ =

χ

ω

d2Θ

dρ2
+
Vs
ω

dΘ

dρ
− 3

2

τinvs
ω

Θ. (47)

This can also be done exactly the same in cylindrical geometry. In case two harmonics

are necessary, φ′ (ω1) and φ′ (ω2) are calculated using ω1 = ω and ω2 = 2ω corresponding

to the �rst and second harmonic. Consequently, the normalized transport coe�cients in a

cylindrical geometry are given by χ̄ = χ/ω, V̄ = V/ω, and τ̄inv = τinv/ω such that the heat

equation and its solutions no longer depend ω explicitly.

This section consists of three parts: a presentation and discussion on the selection of the

best approximations when only χ is considered; a similar discussion when χ and τinv are

considered (V = 0); and when χ, V , and τinv are considered.

A. Di�usivity only

The comparison for χ only (V = 0 and τinv = 0) is made based on a large number of

possibilities of χ, ω, and ρ in terms of the normalized χ̄. The approximations are shown in

Fig. 1 in terms of the relative error with respect to the true di�usivity χ.

It is clear that all approximations perform well in a slab-like geometry such that they

approximate χ well if the ratio ρ/χ̄ is large. In χc large relative errors are observed for small

ρ/χ̄, which can be understood by considering χc in (33). The large error is caused by ρ−1
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Figure 1: Comparison between the di�erent relative errors of the χ estimates for a large range of

χ̄ = χ/ω and ρ. The relative error is de�ned as εrel = 100 × |χ−χest|
χ [%], where χest is one of

the possible approximations. Note, that V = τinv = 0 is the same as V̄ = τ̄inv = 0. In this case

χs3 and χs4 were almost exactly the same in terms of their error. This comparison is based on a

cylindrical geometry using an in�nite domain boundary condition assuming χ independent of ρ and

V = τinv = 0, where the heat waves travel outwards. The darkest blue represents εrel < 1% and

the darkest red represents all εrel > 150%.

term in χc, which over compensates resulting in a higher estimated di�usivity [9]. The A′/A

and φ′ are negative quantities for heat waves traveling outwards. Hence, the sum of ρ−1

and A′/A results in zero at the center of the dark red area. On the other hand, it is also

clear that compared to the other slab-geometry approximations χc and χφ perform better.

The approximation χφ is more accurate in a slightly larger region then the approximation

χc. However, it is also important to note again that χφ is based on the phase of two

harmonics instead of amplitude and phase of one harmonic as is the case for χc making it

less comparable.
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B. Di�usivity and damping

Only three approximations are available to estimate χ under the in�uence of damping

τinv, i.e., χs4 in (21), χφ in (41), and χc in (33). The approximations are presented at a

limited number of spatial locations ρ. In order to have signi�cant impact on the heat pulse

propagation, τ should be of the order of the energy con�nement time (τe), i.e., 1 s for JET

or ITER. Therefore, the range of τ is chosen such that 0.5 < τ < ∞ (τ = ∞ meaning no

damping), i.e., 0 6 τinv 6 2. This range is the same for the normalized τ̄inv as the applicable

range of ω is assumed ω > 1 [rad/s].

In general the e�ect of damping τinv is not directly in�uenced by the cylindrical geometry

(V = 0), which can be understood by comparing (10) and (11). In addition, τinv acts as a

shift parameter in (10), which basically shifts the solution in ρ. This means that for large

τinv the regions in which χ are approximated well is extended for increasing τinv. However,

these e�ects are also in�uenced by the approximation error in χ and V . Therefore, it is not

a one-to-one relationship. This can also be seen in Fig. 2, where with increasing τinv also

the approximation region increases for all approximations.
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Figure 2: Comparison between the relative errors of the χ estimates using χs4, χφ, and χc for a

large range of χ̄ = χ/ω, τ̄inv and ρ. This comparison is based on a cylindrical geometry using an

in�nite domain boundary condition assuming constant spatial dependencies of χ and τinv. The

darkest blue represents εrel < 1% and the darkest red represents all εrel > 150%.

All approximations under the in�uence of damping behave similar to the case of χ only.

C. Di�usivity, convectivity, and damping

If χ, V , and τinv need to be estimated at least two harmonics are necessary. This also

means that it is no longer possible to estimate χ with χc as is illustrated in Fig. 3, which is

also well known in the literature [9].
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Figure 3: The relative errors of the χc estimates as function of χ̄ = χ/ω, V and ρ. These errors

are based on a cylindrical geometry using an in�nite domain boundary condition where χ, V , and

τinv = 2 are independent of ρ. The heat waves travel outwards. The darkest blue represents

εrel < 1% and the darkest red represents all εrel > 150%.

On the other hand, χ can be estimated using χφ for a large range of parameters as is

shown in Fig. 4. It is unclear what a good range is for the parameter V̄ = V/ω except that it

can also be negative. Therefore, an arbitrary choice for this range is made −100 6 V̄ 6 100.
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Figure 4: The relative errors of the χφ estimates as function of χ̄ = χ/ω, V̄ and ρ. The errors

are based on a cylindrical geometry using an in�nite domain boundary condition where χ, V , and

τ̄inv = 2 are independent of ρ. The heat waves travel outwards. The darkest blue represents

εrel < 1% and the darkest red represents all εrel > 150%.

In general χ can be approximated well for large ρ as it than behaves more slab-like. On

the other hand, for large χ̄ and small ρ the cylindrical e�ects are stronger, thus the errors

are large. The e�ect of the damping coe�cients is not shown here as it is rather small. The

approximation χV can also be used when τinv = 0 and performs well, but only for positive

V . In the next section, it is discussed how to estimate the convectivity and damping and

their common errors.

VII. ESTIMATING THE CONVECTIVITY AND DAMPING

In this section, the possibility of estimating the convectivity V and damping τinv in a

semi-in�nite cylindrical domain is investigated based on the slab-geometry estimates Vφ and

τφ. Then, the e�ect of model errors arising from idealized assumptions are studied in a
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slab-geometry to distinguish between errors arising from the idealized assumptions and the

cylindrical geometry.

A. Estimation of V and τinv in a semi-in�nite cylindrical geometry

The only possibility to estimate χ in a cylindrical geometry under the in�uence of V

and τinv presented here is by using χφ in (41). The accompanying Vφ in (42) and τφ in

(44) give the slab estimates Vs and τinvs and not the cylindrical V and τinv. The quality of

these estimates using Vs and τinvs is investigated on the basis of a semi-in�nite cylindrical

geometry and is presented in Fig. 5.

The slab approximation Vφ still gives a good estimate of the cylindrical geometry, because

the damping takes part of the model errors into account (see (11)). However, this also means

that the estimates of τinv in a cylindrical geometry are poorly approximated by τφ (not shown

here). On the other hand, it is also possible to compensate for the model errors based on

(11), i.e.

V comp
φ = Vφ −

χφ
ρ
, and τ compφ = τφ +

2

3

Vφ
ρ
. (48)

The compensated V comp
φ improves the estimate of V in some regions, but decreases it in

other regions. However, this can be understood by comparing V comp
φ to χ in Fig. 4. The

region where V comp
φ approximates V well is almost an exact copy of the region where χφ

approximates χ well in Fig. 4. In (48), it also becomes clear that there is a clear relationship

between the chosen base geometry (slab, cylindrical) and the variation of the transport

coe�cients. If one allows, the transport coe�cients Vs and τs to be spatial dependent then

it is possible to transform a cylindrical geometry into a slab geometry.

The damping can only be estimated by the use of τ compφ in a limited region. One might

expect that by replacing Vφ by V comp
φ to calculate τ compφ might increase the approximation

region, but the di�erences are rather small.

It is clear that the slab approximations with or without compensation can approximate

the convectivity and damping in a semi-in�nite cylindrical geometry with constant param-

eters in certain parameter ranges of χ̄, V̄ , τ̄inv, and ρ. However, in reality the pro�les can

vary spatially and a di�erent boundary condition is present than the in�nite domain. The

e�ect of these varying pro�les and di�erent boundary conditions on the estimates of χ, V ,

and τinv is investigated next.
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Figure 5: The relative error of the estimates of V and τinv using the approximations Vφ, V
comp
φ , and

τ compφ for a large range of χ̄, V̄ , and ρ. This comparison is based on a cylindrical geometry using

an in�nite domain, where the heat waves travel outwards. The darkest blue represents εrel < 1%

and the darkest red represents all εrel > 150%.

B. The e�ect of boundary conditions and radial dependent pro�les

Here, the errors originating from (varying) spatial dependent pro�les and boundary con-

ditions are studied. It has been shown that using slab geometry approximations to estimate

the transport coe�cients in a cylindrical geometry also introduces errors. Therefore, a slab-

geometry simulation is used here to distinguish between errors originating from varying

pro�les/boundary conditions and cylindrical geometry. Although only the errors for (41),

(42), and (44) are shown, these errors occur for all approximations presented in this paper,

including the ones from the literature, as they are based on the same assumptions.
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The choice of an in�nite domain description allows the derivation of explicit equations,

which is an important advantage over other choices of the boundary conditions. However,

the disadvantages are generally not so clear, but should also be considered: 1) it is assumed

that the parameters are independent of ρ from [ρi,∞), so even variations far from the used

A′/A and φ′ will introduce an error on the estimated di�usivity even if it is locally constant in

space and; 2) there is a di�erence between the modeled and the real boundary, i.e., estimates

close to the real boundary will show a signi�cant bias (errors). This was already shown in

[39] using analytic expansions.

The introduced bias due to mismodeling is partly suppressed in practice. This is because

(10) acts as a low-pass �lter, suppressing high-frequency errors more strongly than low-

frequency information. The amount of suppression also depends on the distance to the

boundary, on the variation of the parameters, and on the distance of this variation to the

location ρ. However, as τinv and V are in�uenced by low-frequency information, they are

a�ected more strongly by these errors, making it often impossible to �nd the correct τinv

and V .

These e�ects can be shown through an example. Therefore, the heat-transport model

in slab (10) is discretized using �nite di�erence and simulated with boundary conditions

∂T/∂ρ (ρ = 0) = 0 and T (ρ = 2.2) = 0 with a (point) source term at ρ = 0.0025. Heat

waves are studied traveling towards the edge. The choice for slab-geometry and heat waves

towards the edge is made, because under these assumptions χφ, Vφ, and τφ, using (41), (42),

and (44), exactly determine χ, Vs, and τinvs such that only the e�ect of varying pro�les

and boundary conditions in�uence the result. A �nite di�erence simulation is used with

2000 measurement (spatial grid) points, which are equidistant with ∆ρ = 0.001. The phase

and amplitude as function of ρ are calculated from this �nite di�erence simulation. The

corresponding A′/A and φ′ are calculated using (27), because this is the correct way to

calculate A′/A and φ′ in the case of slab-geometry. In addition, as the distance between two

points ∆ρ is very small, the errors in A′/A and φ′ are negligible. The dimensionless radius

ρ has been extended here to two to more clearly show the errors originating from varying

pro�les and boundary conditions. The result is shown in Fig. 6, where a varying pro�le of χ

and Vs in terms of steps are shown. It is clear that the estimates of χφ feel the step in χ (ρ)

before it occurs, which is, as explained, a direct consequence of choosing in�nite domains.

However, interestingly at the step in χ (ρ) (ρ = 0.5) the estimates χφ and Vφ are close to
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Figure 6: Comparison between two estimated pro�les with a step in the χ (ρ) pro�le at ρ = 0.5

and in the Vs (ρ) at ρ = 1.25. In addition, following boundary condition T (ρ = 2.2) = 0 is applied.

Two estimates of χ, Vs, and τinvs expressed as χφ, Vφ, and τφ are presented for the combination 25

Hz and 50 Hz, and 100 Hz and 200 Hz, i.e., the �rst two harmonics are used.

the true values. The small di�erence at the step in χ (ρ) at ρ = 0.5 is caused by the step in

Vs (ρ) at ρ = 1.25, which in�uences the estimates at ρ = 0.5. The same phenomenon can be

observed at the step in Vs (ρ) where both the estimates χφ and Vφ are exact. Due to (17) the

estimates are insensitive to what happens before φ1 = φ (ρ1). However, in principle, they

are sensitive to what happens at ρ > ρ1, hence τinv is not exact at the steps. The estimates

that come close to the boundary condition will also show errors, as was already discussed in

[39].

A di�erent aspect is the magnitude of variation in the estimates due to variations in the

pro�les and boundary conditions. Therefore, it is important to consider the y-scales in Fig.

6. The variations in the pro�les in�uence χ to a lesser extend, but are disastrous for the

estimates of Vs and τinvs. Moreover, a step in χ (ρ) has a large in�uence on the estimates Vφ

and τφ, but a step in Vs (ρ) and τinvs (ρ) (not shown here) in�uences χφ to a lesser extent.

Note, that the step in Vs (ρ) is 10 times larger than the step in χ (ρ).

The errors introduced by the boundary errors show a similar behavior, which are signif-

icantly larger for Vφ and τφ. The main reason why the errors are signi�cantly larger for τφ

and to a lesser extent Vφ is that errors propagate further at low frequencies. Both, Vs (ρ)
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and τinvs (ρ) are only important at low frequencies, see (14). This also explains why the

estimate of χ using 25 Hz show larger errors than the estimate based on 100 Hz.

We refrain here from making statements about direction and absolute values of errors as

this depends on too many factors such as the boundary conditions, the absolute values and

the variation of pro�les, frequency, how A′/A and φ′ are approximated, etc. Therefore, only

the qualitative behavior is shown, which also led us to the conclusion that Vs and τinvs will

be very di�cult to study in practice using in�nite domains. This also holds for the estimates

of the cylindrical V and τinv. On the other hand, a step in a pro�le is also the most extreme

case and di�erent boundary conditions probably hold. This means that it is not always

impossible to estimate Vs and τinvs or V and τinv in practice, but great care should be taken

and di�erent approximation methods for V and τinv may be necessary.

The argument could be made that these errors are suppressed by increasing the frequency

of the perturbation source, but that will lead to noisy measurements. A better solution is

to use implicit methods, which allow the use of much more complex models without many

of the problems encountered by in�nite domains. In that case the approximations presented

in this paper form a tool for �nding starting values for such implicit methods and to have a

rough idea of the values of χ (ρ). However, this is not the subject of this paper.

VIII. SUMMARY AND DISCUSSION PART 1

In this paper, the problem of determining the thermal di�usion coe�cient from electron

temperature measurements during power modulation experiments has been revisited. A

number of new approximations have been introduced to estimate χ, V , and τinv directly

from A′/A and φ′ for di�erent combinations of χ, V , and τinv. The approximations are

based on in�nite slab domains using common assumptions. To gain an understanding of

how φ and A are related to A′/A and φ′, on which the approximations are based, the notion

of transfer functions is introduced. This makes the relationship between φ′ and φ explicit.

The study of this relationship also shows that the dependency of ρ is contained in A′ and

φ′ and as such depends on how A′ and φ′ are calculated.

The main result is the approximation of χ, under the in�uence of V and τ , based on the

phases of two harmonics. Hence, this new approximation is less sensitive to calibration errors.

The new approximation extends the region in which χ can be approximated compared to
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the well known relationship in [9] for cylindrical geometry even if V = 0. However, it should

be noted that unlike the relationship in [9], the new approximation does not take density

gradients into account and is based on the phase of two harmonics instead of amplitude and

phase of one harmonic. This approximation performs well in a large region when convectivity

is present for which no direct expression is currently available. Here, the use of two harmonics

cannot be seen as a de�cit as always at least two harmonics will be necessary.

Also the use of in�nite domains necessary to arrive at explicit approximations are dis-

cussed. The in�nite domain assumption introduces errors, which are related to varying

pro�les and boundary conditions. Moreover, these errors in�uence the convectivity and

damping signi�cantly, making the estimated V and τinv often erroneous. On the other hand,

it is important to still estimate V and τinv as they can be used to select the proper approx-

imation and to verify if the estimates of χ in the presence of V and τinv are correct. This

will be explained in Part 2, where a number of new approximations are derived. The results

in Part 2 are based directly on a semi-in�nite cylindrical domain.
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