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Abstract

In this paper, a number of new explicit approximations are introduced to estimate the pertur-

bative di�usivity (χ), convectivity (V ), and damping (τ) in cylindrical geometry. For this purpose

the harmonic components of heat waves induced by localized deposition of modulated power are

used. The approximations are based on the heat equation in cylindrical geometry using the sym-

metry (Neumann) boundary condition at the plasma center. This means that the approximations

derived here should be used only to estimate transport coe�cients between the plasma center and

the o�-axis perturbative source. If the e�ect of cylindrical geometry is small, it is also possible to

use semi-in�nite domain approximations presented in Part 1 and Part 2 of this series.

A number of new approximations are derived in this part based on continued fractions of the

modi�ed Bessel function of the �rst kind and the Con�uent Hypergeometric Function of the �rst

kind. These approximations together with the approximations based on semi-in�nite domains are

compared here for heat waves traveling towards the center. The relative error for the di�erent

derived approximations is presented for di�erent values of frequency, transport coe�cients, and

dimensionless radius. Moreover, it is shown how combinations of di�erent explicit formulas can

be combined to estimate the transport coe�cients over a large parameter range for cases without

convection and damping, cases with damping only, and cases with convection and damping. The

relative error between the approximation and its underlying model is below 2% for the case only

di�usivity and damping is considered. If also convectivity is considered, the di�usivity can be

estimated well in a large region, but there is also a large region in which no suitable approximation

is found.

This paper is the third part (Part 3) of a series of three papers. In Part 1 the semi-in�nite slab

approximations have been treated. In Part 2 cylindrical approximations are treated for heat waves

traveling towards the plasma edge assuming a semi-in�nite domain.
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I. INTRODUCTION

This paper, Part 3 of a series of three papers, deals with cylindrical approximations

based on a symmetry (Neumann) boundary condition that can be used to calculate the

perturbative di�usivity χ, convectivity V , and damping τ from the experimental data of

heat pulse propagation. These approximations should be used in the case heat waves travel

towards the center of the plasma, which is the case when the plasma is perturbated using

an o�-axis heating source. For a general introduction of the series of three papers the reader

is referred to [1].

This paper is structured as follows. Section II gives an overview of the relevant assump-

tions and models used for perturbative transport analysis. Then, in Section III continued

fractions are used to �nd approximations for χ, V , and τ . Section IV gives an overview and

comparison of possible explicit approximations that can be used to estimate χ, V , and τ for

heat waves traveling towards the center. In Section V the main results are summarized and

discussed for Part C and in Section VI a general conclusion for the set of papers is given.

II. MODELING OF THERMAL TRANSPORT

This section shortly reviews the relevant Partial Di�erential Equation describing trans-

port in fusion reactors and its solution based on common assumptions in the Laplace domain.

This solution is necessary to derive explicit approximations for the transport coe�cients,

which is the subject of the next section. For a more extensive discussion on the heat equation

the reader is referred to [1, 2].

A. Perturbative transport analysis

Linearized thermal transport inside a fusion reactor is often modeled as an one-

dimensional radial transport in cylindrical geometry due to the magnetic con�ned plasma

topology [1, 3, 4]
3

2

∂

∂t
(nT ) =

1

ρ

∂

∂ρ

(
nρχ (ρ)

∂T

∂ρ
+ nρV (ρ)T

)
− 3

2
nτinv (ρ)T + Pmod, (1)
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where χ is the di�usivity, V the convectivity, τinv is the damping (τinv = 1/τ), T denotes

the electron temperature, n the density, ρ the radius, and Pmod a perturbative heat source.

Analytical models based on (1) can be derived using a number of common assumptions.

These assumptions are [2, 3, 5]: constant transport coe�cients with respect to time and ρ

(homogenous or uniform); no transients due to initial conditions; on the considered domains

Pmod = 0; and density n is assumed constant with respect to ρ and time.

Under these assumptions the analytical solution of (1) in the Laplace domain can be

expressed in terms of Con�uent Hypergeometric Functions Φ and Ψ [2, 6�8]:

Θ (ρ, s) = eλ1ρD1 (s) Ψ

(
λ2

λ2 − λ1

, 1, (λ2 − λ1) ρ

)

+ eλ1ρD2 (s) Φ

(
λ2

λ2 − λ1

, 1, (λ2 − λ1) ρ

)
, (2)

where

λ1,2 = − V
2χ
∓

√(
V

2χ

)2

+
3

2

s+ τinv
χ

, (3)

with boundary constants D1 (s) and D2 (s) and the Laplace transformed temperature Θ =

L (T ) where the Laplace variable s = iω. If V = 0, (2) can be simpli�ed in terms of modi�ed

Bessel functions Iν and Kν of order ν = 0 resulting in [6, 9]

Θ (ρ, s) =
1√
π
D1 (s)K0 (zρ) +D2 (s) I0 (zρ) , (4)

with

z =

√
3

2

s+ τinv
χ

. (5)

The unknown boundary constants D1 (s) and D2 (s) need to be determined or partly elimi-

nated such that analytical models can be determined, which are used in the next section to

calculate χ explicitly.

B. Logarithmic temperature derivative and transfer function

In [1, 2] models have been derived to determine χ for heat waves traveling outwards in a

cylindrical semi-in�nite domain. The semi-in�nite domain is in principle unnatural as there

is a true other boundary (in the form of a plasma end or wall). However, this assumption is

necessary to �nd approximations for χ, V , and τinv. On the other hand, if heat waves travel
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towards the center in a cylindrical geometry the natural boundary condition is a symmetry

(Neumann) boundary condition at ρ = 0, i.e.

∂Θ (ρ = 0)

∂ρ
= 0. (6)

In case V = 0 for this boundary condition then D1 (s) = 0 in (4), which is shown in [10].

This implies that also D1 (s) = 0 in (2) when V 6= 0. However, this is di�cult to prove

analytically. Instead, it is numerically veri�ed that D1 (s) = 0 in (2) by comparing it to

�nite di�erence simulations with boundary condition ∂T (ρ = 0) /∂ρ = 0. This shows that

the error between the analytic and numerical simulations are small and that the error is

decreasing with increasing density of the discretization grid. Hence, it is concluded that

D1 (s) = 0 for a Neumann boundary condition in (2), i.e.

Θ (ρ, s) = D2 (s) eλ1ρΦ

(
λ2

λ2 − λ1

, 1, (λ2 − λ1) ρ

)
. (7)

Basically, there are two possibilities to handle the unknown D2 (s). One possibility is to

use the logarithmic temperature derivative (∂Θ/∂ρ) /Θ to eliminate D2 (s), where Θ =

A exp (iφ) resulting in
Θ′

Θ
= λ1 + λ2

Φ (a+ 1, 2, (λ2 − λ1) ρ)

Φ (a, 1, (λ2 − λ1) ρ)
, (8)

with the left hand side
Θ′

Θ
=
A′

A
+ iφ′. (9)

Note, that the derivatives are de�ned in terms of ρ and not in terms of distance to the

source. Hence, the derivatives are de�ned positively for heat waves traveling towards the

center. If V = 0, this simpli�es to
Θ′

Θ
= z

I1 (zρ)

I0 (zρ)
(10)

where z is de�ned according to (5). This last relationship is well known in the literature

[5, 10]. In the logarithmic temperature derivative representation it is however necessary to

approximate spatial derivatives A′/A and φ′ from the measured A and φ. This can also

be avoided using the transfer function representation where D2 (s) is �xed by assuming a

second boundary condition.

The most logical choice for a second boundary condition is Θ (ρ, s) = Θ (ρ1, s), which is

a weak assumption as Θ (ρ1, s) is measured. The transfer function using (7) then becomes

Θ (ρ2, s)

Θ (ρ1, s)
= eλ1∆ρΦ (a, 1, (λ2 − λ1) ρ2)

Φ (a, 1, (λ2 − λ1) ρ1)
, (11)
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where the solution at a second measurement point ρ1 > ρ2 is used as resulting temperature

Θ (ρ2). This description is expressed directly in terms of the measured Fourier coe�cients

(Θ = A exp (iφ)). However, it is not straightforward to derive explicit relationships for χ,

V , and τinv using this relationship.

III. DERIVATION OF EXPLICIT APPROXIMATIONS

In this section, continued fractions are used to �nd approximations for the transport

coe�cients in cylindrical geometry using (8) and (10). In the previous section, the logarith-

mic temperature derivative is introduced, which is described by the ratio of modi�ed Bessel

functions of the �rst kind or Con�uent Hypergeometric Functions of the �rst kind. It is

well known in the literature that these ratio's of transcendental functions can be approx-

imated by truncation of their continued fraction representation [2, 11, 12]. Based on this

concept a number of new approximations are derived, which are summarized in Tables in

the next section and their derivations can be found in the appendix. Here, only the three

most important approximations are introduced.

A. Di�usivity and damping only

The continued fraction for a ratio of Bessel functions of the �rst kind is used to �nd

approximations for χ under in�uence of damping (V = 0). Therefore, the logarithmic

temperature derivative introduced in (10) is used. The following continued S-fraction of the

ratio of Bessel functions can be found in [12](p. 362)

I1 (zρ)

I0 (zρ)
=

a1

1 +
a2

1 + a3
1+...

, (12)

where ak+1 = (zρ)2 / (4k (k + 1)) and a1 = zρ/2. If this continued fraction is truncated

taking only the �rst term a1 into account, the logarithmic temperature derivative in (10) is

approximated by
Θ′

Θ
= z

zρ

2
. (13)
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This can be solved in terms of χ and τinv using (5) resulting in

χIsφ =
3

4

ω

φ′
ρ and τIsφ =

ω

φ′
A′

A
. (14)

This relationship can also be found based on the asymptotic expansions given in [13].

This method can also be used to �nd more accurate approximations by using more terms

in the continued fraction before truncation. In this case the best approximation is found by

truncating at a4 in (12), which can be written in terms of a third order polynomial in z2

0 = c2z
4 + c1z

2 + c0, (15)

with coe�cients

c2 = 12ρ3 − Θ′

Θ
ρ4, c1 = 192ρ− 72

Θ′

Θ
ρ2, and c0 = −384

Θ′

Θ
, (16)

where Θ′/Θ is given by (9). The third order polynomial yields three solutions in terms of z2.

However, generally only one solution can be used to determine χ, because z2 is bounded in

the �rst quadrant of the complex plane (χ > 0, τinv > 0) and the other two are often outside

this domain. However, using a truncation of (12) at location a5 results in more solutions

within this domain. Hence, it is no longer straightforward to select the correct solution.

This is impractical and as will be shown later unnecessary. Therefore, truncations higher

than a4 will not be considered here. For the truncation using a4 as the last term, it has been

numerically determined that the correct zero is given by

z2 =
−c1 +

√
c2

1 − 4 c0 c2

c2

, (17)

which covers the largest region of interest. The solution for the di�usivity χ and the damping

τinv is found by substituting (17) into

χ =
3

2

ω

= (z2)
(18)

and

τinv = ω
< (z2)

= (z2)
. (19)

The continued fraction in (12) can also be used to �nd two other approximations belonging

to a2 and a3, which are named χIs2 and χIs3, respectively. These can found in Table II in the

next section. In the appendix another continued fraction for the ration of Bessel functions
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of the �rst kind is presented, which is also used to �nd explicit approximations for χ and

τinv.

In this subsection, the convectivity is assumed zero such that the continued fractions

for Bessel functions can be considered. In the next subsection also V is considered, which

requires the continued fraction for the ratio of Con�uent Hypergeometric Functions of the

�st kind to be used to �nd approximations for χ.

B. Di�usivity, convectivity, and damping

The logarithmic amplitude derivative A′/A and phase derivative φ′ are given in (8) as

function of χ, V , and τinv. However, only two quantities are known, i.e. A′/A and φ′,

whereas on the right hand side three unknowns are given. Therefore, a third quantity needs

to be introduced to calculate the transport coe�cients, which can be done by introducing a

second harmonic, i.e. A′ (ω2) /A (ω2) or φ′ (ω2). In addition, (8) needs to be approximated

using a continued fraction. In this case the continued C-fraction of the ratio of Con�uent

Hypergeometric Functions of the �rst kind is used

Φ (a+ 1, b+ 1, z)

Φ (a, b, z)
=

1

1−

b− a
(b+ 0) (b+ 1)

z

1 +

a+ 1

(b+ 1) (b+ 2)
z

∣∣∣∣∣∣
a

1−

b− a+ 1

(b+ 2) (b+ 3)
z

1 +

a+ 2

(b+ 3) (b+ 4)
z

∣∣∣∣∣∣
b

1− . . .

, (20)

given in [12](p.324). This continued fraction needs to be truncated and substituted into (8)

to �nd a proper approximation for χ. Here, is chosen to truncate (20) at locations a and

b, because in these special cases there are no square roots in the resulting approximation

of the logarithmic temperature derivative in (8). Hence, it is more easy to derive explicit

approximations for χ, V , and τinv. In the appendix the truncations at location a and b are

derived for various combinations of amplitude and phase. In this section only the truncation
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at location b is given using two amplitudes and one phase, i.e. A′ (ω1) /A (ω1), φ′ (ω1), and

A′2 (ω) /A (ω2), because in a numerical comparison this gave the best result. This does

not necessarily mean that in practice it also gives the best result, for instance calibration

errors will in�uence this approximation more than the one based on two phases due to the

sensitivity of the amplitude to these calibration errors.

Although, it is now possible to calculate explicit solutions for χ, V , and τinv, the calcu-

lations are too complicated to do by hand. Therefore, Mathematica© was used to derive

approximations for χ, V , and τinv based on the truncation in (20). This yields three solu-

tions, however, only one is di�erent from χ = 0, which given by

χΦ4a =
3

2

6859ρ3ω2
1φ
′
1dA

(
ω2

1

(
dA2 + (φ′1)2)− 2ω1ω2φ

′
1φ
′
2 + ω2

2 (φ′2)2)
8 (1311o2

1ω1dA+ 10108o1ω2
1dA

2 + 27436ω3
1dA

3 + 45o3
1)

, (21)

where

dA =
A′1
A1

− A′2
A2

, o1 = ω1

(
dA

(
A′1
A1

ρ− 4

)
+ ρ (φ′1)

2

)
− ρω2φ

′
1φ
′
2. (22)

The corresponding V and τinv are given by

VΦ4a = −χΦ4a
30ol

38ρω1dA
(23)

and (subscripts Φ4a have been omitted)

τΦ4a =
3

2
χ
−15

A′
1

A1
ρ2ω 1

χ
− 24

(
V
2χ

)2

ρ2φ′ − 38
(

V
2χ2

)
ρ2ω + 96

(
V
2χ

)
ρφ′ + 60ρω 1

χ
− 120φ′

15ρ2φ′
.

(24)

These solutions are complicated, but are the only explicit approximations found for the com-

bined problem of estimating χ under convectivity and damping. The other approximations

are given in the appendix. All the approximations are summarized and compared in the

next section.

IV. INWARD SOLUTIONS

In this section, the di�erent approximations to determine χ, V , and, τinv are summarized

and compared for heat waves traveling towards the center. The approximations are based

on the underlying models (8) and (10), which are used to calculate A′/A and φ′ for a

large number of combinations of the transport coe�cients. In addition, the semi-in�nite

approximations derived in [1, 2] can also be used. The comparison is based on �ve parameters
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(ρ, ω, χ, V , and τinv) and is presented in terms of normalized transport coe�cients, i.e. χ̄ =

χ/ω, V̄ = V/ω, and τ̄inv = τinv/ω. In case two harmonics are necessary, A′/A (ω1), A′/A (ω2),

φ′ (ω1), and φ′ (ω2) are calculated using ω1 = ω and ω2 = 2ω corresponding to the �rst and

second harmonic. Note, that if it is arbitrary for the discussion to use the normalized

transport coe�cients χ̄, V̄ , and τ̄inv or the normal transport coe�cients χ, V , and τinv the

latter notation is used.

A. Overview of possible explicit approximations

In Table I all derived approximations from Section III and the appendix to estimate χ

are summarized.
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χ Equation for χ V τinv

Approximations based on symmetry boundary condition

χz
3
2

ω
=(z2)

(see Table II for z) 0 (19)

χIsφ
3
4
ω
φ′ ρ 0 (14)

χIs2φ
3
2ωρ

2+
√

4−ρ2(φ′)2

8φ′ 0 0

χIs2A ω
3ρ3
√

4−A′/Aρ

16ρ2
√
A′/A

0 0

χΦ2V
9ρω

4φ′(A
′
A
ρ+3)

(B6) 0

χΦ4V

3
2

6859ρ3ωφ′

l2+
(

6A
′
A
ρ
(

15A
′
A
ρ+32

)
+680

)
·
(

2A
′
A
ρ−l1+30

)
(B11) 0

l1 =

√
4
(
A′

A ρ+ 15
)2 − 285ρ2 (φ′)2

l2 = 114ρ2 (φ′)2
(

32A
′

A ρ+ l1 + 62
)

χΦ4a

3
2

6859ρ3ω2
1φ

′
1dA o2

8(1311o21ω1dA+10108o1ω2
1dA

2+27436ω3
1dA

3+45o31)

(23) (24)o1 = ω1

(
dA
(
A′

1
A1
ρ− 4

)
+ ρ (φ′1)2

)
− ρω2φ

′
1φ
′
2

o2 =
(
ω2

1

(
dA2 + (φ′1)2

)
− 2ω1ω2φ

′
1φ
′
2 + ω2

2 (φ′2)2
)

χΦ4b

3
2

6859dωρ3ω1φ′1

(
ω2
2

(
(dA)2+(φ′1)

2
)

+ω1φ′2(dω−ω2φ′1)
)

8(19dω+o)(1444dω2+456dωo+45o2)

(B15) (B16)dω = ω1φ
′
2 − ω2φ

′
1 dA =

A′
1

A1
− A′

2
A2

o =
A′

1
A1
ρω1φ

′
2 −

A′
2

A2
ρω2φ

′
1 − 4dω

Approximations based on semi-in�nite domain

χc
3
4

ω

φ′
(
A′
A

+ 1
2ρ

) from [5] 0 see [2]

χφ
3
4

√
(ω1φ′ω2)

2−(ω2φ′ω1)
2

φ′2ω1φ
′2
ω2

(φ′2ω1−φ
′2
ω2

)
see [1] see [1]

Table I: Overview of the approximations for χ for heat waves traveling traveling towards the center

in a cylindrical geometry where a symmetry boundary condition is assumed. From left to right the

columns denote: the approximation of χ either explicit or in terms of z in which case Table II gives

the relationship for z; the equation numbers for χ, V and τinv refer either to Section III or to the

appendix or the reference in which they are derived. The short-hand notations φ′ (ω1) = φ′1 and

A′(ω1)
A(ω1) =

A′
1

A1
are used, which also means two harmonics are necessary.

Some in�nite domain solutions from [1, 2] are also included in Table I. The reason is that if

cylindrical e�ects are small, i.e. the ratio of ωρ/χ is large, the in�nite domain approximations
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give a good approximation again. However, in case z polynomials are used based on in�nite

domains di�erent solutions need to be selected. The reason is that A′/A and φ′ are negative

for heat waves traveling towards the wall and are positive for heat waves traveling towards

the center.

In Table I is chosen to only represent χ to keep the tables compact. The equation numbers

for the corresponding V and τinv are given instead.

χ Equation for z Eq.

χIt3
a3 = 2ρ2, a2 =

(
3ρ− 2ρ2 Θ′

Θ

)
(A3)

a1 = −4ρΘ′

Θ , a0 = −6Θ′

Θ

p2 = −27a0a
2
3 + 9a1a2a3 − 2a3

2, p0 = 3a1a3 − a2
2

p1 = 3

√
p2 +

√
4p3

0 + p2
2, z = 1

a3

(
−a2

3 −
3√2p0
3p1

+ p1
3 3√2

)
χIt1 b2 = ρ, b1 = −Θ′

Θ ρ, b0 = −2Θ′

Θ (A2)

z =
(
−b1 +

√
b21 − 4 b0 b2

)
/b2

χIs2 c2 = Θ′

Θ ρ
2 − 4ρ, c1 = 0, c0 = 8Θ′

Θ (12) at a2

χIs3 c2 = ρ3, c1 = 24ρ− 8ρ2 Θ′

Θ , c0 = −48Θ′

Θ (12) at a3

χIs4
c2 = 12ρ3 − Θ′

Θ ρ
4, c1 = 192ρ− 72Θ′

Θ ρ
2

(16)
c0 = −384Θ′

Θ

z2 =
(
−c1 +

√
c2

1 − 4 c0 c2

)
/c2

Table II: Overview of approximations for χ in terms of z for heat waves traveling towards the center

in a cylindrical geometry where a symmetry boundary condition is assumed. This table denotes the

coe�cients to calculate z using Θ′/Θ = A′/A+ iφ′ and ρ, which is used to calculate χ = 3
2ω/=

(
z2
)

and τinv = ω<
(
z2
)
/=
(
z2
)
; the equation numbers refer either to Section III or to the appendix.

In Table II the polynomials expressed in terms of z using Θ′/Θ = A′/A + iφ′ and ρ

to directly calculate χ and τinv are given. In Table III the approximations in terms of

polynomials in z are given for approximations based on in�nite domains.
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χinwz Equation for z

χinwKc2 b2 = 4ρ, b1 = 3 + 4Θ′

Θ ρ, b0 = Θ′

Θ

χinwKj2 b2 = 8ρ2, b1 = 8ρ2 Θ′

Θ + 12ρ, b0 = 8Θ′

Θ ρ+ 3

z =
(
−b1 −

√
b21 − 4 b0 b2

)
/b2

χinwKj3

a3 = 16ρ3, a2 = 16Θ′

Θ ρ
3 + 56ρ2

a1 = 48Θ′

Θ ρ
2 + 45ρ, a0 = 23Θ′

Θ ρ+ 7.5

χinwKc5

a3 = 16ρ2, a2 =
(

36ρ+ 16ρ2 Θ′

Θ

)
a1 =

(
15 + 28ρΘ′

Θ

)
, a0 = 3Θ′

Θ

p2 = −27a0a
2
3 + 9a1a2a3 − 2a3

2, p0 = 3a1a3 − a2
2

p1 = 3

√
p2 +

√
4p3

0 + p2
2, z = 1

a3

(
−a2

3 + 1−i
√

3
3· 3
√

4

p0
p1
− 1+i

√
3

6· 3
√

2
p1

)
Table III: Overview of approximations for χ in terms of z for heat waves traveling towards the edge

in a cylindrical geometry where an in�nite domain is assumed. This table denotes the coe�cients

to calculate z using Θ′/Θ = A′/A + iφ′ and ρ, which is used to calculate χ = 3
2ω/=

(
z2
)
and

τinv = ω<
(
z2
)
/=
(
z2
)
resulting from z =

√
3
2
iω+τinv

χ ; the equation numbers refer either to Section

III or to the appendix.

As the correct solutions switch compared to the analysis of heat waves traveling towards

the wall the superscript inw (inward) is added. The correct solutions have been selected

by comparing the three possibilities numerically. The other outward solutions given in [2]

can also still be used with the only exceptions of χAEK and χAEΦ as they approximate χ in

a strong cylindrical geometry for the outward case, which is very di�erently for the inward

case.

The approximations in Table I, Table II, and Table III are compared in the rest of this

section.

B. Selection of interesting approximations

The comparison of the approximations when only the di�usivity χ is present, i.e. V = 0

and τinv = 0, is made based on a large number of possibilities of ρ and the combined

parameter χ̄ = χ/ω. Therefore, (8) and (10) are used to generate A′/A and φ′. The most

interesting and best approximations are shown in Fig. 1 in terms of the relative error with
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respect to the true di�usivity χ.
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Figure 1: Comparison between the di�erent relative errors of the χ estimates for a large range of

χ̄ = χ/ω and ρ. The relative error is de�ned as εrel = 100 × |χ−χest|χ [%], where χest is either χφ

from Table I, χc from Table I, χinwKj3 Table III using (18), and χ
inw
Kc5 from Table III using (18). These

are the approximations based on in�nite domains (�rst row). The true cylindrical models (second

row) are estimated by either χIsφ from (14), χIs4 from (16), χIt3 from (A3), and χΦ4V from (B8).

This comparison is based on a cylindrical geometry using a symmetry boundary condition with χ

and V = τinv = 0, where the heat waves travel inwards. The darkest blue represents εrel < 1% and

the darkest red represents all εrel > 150%.

The use of in�nite domain approximations for heat waves traveling to the center give a

good approximation if the ratio ρω/χ is large. In that case χc has the largest region with

a good accuracy, but the highest accuracy is generally given by χKj3. In that case the

approximations based on cylindrical geometry for heat waves traveling towards the center

give good approximations for χ. Hence, χIt3 almost approximates the entire presented region

well be it with a slightly less accuracy then χIs4. Also χΦ4V performs well, but it is mainly

derived to perform well under convectivity. χIsφ is also shown as it is the most simple

cylindrical approximation found. Unfortunately, its region of applicability is much smaller

than the other approximations.
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In summary, χIt3 has the largest region of applicability. Only in a small region its relative

error is larger (maximally εrel ≈ 30%). In this region di�erent approximations are necessary,

for instance χKj3 or χc and χIs4.

C. Di�usivity and damping only

It is not possible to use one approximation to approximate χ well for all combinations of

χ, ω, ρ, and τinv. However, it turns out that by combining two approximations to estimate

χ almost the entire presented region of interest for heat waves traveling inwards can be

covered. This is shown in Fig. 2, where the maximum error over the entire presented region

is εrel < 2% such that it is always possible to get an accurate result for the presented

combination of χ, ω, τinv and ρ.
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Figure 2: Relative error of the χ estimates for the combination of χIs4 and χinwKj3 presented for

di�erent χ̄ = χ/ω and τ̄inv = τinv/ω represented at a number of spatial locations ρ. The relative

error is de�ned as εrel = 100 × |χ−χest|χ [%]. This �gure combines the approximations χIs4 and

χinwKj3, which are separated by the boundary represented by the white line. This �gure is based on

a cylindrical geometry using a symmetry boundary condition with V = 0, where the heat waves

travel inwards.

Both, χinwKj3 and χIs4 have been chosen, because they give the most accurate approxima-

tions in their regions of applicability and they are complementary. The white line shows the

approximate boundary of the regions of applicability of χinwKj3 and χIs4. At this boundary

the error is largest.

D. Di�usivity and convectivity with τinv = 0 and τinv = 2

For the inward case multiple approximations are available to estimate V . It is not easy to

choose a suitable approximation before the measurements have been analyzed, because the

approximations all depend on di�erent harmonic information. For instance, χφ uses only the
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phases of two harmonics, but χΦ4a uses two phases and one amplitude point. On the other

hand, when τinv = 0, then χΦ4V can be used, which uses only one harmonic. Therefore, it

is not possible to point out a best approximation. However, the regions of applicability of

the approximation are again clearly de�ned. χφ which originates from slab-geometry is best

at approximating χ for large ωρ/χ. On the other hand, the approximations based on the

symmetry boundary conditions estimate χ well for small ωρ/χ.

From a numerical point of view χΦ4V a performed best, but it is comparable to the other

cylindrical approximations. Therefore, it is chosen to combine χΦ4V a and χφ separated by

the white line, which is shown in Fig. 3 and Fig. 4 for τinv = 0 and τinv = 2.
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Figure 3: Relative error of the χ estimates for the combination of χΦ4V a and χφ presented for

di�erent χ̄ = χ/ω and V̄ = V/ω represented at a number of spatial locations ρ. The relative error

is de�ned as εrel = 100× |χ−χest|χ [%]. This �gure combines the approximations χΦ4V a and χφ, which

are separated by the boundary represented by the white line. This �gure is based on a cylindrical

geometry using a symmetry boundary condition with τinv = 0, where the heat waves travel inwards.

The darkest blue represents εrel < 1% and the darkest red represents all εrel > 150%.
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Figure 4: Relative error of the χ estimates for the combination of χΦ4V a and χφ presented for

di�erent χ̄ = χ/ω and V̄ = V/ω represented at a number of spatial locations ρ. The relative

error is de�ned as εrel = 100 × |χ−χest|χ [%]. This �gure combines the approximations χΦ4V a and

χφ, which are separated by the boundary represented by the white line. This �gure is based on a

cylindrical geometry using an symmetry boundary condition with τ̄inv = 2, where the heat waves

travel inwards. The darkest blue represents εrel < 1% and the darkest red represents all εrel > 150%.

Both �gures show similar regions where χ can be estimated well and where not. The

large error close to the boundary is caused by the limited region of approximation, which

is similar to the previous �gures. There is no suitable approximation, which handles the

regions with large errors.

V. SUMMARY AND DISCUSSION

In this paper, the problem of determining the thermal di�usion coe�cient from electron

temperature measurements during power modulation experiments has been revisited. A

large number of new approximations have been introduced to estimate χ directly from A′/A
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and φ′ for di�erent combinations of χ, V , and τinv for heat waves traveling to the center. This

corresponds to the case of o�-axis heating. The approximations are based on a symmetry

boundary conditions and are derived on the basis of cylindrical geometry using common

assumptions.

The quality of the approximations is presented in several �gures. In case only χ and

τinv are considered (V = 0), the relative error of the χ estimate for the region of interest

are εrel < 2% . These errors are achievable by combining χinwKj3 and χIs4. In case also V is

considered the new approximations show a signi�cant region in which χ can be estimated

well, but also regions in which no suitable approximation exists. Combining χΦ4V a and χφ

cover a large region where χ can be well estimated.

VI. GENERAL CONCLUSION

In this set of papers (Part 1, Part 2, and Part 3), the problem of determining the ther-

mal di�usion coe�cient from electron temperature measurements during power modulation

experiments has been revisited. A large number of new approximations have been intro-

duced to estimate χ directly from A′/A and φ′ for di�erent combinations of χ, V , and τinv.

The approximations are based on in�nite domains or Neumann boundary conditions and

are derived on the basis of slab or cylindrical geometry using common assumptions. These

approximations including the well known approximations from the literature have been com-

pared in Part 3 for heat waves traveling towards the center (inward) and Part 1 and Part 2

towards the edge (outwards). The approximations are derived based on A′/A and φ′. The

quality of the approximations is presented in several �gures. In case only χ and τinv are

considered (V = 0), the relative error of the χ estimate for the region of interest is in general

εrel < 1%. However, in a small region the errors are larger with a maximum relative error for

heat waves traveling towards the edge εrel < 20% and for heat waves traveling towards the

center εrel < 2% . These errors are achievable by combining χKj3 and χAEΨ in the outward

case χinwKj3 and χIs4 in the inward case respectively. In case also V is considered the new

approximations show a signi�cant region in which χ can be estimated well, but also regions

in which no suitable approximation exists. Combining χΦ4V a and χφ for the inward case and

χAEΨ and χφ for the outward case cover a large region where χ can be well estimated

However, there are also a number of important issues when using the approximations
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presented in these parts and the literature. First of all, the combination of assuming the

transport coe�cients independent of ρ and the use of in�nite domains or symmetry boundary

conditions necessary to arrive at explicit approximations can result in errors. These errors

are introduced as in reality the pro�les may vary spatially and di�erent boundary conditions

are present. In Part 1, it has been shown that these errors in�uence the estimation of the

convectivity and the damping more signi�cantly making the estimated V and τinv often

erroneous. On the other hand, as has been shown in Part 2, it is important to still estimate

V and τinv as they are necessary to select the proper approximation and to arrive at correct

estimates of χ in the presence of V and τinv. A second important issue is the determination of

A′/A and φ′ from φ and A. To investigate this relationship the notion of transfer functions

has been introduced, which makes the relationship between A′/A and A, and, φ′ and φ

explicit. It showed that the relationship in slab-geometry is straightforward (Part 1), but

in cylindrical geometry is complicated (Part 2). It also shows that the dependency of ρ is

contained in A′ and φ′ and as such depend on how A′ and φ′ are calculated. Therefore, it

is always important to clearly state how A′ and φ′ are calculated from φ and A to arrive at

comparable results. However, for cylindrical domains there is not a clear recipe to calculate

A′ and φ′ from φ and A. Hence, in this paper we refrain on commenting on that and for

the analysis the true A′/A and φ′ are used. A third problem, only touched upon brie�y, is

the e�ect of noise, which is not taken into account by the methods proposed in this set of

papers. However, if two harmonics are used (in the presence of V ), it is important that both

harmonics do not contain to much noise, which can be achieved by using a non-symmetric

duty cycle.

These issues are partly related to the use of explicit approximations. These problems can

in principle be avoided by using implicit methods. As these implicit methods allow the use

of a more realistic boundary conditions, the direct estimation of χ from A and φ using the

transfer function representation, and the inclusion of noise in the estimation processes. How-

ever, such implicit methods will come at the price of more complex optimization problems

and require a number of di�erent concepts as presented in this set of papers. Nevertheless,

in case implicit methods are used �nding good starting values is also important for which

the approximations presented in this set of papers can be used.
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APPENDIX

The appendix consists of three sections in which approximations are derived based on the

continued T-fraction of modi�ed Bessel functions of the �rst kind to arrive at approximations

for χ and τinv in terms of z. In addition, the other approximations for χ, V , and τinv based

on the continued fraction given in (20) are presented. Finally, also an approximation is given

for a case where only χ is present.

Appendix A: CONTINUED T-FRACTION OF THE RATIO OF BESSEL FUNC-

TIONS OF THE FIRST KIND

The following continued T -fraction of I2 (zρ) /I1 (zρ) is based on [12](p. 363) and is useful

for approximating (10). The continued T-fraction is given by

I2 (zρ)

I1 (zρ)
=

zρ

2 + zρ|a +
− 3zρ

3 + 2zρ|b +
− 5zρ

4 + 2zρ+ · · ·

. (A1)

This continued fraction is truncated at locations a and b.

a) Truncating (A1) at location a results in polynomial

0 = ρz2 − Θ′

Θ
ρz − 2

Θ′

Θ
. (A2)
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b) Truncating (A1) at location b results in third order polynomial

0 = 2ρ2z3 +

(
3ρ− 2ρ2 Θ′

Θ

)
z2 − 4ρ

Θ′

Θ
z − 6

Θ′

Θ
. (A3)

Again, continued fractions with more terms result in 4th order or higher polynomials.

Appendix B: CONTINUED C-FRACTION OF CONFLUENT HYPERGEOMET-

RIC FUNCTION OF THE FIRST KIND

The continued C-fraction for Φ (a+ 1, b+ 1, z) /Φ (a, b, z) given in (20) is used to derive

several approximations.

a) Truncating (20) at location a and substituting it into (8) results in following logarithmic

temperature derivative

Θ′

Θ
= λ1 + λ2

1

1−

λ2 − λ1 − λ2

2
ρ

1 +
λ2 + (λ2 − λ1)

6
ρ

. (B1)

This can be further simpli�ed by partly substituting λ1 and λ2

Θ′

Θ
=

2λ2
1ρ+ λ1λ2ρ+ 2λ2

2ρ− 6V
χ

6− 2V
χ
ρ

, (B2)

where 2λ2
1 + λ1λ2 + 2λ2

2 = 2
(
V
χ

)2

+ 9
2
τinv+ωi

χ
such that

(
6− 2

V

χ
ρ

)
A′

A
+

(
6− 2

V

χ
ρ

)
iφ′ =

(
2

(
V

χ

)2

+
9

2

τinv + ωi

χ

)
ρ− 6

V

χ
. (B3)

By splitting (B3) in its real and imaginary part χ can be calculated(
6− 2

V

χ
ρ

)
φ′ =

9

2

ω

χ
ρ (B4)

and (
6− 2

V

χ
ρ

)
A′

A
= 2

(
V

χ

)2

ρ+
9

2

τinv
χ
ρ− 6

V

χ
. (B5)

The imaginary part for V = 0 yields an approximation for χ, i.e.

χIsφ =
3

4

ω

φ′
ρ and τIsφ =

ω

φ′
A′

A
, (14)
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which is also found using asymptotic expansions and in (14) using a continued fraction

based on Bessel functions. If τinv is assumed to be zero, solve (B4) and (B5) together

χΦ2V =
9ρω

4φ′(A
′

A
ρ+ 3)

and VΦ2V = −
9A

′

A
ρω

4φ′(A
′

A
ρ+ 3)

. (B6)

The mixed case of χ, V , and τinv cannot be solved, due to the system of equations

even if one harmonic is added.

b) Truncating (20) at location b and substituting it into (8) results in following logarithmic

temperature derivative by substituting λ1 and λ2

Θ′

Θ
= −ρ

2V (6V 2 + 19χ(τinv + iω))− 12ρχ (4V 2 + 5χ(τinv + iω)) + 120V χ2

3χ (ρ2 (2V 2 + 5χ(τinv + iω))− 16ρV χ+ 40χ2)
. (B7)

The complexity of (B7) makes it di�cult to calculate approximations by hand. There-

fore, Mathematica© has been used to calculate the approximations for χ, V , and

τinv.

b1) If τinv = 0, (B7) results in

χΦ4V =
3

2

6859ρ3ωφ′

l2 −
(
6A

′

A
ρ
(
15A

′

A
ρ+ 32

)
+ 680

)
·
(
−2A

′

A
ρ± l1 + 30

) , (B8)

with

l1 =

√
4

(
A′

A
ρ+ 15

)2

− 285ρ2 (φ′)2 (B9)

and

l2 = 114ρ2 (φ′)
2

(
32
A′

A
ρ± l1 + 62

)
. (B10)

There are two solutions possible, the second option (− in ±) gives a solution in a

region with poor approximations and is disregarded. Hence, + solution is used. The

convectivity V is given by

VΦ4V = χΦ4V

−l1 − 17A
′

A
ρ+ 30

19ρ
. (B11)

b2) See (21)

b3) If A′1/A1, φ
′
1 and φ′2 are used, only one solution is found

χΦ4b =
3

2

6859dωρ3ω1φ
′
1

(
ω2

2

(
(dA)2 + (φ′1)2)+ ω1φ

′
2(dω − ω2φ

′
1)
)

8(19dω + o) (1444dω2 + 456dωo+ 45o2)
, (B12)
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with

dω = ω1φ
′
2 − ω2φ

′
1 (B13)

and

o =
A′1
A1

ρω1φ
′
2 −

A′2
A2

ρω2φ
′
1 − 4dω. (B14)

The corresponding V and τinv are given by

VΦ4b = −χΦ4b
30o

38ρdω
, (B15)

and (subscripts Ψ4b have been omitted)

τΦ4b =
3

2
χ
−15

A′
1

A1
ρ2ω 1

χ
− 24

(
V
2χ

)2

ρ2φ′ − 38
(

V
2χ2

)
ρ2ω + 96

(
V
2χ

)
ρφ′ + 60ρω 1

χ
− 120φ′

15ρ2φ′
.

(B16)

This equation is exactly the same as (24).

Also a T -fraction is given in [11, 12], but it showed less accurate results than the continued

C-fraction.

Appendix C: APPROXIMATIONS FOR χ ONLY (V = τinv = 0)

If τinv = 0 and V = 0, the truncation of (12) at a2 is given by

0 =

((
A′

A
+ iφ′

)
ρ2 − 4ρ

)
3

2

ωi

χ
+ 8

(
A′

A
+ iφ′

)
. (C1)

The real part is given by

0 = −φ′ρ2 3

2

ω

χ
+ 8

A′

A
(C2)

and the imaginary part is given by

0 =
A′

A
ρ2 3

2

ωi

χ
− 4ρ

3

2

ωi

χ
+ 8iφ′. (C3)

Solving for A′/A and φ′ and rewriting in terms of χ yields

χIs2A = ω
3ρ3
√

4− A′/Aρ
16ρ2

√
A′/A

(C4)

and

χIs2φ = 3ωρ
2 +

√
4− ρ2 (φ′)2

16φ′
. (C5)
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