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Abstract

In this paper, a number of new explicit approximations are introduced to estimate the perturba-

tive di�usivity (χ), convectivity (V ), and damping (τ) in a cylindrical geometry. For this purpose

the harmonic components of heat waves induced by localized deposition of modulated power are

used. The approximations are based upon the heat equation in a semi-in�nite cylindrical domain.

The approximations are based upon continued fractions, asymptotic expansions, and multiple har-

monics.

The relative error for the di�erent derived approximations is presented for di�erent values of

frequency, transport coe�cients, and dimensionless radius. Moreover, it is shown how combinations

of di�erent explicit formulas can yield good approximations over a wide parameter space for di�erent

cases, such as no convection and damping, only damping, and both convection and damping.

This paper is the second part (Part 2) of a series of three papers. In Part 1 the semi-in�nite slab

approximations have been treated. In Part 3 cylindrical approximations are treated for heat waves

traveling towards the center of the plasma.
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II MODELING OF THERMAL TRANSPORT

I. INTRODUCTION

This paper, Part 2 of a series of three papers, deals with semi-in�nite cylindrical ap-

proximations that can be used to calculate the perturbative thermal di�usion coe�cient,

convectivity, and damping from the experimental data of heat pulse propagation. For a

general introduction of the series of three papers the reader is referred to [1].

This paper is structured as follows. Section II gives an overview of the relevant assump-

tions and models used for perturbative transport analysis. In Section III, three methods

are introduced to �nd approximations for χ, V , and τ , i.e., continued fractions, asymptotic

expansions, and multiple harmonics. Section IV gives an overview of possible explicit ap-

proximations under various assumptions. The di�erent approximations are compared for

di�erent values of the transport coe�cients, dimensionless radius, and frequency. In prac-

tice, the transport coe�cients are unknown. Therefore, in Section V a method is introduced

to select and test the accuracy of the approximation without using knowledge of the actual

transport coe�cients. Finally, in Section VI the main results are summarized and discussed.

II. MODELING OF THERMAL TRANSPORT

In this section, the main assumptions and models used for perturbative transport analysis

of the electron transport are summarized.

A. Perturbative transport analysis

Linearized thermal transport inside a fusion reactor is often modeled as radial (1D)

transport in a cylinder due to the magnetic con�ned plasma topology [1�3]

3

2

∂

∂t
(nT ) =

1

ρ

∂

∂ρ

(
nρχ (ρ)

∂T

∂ρ
+ nρV (ρ)T

)

− 3

2
nτinv (ρ)T + Pmod, (1)

where χ is the di�usivity, V the convectivity, τinv the (inverse) damping (τinv = 1/τ), T

denotes the electron temperature, n the density, ρ the dimensionless radius, and Pmod a

perturbative heat source. However, a number of assumptions are necessary to derive direct

expressions for χ, which are standard in the literature [2, 4]. These assumptions simplify
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II MODELING OF THERMAL TRANSPORT

(1) such that analytic solutions can be derived for (1). Only measurements are considered

for which the transients due to the initial condition can be neglected. It is assumed that

the parameters are constant with respect to time and ρ, which is also referred to as being

homogenous or uniform [4]. Finally, only spatial regions are considered where Pmod = 0,

i.e., outside the region where the heating is deposited to perturb the plasma. Here, it

is additionally assumed that the density n is constant with respect to ρ. Under these

assumptions (1) can be transformed into the Laplace domain yielding

3

2
(s+ τinv) Θ (ρ, s) =

1

ρ

d

dρ

(
ρχ
∂Θ (ρ, s)

∂ρ
+ ρVΘ (ρ, s)

)
, (2)

where Θ is the Laplace transformed temperature T and s is the Laplace variable. This

complex valued Ordinary Di�erential Equation (ODE) can be solved analytically [5, 6]:

Θ (ρ, s) = eλ1ρD1 (s) Ψ

(
λ2

λ2 − λ1

, 1, (λ2 − λ1) ρ

)

+ eλ1ρD2 (s) Φ

(
λ2

λ2 − λ1

, 1, (λ2 − λ1) ρ

)
, (3)

where

λ1,2 = − V
2χ
∓

√(
V

2χ

)2

+
3

2

s+ τinv
χ

. (4)

The functions Φ (ρ, s) and Ψ (ρ, s) denote the Con�uent Hypergeometric Functions of the

�rst and the second kind, respectively. These functions are also often denoted as 1F1 and

U , and are extensively described in [7�9]. The boundary constants are denoted by D1 (s)

and D2 (s). This solution in terms of Con�uent Hypergeometric Functions may not be so

familiar, but if simpli�ed by assuming V = 0, the well-known solutions in terms of the

modi�ed Bessel functions of the �rst kind Iν and the second kind Kν of order ν = 0 are

found. In particular, if V = 0, then λ1 = −λ2, λ2/ (λ2 − λ1) = 1/2, and Φ (ρ, s) and Ψ (ρ, s)

result in [7]

Φ

(
1

2
, 1, (λ2 − λ1) ρ

)
=

exp

(
1

2
(λ2 − λ1) ρ

)
I0

(
1

2
(λ2 − λ1) ρ

)
(5)

and

Ψ

(
1

2
, 1, (λ2 − λ1) ρ

)
=
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II MODELING OF THERMAL TRANSPORT

exp

(
1

2
(λ2 − λ1) ρ

)
K0

(
1
2

(λ2 − λ1) ρ
)

√
π

. (6)

So (3) simpli�es to

Θ (ρ, s) =
D1 (s)√

π
K0

(
1

2
(λ2 − λ1) ρ

)
+D2 (s) I0

(
1

2
(λ2 − λ1) ρ

)
. (7)

This solution is well known and is studied and referenced in e.g. [6, 10].

These solutions are used to derive hands-on models, which can be used to derive explicit

approximations of χ.

B. Logarithmic temperature derivative and transfer function

An explicit solution is di�cult to derive on the basis of the two eigenfunctions Φ (ρ, s) and

Ψ (ρ, s). Therefore, an additional simpli�cation step is necessary to be able to eliminate one

eigenfunction. One eigenfunction is eliminated by assuming a semi-in�nite domain, which

is de�ned as follows, if ρ → ∞, then Θ → 0. This means that at ρ = ∞ all perturbations

need to have vanished.

In case V = 0 then for (7) it means that D2 (s) = 0, which is well known in the literature

[10]. This also implies that D2 (s) = 0 in (3). However, this is di�cult to prove analytically.

Instead, it is numerically veri�ed that D2 (s) = 0 in (3) by comparing it to �nite di�erence

simulations with boundary condition T (ρ� 1) = 0. This shows that the error between the

analytic and numerical simulations are small and that the error is decreasing with increasing

density of the discretization grid. In addition, the functions Φ and Ψ are numerically eval-

uated to study the behavior close to ρ =∞, indicating again that this is the correct choice.

Hence, it is concluded that D2 (s) = 0 for a semi-in�nite domain such that (3) becomes

Θ (ρ, s) = D1 (s) eλ1ρΨ

(
λ2

λ2 − λ1

, 1, (λ2 − λ1) ρ

)
. (8)

In principle, D1 (s) needs to be �xed by assuming a second boundary condition. However, it

is common practice to express the solution in terms of the spatial logarithmic derivative of

the amplitude A and the spatial derivative of φ, which can be calculated using the logarithmic

temperature derivative (∂Θ/∂ρ) /Θ. Therefore, the temperature Θ is written in terms of its

harmonic components, i.e., Θ = A exp (iφ), and the spatial derivative of the temperature is
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II MODELING OF THERMAL TRANSPORT

given by Θ′ = A′ exp (iφ) + iφ′A exp (iφ) such that

Θ′

Θ
=
A′

A
+ iφ′. (9)

Taking the logarithmic derivative of the right hand side of (8) results in, see [8]

Θ′

Θ
= λ1 − λ2

Ψ
(

1 + λ2
λ2−λ1 , 2, (λ2 − λ1) ρ

)
Ψ
(

λ2
λ2−λ1 , 1, (λ2 − λ1) ρ

) , (10)

which will be used to derive an explicit relationship to identify χ in the presence of V and

τinv. If V = 0, then (10) simpli�es to

Θ′

Θ
= −zK1 (zρ)

K0 (zρ)
(11)

with z = 1
2

(λ2 − λ1). This relationship is well known in the literature [10].

A common problem using the representations (10) and (11) is how to calculate the spatial

derivatives A′/A and φ′ from the measured A and φ. In contrast to the slab-geometry case,

where the spatial derivative can be explicitly calculated, see [1], for cylindrical geometry the

spatial derivative cannot be easily calculated. On the other hand, it is possible to avoid the

calculation of the spatial derivatives by directly expressing the transport coe�cients and ρ

in terms of the measured amplitudes using the transfer function description [1, 11�13]. This

description needs a second boundary condition to de�ne D1 (s), which basically de�nes the

relationship between A′/A and A, and φ′ and φ.

The most logical choice for a second boundary condition is Θ (ρ, s) = Θ (ρ1, s), because

Θ (ρ1, s) is measured. In addition, the domain on which the transport coe�cients are ana-

lyzed cannot contain a source term, but still this domain should be limited by a boundary

condition. Using the same steps as presented in [1], the transfer function from the temper-

ature at point ρ1 to the temperature at point ρ2 is given by

Θ (ρ2, s)

Θ (ρ1, s)
= eλ1∆ρ

Ψ
(

λ2
λ2−λ1 , 1, (λ2 − λ1) ρ2

)
Ψ
(

λ2
λ2−λ1 , 1, (λ2 − λ1) ρ1

) , (12)

where the solution at a second measurement point ρ2 > ρ1 is used as resulting temperature

Θ (ρ2). The transfer function description avoids the ambiguity of how to determine A′/A

and φ′. On the other hand, from the transfer function description in cylindrical geometry it

is not straightforward to derive explicit relationships for χ. On the other hand, the transfer
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III DERIVATION OF EXPLICIT APPROXIMATIONS

description can be used to validate the estimated coe�cients by comparing the measured left

hand side to the right hand side where the estimated χ, V , and τinv need to be substituted.

In particular, as the transfer function can be derived for many di�erent choices of boundary

conditions, e.g., a Dirichlet boundary condition or a Robin boundary condition at the edge

could be used. As such, it is possible to check if the semi-in�nite domain assumption is

valid. However, in this paper this will not be further investigated. In the next section,

approximations are derived to estimate χ, V , and τinv.

III. DERIVATION OF EXPLICIT APPROXIMATIONS

Here, three new methods are introduced to �nd approximations for determining the dif-

fusivity in cylindrical geometry using (10) and (11). They are based on continued fractions,

asymptotic expansions, and multiple harmonics. A great number of new approximations are

derived in this paper. Therefore, in this section only the basic ideas are explained to increase

the readability of the paper. The full derivations are summarized in the next section and

their derivations can be found in the appendix.

A. Continued fractions

The solution to the Bessel Di�erential Equation and Con�uent Hypergeometric Di�er-

ential Equation can be found by substitution of a power series. This yields the recurrence

relationship, which is used to calculate the in�nite series representation of Bessel functions

and Con�uent Hypergeometric Functions. Moreover, if a fraction of these functions is stud-

ied the recurrence relationships and series representation can also be rewritten in terms of a

Continued Fractions representation [14, 15]. By truncating this Continued Fraction the ratio

of Bessel functions and Con�uent Hypergeometric Functions can be approximated. Here,

this approximation is inverted such that the transport coe�cients can be directly calculated.

The use of a continued fraction to derive an explicit approximation for χ is best explained

by means of an example. Therefore, consider (11) where for V = 0 such that a new variable

z can be de�ned:

z =

√
3

2

iω + τinv
χ

. (13)
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III DERIVATION OF EXPLICIT APPROXIMATIONS

The Laplace variable is replaced by s = iω as s can only be measured on the imaginary axis.

The Continued J-fraction from [14, 15] can be used to calculate the ratio

K1 (zρ)

K0 (zρ)
= 1 +

1

2zρ

−
(4zρ)−1

2zρ+ 2−
9/4

2zρ+ 4−
25/4

2zρ+ 6−
64/4

· · ·

. (14)

This continued fraction can be truncated to �nd explicit approximations for χ. The most

simple truncation is
Θ′

Θ
= −z

(
1 +

1

2zρ

)
. (15)

This can be rewritten by substituting (9) and rewriting in terms of z

z = −
(
A′

A
+ iφ′ +

1

2ρ

)
. (16)

Now by substituting (13) and squaring (16) it is possible to �nd χ and τinv using the

imaginary part and real part

χc =
3

4

ω(
A′

A
+ 1

2ρ

)
φ′

(17)

and

τc =
ω

2


(
A′

A
+ 1

2ρ

)
φ′

− φ′(
A′

A
+ 1

2ρ

)
 . (18)

The index, here c, is used to distinguish between the di�erent approximations. In [4] the

same approximation is found based on a di�erent method. However, unlike [4] using this

method also the corresponding formula to calculate τinv is found.

This method can also be used to �nd more accurate approximations by using more terms

in the continued fraction.

In principle, it is possible to �nd an approximation of arbitrary accuracy. However,

in practice solving for χ beyond third order polynomials in z is too complicated. The

reason is that �nding zeros for a fourth order polynomial in z is not straightforward. In

addition, di�erent solutions apply for di�erent regions of interest, because the coe�cients in

the polynomials in z depend on A′/A and φ′. Hence, mathematical bifurcations can occur.

8 September 5, 2014



III DERIVATION OF EXPLICIT APPROXIMATIONS

The continued fraction in (14) can also be truncated at a later stage, for the �rst three

terms of (14) this results in

Θ′

Θ
= −z +

1

2ρ
+

1

ρ

−
1/4

2zρ+ 2−
9/4

2zρ+ 4

 . (19)

It can be rewritten in terms of z resulting in the third order polynomial

0 = a3z
3 + a2z

2 + a1z + a0, (20)

with coe�cients

a3 = 16ρ3, a2 = 16
Θ′

Θ
ρ3 + 56ρ2,

a1 = 48
Θ′

Θ
ρ2 + 45ρ, and a0 = 23

Θ′

Θ
ρ+ 7.5, (21)

where Θ′/Θ is given by (9). The third order polynomial yields three solutions. However,

generally only one solution can be used to determine χ, because the argument of z is situated

in the domain [0, π/4] (χ, τinv, and ω are larger than zero) and the other two are outside

this domain. This has been numerically calculated and it turns out that the correct zero is

given by

z = − a2

3a3

−
3
√

2p0

3a3p1

+
p1

3 3
√

2a3

, (22)

where p0 = 3a1a3− a2
2, p1 = 3

√
p2 +

√
4p3

0 + p2
2, and p2 = −27a0a

2
3 + 9a1a2a3− 2a3

2. Now the

solution is found by squaring and using the imaginary part and the real part of z2

χ =
3

2

ω

= (z2)
. (23)

The solution for the semi-in�nite domain approximations of a third order polynomial, i.e.,

(20), is always given by (22). This is because the argument of z of the correct solution must

be situated in [0, π/4]. This is di�cult to proof, but has been numerically veri�ed. This

holds similarly for a second order polynomial in z. Hence, χ can always be found for such

polynomials in z using (23), which is based on (13). Therefore, in the appendix only the

polynomials in terms of z are given. The approximation for τinv can also be found based on

(13)

τinv = ω
< (z2)

= (z2)
. (24)
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However, the damping τinv is much more sensitive to errors due to mismodeling [1]. There-

fore, they generally do not give reasonable values for the true damping. This holds also for

approximations of the convectivity V , which are derived in the next sections. Nevertheless,

they play an important role in the validation of the χ estimates. In the appendix, other

continued fractions are used to �nd explicit approximations for χ.

B. Asymptotic expansions

An alternative to continued fractions are asymptotic expansions. An asymptotic expan-

sion of a function can be based on either a truncation of its series expansion or on an

approximation of the de�ning Ordinary Di�erential Equation for the function [7, 8, 16].

The asymptotic expansions can be calculated for the Bessel functions and for the Con�uent

Hypergeometric Function of the second kind Ψ. Here, an approximation is derived based on

(10) in terms of Ψ and in the appendix the derivation of the approximation for χ based on

Bessel functions of the second kind can be found.

In [8, 17] the asymptotic expansion for x ≈ 0 of Ψ (a, b, x) are given. Using this we �nd

for (λ1 − λ2) ρ small

Ψ (a, 1, (λ2 − λ1) ρ) =

− 1

Γ (a)
(ln ((λ2 − λ1) ρ) + z (a) + 2γ) , (25)

and

Ψ (a+ 1, 2, (λ2 − λ1) ρ) =
((λ2 − λ1) ρ)−1

Γ (a+ 1)
, (26)

where a = λ2/ (λ2 − λ1), γ is the Euler-Mascheroni constant and Γ is the gamma function.

It should not be confused with the particle �ux Γ, which is not considered in this paper.

The logarithmic derivative of Γ is the digamma function denoted by z (often also denoted

as ψ). The logarithmic temperature derivative can be calculated by substituting (25) and

(26) into (10)

Θ′

Θ
= λ1 + λ2

1
Γ(a+1)

((λ2 − λ1) ρ)−1

1
Γ(a)

(ln ((λ2 − λ1) ρ) + z (a) + 2γ)
. (27)

This can be simpli�ed using the property Γ (a+ 1) = aΓ (a) and a = λ1/ (λ2 − λ1)

Θ′

Θ
= λ1 +

1

ρ (ln ((λ2 − λ1) ρ) + z (a) + 2γ)
. (28)
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The digamma function z (a) as function of a and the appearance of λ1 in and outside the

logarithm pose important obstacles to �nd approximations for χ. Therefore, two simpli�ca-

tion steps are necessary. The asymptotic expansion is based on x ≈ 0, which implies that

ρ ≈ 0. Thus, the term with 1/ρ will dominate over λ1, hence (28) can be simpli�ed to

Θ′

Θ
=

1

ρ (ln ((λ2 − λ1) ρ) + z (a) + 2γ)
. (29)

However, if V 6= 0 the problem of z (a) remains.

In case V = 0, a = 1
2
such that z

(
1
2

)
= −2 ln (2)− γ resulting in

Θ′

Θ
=

1

ρ (ln ((λ2 − λ1) ρ)− 2 ln (2) + γ)
, (30)

rearranging yields

λ2 − λ1 =
1

ρ
exp

(
1

Θ′

Θ
ρ

+ 2 ln (2)− γ

)
, (31)

such that
1

2
(λ2 − λ1) =

γ1

ρ
exp

((
Θ′

Θ
ρ

)−1
)
, (32)

where γ1 = 2 exp (−γ), which should be used with high accuracy in the calculations. The

approximation in terms of z is given by

z =
γ1

ρ
exp

((
Θ′

Θ
ρ

)−1
)
, (33)

for which the solution in terms of χ and τinv are given in (23) and (24). Note that in this

special case χ and τinv can also be expressed in terms of geometrical functions

χAEΨ =
3

2
ω
ρ2

γ2
1

(
exp

(
2

ρ

A′/A

|Θ′/Θ|2

)
sin

(
−2

ρ

φ′

|Θ′/Θ|2

))−1

, (34)

and

τAEΨ = ω

(
tan

(
−2

ρ

φ′

|Θ′/Θ|2

))−1

. (35)

In the appendix, also a similar relationship is derived based on the asymptotic expansions

of Bessel functions. This approximation only di�ers from (34) by the factor γ1. The com-

parison of the approximations with and without γ1 shows that using the factor γ1 improves

the result, thus only (33) is presented here.

Due to the digamma function it is not possible when V 6= 0 to rewrite (29) such that

the di�usivity χ can be estimated explicitly. Therefore, another approximation step is
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introduced when V 6= 0 by replacing z (a) = z
(

1
2

)
. Then, it is still possible to estimate χ

well in cases where a ≈ 1
2
, e.g., V ≈ 0 or ln ((λ2 − λ1) ρ) � z (a). The reason is that V is

also contained in λ2 − λ1. In that case (29) is expressed as(
V

2χ

)2

+
3

2

τinv
χ

+
3

2

iω

χ
=
γ2

1

ρ2
exp

((
Θ′

Θ
ρ

)−1
)2

. (36)

Interestingly, the estimate (34) for the di�usivity χ does not change as the imaginary part

only contains χ. If τinv = 0 in (36), then

|VAEΨ| =
3

2
2ω

√
<{z2}
= {z2}

. (37)

However, the possibility to estimate V in practice using (37) is questionable. The combina-

tion of V and τinv cannot be calculated using this approximation.

C. Multiple harmonics

Every harmonic �xes two degrees of freedom, which means in practice that either χ and

τinv or χ and V can be estimated if only one harmonic is used. Therefore, to estimate χ, V ,

and τinv together, it is necessary to use at least two harmonics. In [1] an approximation is

derived based on slab-geometry. Here, an approximation is derived based on the extended

model in [4]

χ =
3

4
ω

((
A′

A
+

1

2ρ
+
n′

2n
+
χ′

2χ
+
V

2χ

)
φ′ +

φ′′

2

)−1

(38)

This relation is derived by substituting Θ = A exp (iφ) and its spatial derivatives Θ′ and

Θ′′ into the Laplace transform of (1), which also includes the density (assumed constant

outside this subsection). Generally, this model is simpli�ed by assuming constant χ such

that χ′/2χ = 0. In addition, it is assumed that V = 0 and φ′′ = 0. However, it can be

shown, by taking the spatial derivative of (10), that φ′′ 6= 0. On the other hand, without

this assumption the relationship (38) cannot be used without approximating φ′′ directly.

In this paper, only the assumption φ′′ = 0 is retained, but by using two harmonics the

term χ′

2χ
+ V

2χ
can be eliminated. As such, it is possible to calculate χ, V , and τinv. This

should make it possible to identify χ under in�uence of V and τinv, accepting errors caused

by the φ′′ = 0 assumption. Therefore, rewrite (38) in terms of the unknown quantities

χ

(
A′

A
+

1

2ρ
+
n′

2n

)
− 3

4

ω

φ′
= −χ

(
χ′

2χ
+
V

2χ

)
. (39)
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This gives for two harmonics ω1 and ω2 at the same ρ

χ

(
A′ω1

Aω1

+
1

2ρ
+

1

2

n′

n

)
− 3

4

ω1

φ′ω1

=

χ

(
A′ω2

Aω2

+
1

2ρ
+

1

2

n′

n

)
− 3

4

ω2

φ′ω2

, (40)

where the short-hand notation φ′ω2
= φ′ (ω2) and A′ω2

/Aω2 = A′ (ω2) /A (ω2) is used. Solving

(40) yields

χc2H =
3

4

ω1

φ′(ω1)
− ω2

φ′(ω2)(
A′

A
(ω1)− A′

A
(ω2)

) . (41)

Note that (41) is insensitive to density gradients. The convectivity V is found by rewriting

(39) and next to assuming φ′′ = 0 also assuming χ′ = 0

Vc2H = −2

(
A′

A
+

1

2ρ
+

1

2

n′

n

)
χc2H +

3

2

ω

φ′
, (42)

where ω can be freely chosen, but ω1 is preferable. However, calculating the damping is

more di�cult. Therefore, after the substitution of Θ′ and Θ′′ into (1) the real part should

be considered

χ

(
A′′

A
− (φ′)

2

)
=

3

2
τinv −

(
1

ρ
V + V ′ +

n′

n
V

)
−
{

1

ρ
χ+

n′

n
χ+ V

}
A′

A
. (43)

This can be rewritten in terms of τinv

τc2H =
2

3
χ

((
A′′

A
− (φ′)

2

)

+

(
1

ρ

V

χ
+
V ′

χ
+
n′

n

V

χ

)
+

{
1

ρ
+
n′

n
+
V

χ

}
A′

A

)
. (44)

After the substitution of (39) it yields

τc2H =
2

3
χ

((
A′′

A
− (φ′)

2

)
+

(
1

ρ

V

χ
+
V ′

χ
+
n′

n

V

χ

)

+

{
1

ρ
+
n′

n
+

(
3

4

ω

φ′χ
− 2

(
A′

A
+

1

2ρ
+
n′

2n

))}
A′

A

)
. (45)

13 September 5, 2014



IV OUTWARD SOLUTIONS

In this equation, still two unknowns are present, thus in the spirit of neglecting φ′′, ∂
∂ρ

(
A′

A

)
is also neglected. In addition, the standard assumption of V is constant in space is used

such that V ′ = 0. This results in the following relationship

τc2H =
2

3
χ

((
A′

A

)2

− (φ′)
2

+

(
1

ρ

V

χ
+
n′

n

V

χ

)

+

{
1

ρ
+
n′

n
+

(
3

4

ω

φ′χ
− 2

(
A′

A
+

1

2ρ
+
n′

2n

))}
A′

A

)
. (46)

The calculation of τinv is based on a complex relationship. In addition, assuming φ′′ = 0 and

∂
∂ρ

(
A′

A

)
= 0 introduces additional errors when estimating χ, V , and τinv. This in�uences the

approximations τc2H and Vc2H more signi�cantly and hence are not so useful in practice.

It may seem that assuming χ constant is no longer necessary by eliminating χ′ in (41).

However, if χ′ is non-zero it also modi�es φ′′. As such, it is questionable if better estimates

of χ can be achieved. The density gradient is still included here to show that it is contained.

However, in this paper the density is assumed constant such that n′/n = 0.

The methods of continued fractions, asymptotic expansions, and multiple harmonics are

used to derive many di�erent explicit approximations of χ. They are all approximations and

all have a di�erent region in which their approximation is good and regions in which it is

poor. The other explicit approximations are presented in the appendix, which together with

the approximations presented here are summarized and compared in the next section.

IV. OUTWARD SOLUTIONS

In this section, the explicit approximations for χ in a semi-in�nite cylindrical geometry

with constant spatial parameter dependencies are summarized and compared. The compared

approximations, based on (10) and (11), are presented in tabularized form in this section.

In addition, the slab-geometry formula's in [1] are also considered here.

This section consists of four parts: the overview table with all the derived approximations;

a presentation and discussion on the selection of the best approximations when only χ is

considered; a similar discussion when χ and τinv are considered (V = 0); and when χ, V ,

and τinv are considered. The comparison is based on �ve parameters (ρ, ω, χ, V , and τinv)

and is presented in terms of normalized transport coe�cients, i.e., χ̄ = χ/ω, V̄ = V/ω, and
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τ̄inv = τinv/ω. In case two harmonics are necessary, A′/A (ω1), A′/A (ω2), φ′ (ω1), and φ′ (ω2)

are calculated using ω1 = ω and ω2 = 2ω corresponding to the �rst and second harmonic.

A. Overview of possible explicit approximations

In Table I the derived approximations to calculate χ from Section III and the appendix

are summarized including some relationships from the literature. The following notation is

used to express approximations based on continued fractions χKj3: K denotes the Bessel

function of the second kind, small j denotes the J-fraction, and 3 denotes the approxi-

mation order (truncation). The approximations derived from asymptotic expansions are

denoted as follows: χAEΨ, where AE means Asymptotic Expansion and Ψ the Con�uent

Hypergeometric Function of the second kind on which it is based.

15 September 5, 2014



IV OUTWARD SOLUTIONS

χ Equation for χ Equation for V Equation for τinv ref.

χs1
3
4

ω
(φ′)2

0 0 [18]

s χs2
3
4

ω
(A′/A)2

0 0 [19]

l χs3
3ω

(A′/A+φ′)2
0 0 [20]

a χs4
3
4

ω
(A′/A)φ′ 0 ω

2

(
A′/A
φ′ −

φ′

A′/A

)
[21]

b χV
3
2

ωA
′
A((

A′
A

)2
+(φ′)2

)
φ′

3
2

ω

(
(φ′)2−

(
A′
A

)2
)

((
A′
A

)2
+(φ′)2

)
φ′

0 [1]

χφ
3
4

√
(ω1φ′ω2)

2−(ω2φ′ω1)
2

φ′2ω1φ
′2
ω2

(φ′2ω1−φ
′2
ω2

)

−2χA
′

A −
√

CV +
√
C2
V +36χ2ω2

2
CV −V 2

6χ
[1]

CV = 9
4ω

2 (φ′)−2 − 4χ2 (φ′)2

c χc
3
4

ω

φ′
(
A′
A

+ 1
2ρ

) 0 ω
2

((
A′
A

+ 1
2ρ

)
φ′ − φ′(

A′
A

+ 1
2ρ

)
)

[4]

y χKj1A
3
4

ω(
A′
A

+ 1
2ρ

)2 0 0 (54)

l χz
3
2

ω
=(z2)

0 ω
<(z2)
=(z2)

(23)

χc2H
3
4

ω1/φ′ω1−ω2/φ′ω2
(A′

ω1
/Aω1−A′

ω2
/Aω2)

−2χ

(
A′

A + 1
2ρ

)
+ 3

2
ω
φ′

2
3χ

((
A′

A

)2
− (φ′)2 + 1

ρ
A′

A + V
χ
A′

A

)
(41)

Table I: Overview of approximations for χ based on a semi-in�nite domain where heat waves are

traveling towards the edge in a cylindrical geometry and slab geometry. From left to right, the

columns denote: the geometry on which it is based; the approximation of χ either explicit or

in terms of z in which case Table II gives the relationship for z; and the equations for V and

τinv. In the last column, the reference of the origin of the equation are given. The short-hand

notations φ′ (ω1) = φ′ω1
and A′(ω1)

A(ω1) =
A′
ω1

Aω1
are used. In slab-geometry the spatial derivatives are

linear such that between two measurement points ρ1 and ρ2 the spatial derivatives are de�ned as

A′/A = ln (A2/A1) / (ρ2 − ρ1) and φ′ = (φ2 − φ1) / (ρ2 − ρ1), where ρ2 > ρ1, see [1] for details.

Many equations can also be expressed using polynomials in terms of z, Θ′/Θ, and ρ to

directly calculate χ and τinv. Therefore, Table II gives the coe�cients of these polynomials

with their solutions to calculate z. Note that the approximations for τinv and V in Table

I can show large deviations from the true values. Therefore, they should be used carefully,

and in this paper they are only used in the validation process.
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χz Equation for z Eq.

χAEK z = ρ−1 exp

((
ρΘ′

Θ

)−1
)

(34)

χAEΨ z = γ1
ρ exp

((
Θ′

Θ ρ
)−1

)
(33)

χKc2 b2 = 4ρ, b1 = 3 + 4Θ′

Θ ρ, b0 = Θ′

Θ (48)

χKj2 b2 = 8ρ2, b1 = 8ρ2 Θ′

Θ + 4ρ,b0 = 8Θ′

Θ ρ− 3 (48)

z =
(
−b1 +

√
b21 − 4 b0 b2

)
/b2

χKj3
a3 = 16ρ3, a2 = 16Θ′

Θ ρ
3 + 56ρ2

(21)
a1 = 48Θ′

Θ ρ
2 + 45ρ, a0 = 23Θ′

Θ ρ+ 7.5

χKc5
a3 = 16ρ2, a2 =

(
36ρ+ 16ρ2 Θ′

Θ

)
(51)

a1 =
(

15 + 28ρΘ′

Θ

)
, a0 = 3Θ′

Θ

p2 = −27a0a
2
3 + 9a1a2a3 − 2a3

2, p0 = 3a1a3 − a2
2

p1 = 3

√
p2 +

√
4p3

0 + p2
2, z = 1

a3

(
−a2

3 −
3√2p0
3p1

+ p1
3 3√2

)
Table II: Overview of approximations for χ in terms of z for heat waves traveling towards the edge

in a cylindrical geometry where an in�nite domain is assumed. This table denotes the coe�cients

to calculate z using Θ′/Θ = A′/A + iφ′ and ρ, which is used to calculate χ = 3
2ω/=

(
z2
)
and

τinv = ω<
(
z2
)
/=
(
z2
)
based on the de�nition of z in (13). The equation numbers refer either to

Section III or the appendix.

The di�erent approximations for χ in this table are compared in the next subsection.

B. Di�usivity only

The comparison for χ only (V = 0 and τinv = 0) is made based on a large number of

possibilities of χ, ω, and ρ.

There are di�erent methods to �nd φ′ and A′/A, which can in�uence the results signif-

icantly. Therefore, to avoid any ambiguity on how the derivatives φ′ and A′/A should be

approximated and how they a�ect the comparison, the true derivatives are used instead,

which are generated by (11). The most interesting and best approximations are shown in

Fig. 1 in terms of the relative error with respect to the true di�usivity χ.
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Figure 1: Comparison between the di�erent relative errors of the χ estimates for a large range of

χ̄ = χ/ω and ρ. The relative error is de�ned as εrel = 100× |χ−χest|χ [%] , where χest is either χφ (2

harmonics are used, which are ω1 = ω and ω2 = 2ω), χc, χKj3, χKc2, χKc5, and χAEΨ from Table

I. This comparison is based on a cylindrical geometry using an in�nite domain boundary condition

with χ and V = τinv = 0, where the heat waves travel outwards. The darkest blue represents

εrel < 1% and the darkest red represents all εrel > 150%.

The approximations χφ, χc, χKj3, χKc2, and χKc5 are basically extensions of the slab-

geometry case as they estimate χ well if the ratio ωρ/χ is large. Perturbations with large

ω or small χ penetrate less deep. This also holds for errors and the in�uence of cylindrical

geometry, which allows χ to be estimated well by χφ, χc , χKj3, χKc2, and χKc5.

It is important to remember that χφ is based on two phases, making it less comparable

to the other approximations. In χc and χKj3 large relative errors are observed for small ρ

and large χ̄, which can be understood by considering χc in (17). This large error is caused

by (2ρ)−1 in χc, which over compensates resulting in a higher estimated di�usivity [4]. In

addition, A′/A and φ′ are negative quantities for heat waves traveling towards the edge,

hence the sum of (2ρ)−1 and A′/A results in zero at the center of the dark red area. On

the other hand, the large errors are more di�cult to show intuitively for the approximation
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χKj3. The approximation χKj3 is more accurate and extends the region in which χ can be

estimated well, which is a logical consequence of taking more terms in the continued fraction

before truncation. Clearly, χKc2 and χKc5 do not su�er from the zero crossing causing the

large errors in χc and χKj3. The region in which χ is estimated well by χKc5 is slightly larger

than χc and smaller than χKj3.

Generally, χKj3 gives the best approximation of χ except when ωρ/χ is small. In that

region the asymptotic expansions play an important role. They estimate χ well for zρ ≈ 0,

which can be clearly seen in Fig. 1 for χAEΨ, which gave the best result of the two asymptotic

expansions. This also means that if χKj3 and χAEΨ are combined almost the entire region

of χ is estimated well.

C. Di�usivity and damping only

There are a number of suitable approximations to determine χ in the presence of τinv.

However, it su�ces with a minimal loss of accuracy to use the approximations χKj3 and

χAEΨ to estimate χ in the region of interest, which is shown in Fig. 2.
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Figure 2: Relative error of the χ estimates for the combination of χKj3 and χAEΨ presented for

di�erent χ̄ = χ/ω and τ̄inv = τinv/ω represented at a number of spatial locations ρ. The relative

error is de�ned as εrel = 100× |χ−χest|χ [%]. This �gure combines the approximations χKj3 and χAEΨ

which take both χ and τinv into account and are separated by the boundary represented by the

white line (middle of the largest error). The resulting error is based on a cylindrical geometry using

an in�nite domain boundary condition with χ and V = 0, where the heat waves travel outwards.

The approximations are presented at a limited number of spatial locations ρ. In order

to have signi�cant impact on the heat pulse propagation, τ should be of the order of the

energy con�nement time (τe), i.e., 1 s for JET or ITER. Therefore, the range of τ is chosen

such that 0.5 < τ < ∞ (τ = ∞ meaning no damping), i.e., 0 6 τinv 6 2. This range is the

same for the normalized τ̄inv as the applicable range of ω is assumed ω > 1 [rad/s].

The white line shows the approximate boundary of the applicability of χKj3 and χAEΨ.

This does not mean that χKj3 and χAEΨ estimate χ with the highest accuracy compared

to the other approximations in the presented region, but they have the largest region of

approximation and are the most accurate in a large region. In addition, around the white

line where the errors are largest χKj3 and χAEΨ are the best approximations, which can also
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be understood by considering Fig. 1 again.

In general the e�ect of damping τinv acts as a shift parameter and is not directly in-

�uenced by the cylindrical geometry [1]. However, these e�ects are also in�uenced by the

approximation. This means that for large τinv the regions in which χ are estimated well is

extended for χKj3, and similarly for χφ, χc, χKc2, and χKc5. On the other hand, it is reduced

for χAEΨ, which is also shifted in the same direction.

The maximum relative error for the combination of χAEΨ and χKj3 over the entire pre-

sented region is εrel < 20%. It is also important to note that in some regions χKc2, χKc5, and

χKj2 give a slightly better approximation. In some isolated regions the other approximations

than the previously mentioned approximations, give a better approximation than the two

presented in Fig. 2, but generally with a comparable accuracy. Note that the absolute error

for large χ̄ will be larger than 20%.

D. Di�usivity and convectivity with τinv = 0 and τinv = 2

Most of the previously discussed approximations poorly estimate the di�usivity in the

presence of convectivity. In principle, only four relationships are available to analyze χ for

heat waves traveling outwards, i.e., χV , χφ, χAEΨ , and χc2H (see Table I). It is unclear what

a good range is for the parameter V̄ = V/ω except that it can also be negative. Therefore,

an arbitrary choice for this range is made −100 6 V̄ 6 100.

It turns out that χφ outperforms all other approximations except χAEΨ in a more stronger

cylindrical geometry. On the other hand, χc2H performs similar to χφ both in error and the

region in which it estimates χ well, making them almost interchangeable. Although they

are both based on (the �rst) two harmonics, χφ only uses the phase. Therefore, only χφ and

χAEΨ are presented in Fig. 3 for τinv = 0 and Fig. 4 for τinv = 2.
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Figure 3: Relative error of the χ estimates for the combination of χφ and χAEΨ presented for

di�erent χ̄ = χ/ω and V̄ = V/ω represented at a number of spatial locations ρ. The relative

error is de�ned as εrel = 100 × |χ−χest|χ [%]. The approximation regions of χφ and χAEΨ are

separated by white lines. This comparison is based on a cylindrical geometry using an in�nite

domain boundary condition with τinv = 0, where the heat waves travel outwards. The darkest blue

represents εrel < 1% and the darkest red represents all εrel > 150%.
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Figure 4: Relative error of the χ estimates for the combination of χφ and χAEΨ presented for

di�erent χ̄ = χ/ω and V̄ = V/ω represented at a number of spatial locations ρ. The relative

error is de�ned as εrel = 100 × |χ−χest|χ [%]. The approximation regions of χφ and χAEΨ are

separated by white lines. This comparison is based on a cylindrical geometry using an in�nite

domain boundary condition with τ̄inv = 2, where the heat waves travel outwards. The darkest blue

represents εrel < 1% and the darkest red represents all εrel > 150%.

Fig. 3 and Fig. 4 show similar regions. In general χ can be estimated well for large ρ,

but there is an area with higher errors. Although this area is in�uenced by the damping, its

e�ect is rather small. In addition, there is a small region which has large errors (εrel > 150%)

for large negative V and for small ρ and χ̄.

E. Summary

In this section many di�erent approximations are introduced. For problems with convec-

tive velocity, χφ and χAEΨ should be used. Otherwise, χAEΨ, χφ, and χKj3 are the most

important approximations. The other approximations can also be used. Although these
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other approximations are sometimes more accurate, their accuracy is in general comparable

to the approximations given in Fig. 2 and Fig. 3. In Section V it is explained how to select

the proper approximation based on the underlying models.

V. CHOICE AND VALIDATION OF APPROXIMATIONS

In the previous section many di�erent approximations have been presented. The validity

ranges of these approximations do not only depend on ρ and ω, but also on the unknown

transport coe�cients χ, V , and τinv. This may seem to be a problem, but it is not. The

reason is that the original models in terms of Bessel functions or Con�uent Hypergeometric

Functions are also available in (10) and (11). They can be used to explicitly calculate

estimates of the original A′/A and φ′ denoted by Â′/A and φ̂′ given ρ and the transport

coe�cients, which should approximately be the same.

The procedure to select the approximation for the cases with only χ and τinv is shown

through an example.

Example: Consider a measurement at ρ = 0.1 where A′/A = −7.0593 and φ′ = −3.5588

with ω = 50π and assuming that V = 0. Basically, two approximations are best tried �rst,

i.e., χKj3 and χAEΨ. This results in χKj3 = 7.8629, τKj3 = −5.0253 and χAEΨ = 13.1327,

τAEΨ = 72.4163 using Table II and Table I. Clearly, the τinv's are erroneous. To test which is

the proper approximation, substitute the values of χ and τinv back into the original model,

which in this case is (11). This results in Â′/A + φ̂′i = −6.8527 − 2.2746i for χKj3, and

Â′/A + φ̂′i = −7.0377 − 3.6514i for χAEΨ. It is immediately clear that χKj3 is the best

approximation as Â′/A ≈ A′/A and φ̂′ ≈ φ′.

It is also possible to use χc and χKj2 resulting in χc = 10.7168, τc = −90.2764 and

χKj2 = 7.9655, τKj2 = −18.1707, with Â′/A + φ̂′i = −5.9559 − 4.1495i and Â′/A + φ̂′i =

−6.8924 − 3.7907i, respectively. Again, χKj3 is closest to the true A′/A and φ′ and hence

should be selected.

In this example, the true values are χ = 8 and τinv = 0.5 such that actually χKj2 is

closest to the true χ. However, due to the much larger error in τKj2 the Â′/A and φ̂′ deviate

signi�cantly from the true A′/A and φ′.

Hence, it is the combination of χ and τinv, which is tested. Nevertheless, this test gives a

clear statement of which χ estimate is trustworthy. In most cases the exact A′/A = Â′/A =
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and φ′ = φ̂′ are found with some small rounding error, unlike the example presented here.

Similarly, the approximation can be tested for cases of approximations for χ only or for

problems with χ and V only as only one harmonic is necessary. However, two harmonics are

necessary for the mixed case of χ, V , and τinv. This procedure is more di�cult. It is still

possible to compare Â′/A and φ̂′ to A′/A and φ′, but this comparison also depends on A′/A

and φ′ of the second harmonic, which can also introduce a di�erence even if the estimated

parameters are correct. Nevertheless, this comparison still gives valuable information on the

quality of the approximation used. In case χφ or χV are used, the transformation in [1] can

be used to calculate V and τinv.

If V 6= 0, then also an implementation of the Con�uent Hypergeometric Function is

required, which is not always available especially for complex valued arguments. In this

paper, Mathematica© is used to calculate Ψ. Alternatively, it is also possible to use the

continued fraction on p. 326 in [15], which can in principle be used to calculate Ψ with a

desired accuracy using truncation. However, selecting a priori the number of terms necessary

to arrive at a desired accuracy is not easy.

The procedure presented here checks the quality of the approximation with respect to

its underlying model. It does not give any validation of the true χ as it depends on many

other factors such as variation of the pro�les, boundary conditions, approximation A′/A

and φ′, disturbances such as noise, and non-linearities. Noise and non-linearities require an

extensive study based on statistics and higher harmonics, which is considered to be beyond

the scope of this paper. The problem of varying pro�les, approximation A′/A and φ′, and

boundary conditions is studied in [1].

VI. SUMMARY AND DISCUSSION

In this paper, the problem of determining the di�usion coe�cient from measurements

during power modulation experiments has been revisited. A large number of new approxi-

mations have been introduced to estimate χ directly from A′/A and φ′ for di�erent combi-

nations of χ, V , and τinv. The approximations are based on in�nite domains and are derived

on the basis of cylindrical geometry using standard assumptions. These approximations,

the approximations from the literature, and those of Part 1 of this paper series have been

compared for heat waves traveling outwards (towards the edge).
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The quality of the approximations is presented in several �gures. In case only χ and

τinv are considered (V = 0), the relative error of the χ estimate for the region of interest

is in general 1%. However, in a small region the errors are larger with a maximum relative

error of 20%. These errors are achievable by combining χKj3 and χAEΨ. In case also V is

considered, the new approximations show a signi�cant region in which χ can be estimated

well, but also regions in which no suitable approximation exists. In this case, combining

χAEΨ and χφ covers a large region where χ can be well estimated.

Several �gures present the ranges where χ can be estimated well as function of ρ, ω, and

the transport coe�cients. However, in practice these are less useful as the true transport

coe�cients are unknown. Therefore, in this paper a test is presented to check if the chosen

approximation reproduces the original A′/A and φ′. This means that without using knowl-

edge of the actual transport coe�cients a proper approximation can be selected. Therefore,

it is also necessary to determine the convectivity and damping.

In this paper, the estimation of χ in a cylindrical geometry using several approximations

based on perturbative measurements for heat waves traveling outwards have been discussed.

In Part 3, approximations to estimate χ are derived and discussed for heat waves traveling

towards the center (inwards) using either semi-in�nite domain assumptions or a symmetry

boundary condition [22]. The latter is the natural boundary condition for a cylindrical

geometry.
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1. Approximations based on continued fractions

Continued J-fraction of the ratio of Bessel functions of the second kind

The continued J-fraction of the ratio between K1 (z) /K0 (z) is given in (14) and is based

on p. 364 in [15]. It is used to calculate three approximations of which two are given in (17)

and (21). The approximation considering two terms is given by

Θ′

Θ
= −z − 1

2ρ
+

1

ρ

 1/4

2zρ+ 2

 , (47)

where z =
√

3
2
iω+τinv

χ
and Θ′/Θ is de�ned according to (9). It can be written in polynomial

form, i.e.,

0 = 8ρ2z2 +

(
8ρ2 Θ′

Θ
+ 4ρ

)
z + 8

Θ′

Θ
ρ− 3. (48)

This polynomial is solved in terms of z to calculate χ (see Table I).

Continued C-fraction of the ratio of Bessel functions of the second kind

The following continued C-fraction of the ratio K1 (z) /K0 (z) is based on p. 363 in [15]

K1 (zρ)

K0 (zρ)
=

1

1−
1

2zρ

1 +

3
2

1
2zρ

∣∣∣
I

1 +

1
2

1

2zρ

1 +

5
2

1
2zρ

∣∣∣
II

1 + · · ·

. (49)

It is used to approximate (11). Here, it is chosen to truncate only at locations I and II to

reduce the number of approximations. If (49) is truncated at location I, this results in the

following polynomial in terms of z

0 = 4ρz2 +

(
3 + 4

Θ′

Θ
ρ

)
z +

Θ′

Θ
, (50)

which needs to be solved to �nd χ and τinv. In case (49) is truncated at location II, it gives

the following polynomial, which can also be used to �nd χ and τinv

0 = 16ρ2z3 +

(
36ρ+ 16ρ2 Θ′

Θ

)
z2 +

(
15 + 28ρ

Θ′

Θ

)
z + 3

Θ′

Θ
. (51)
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2. Approximations for χ only (V = τinv = 0)

Consider again (16)

z = −
(
A′

A
+ iφ′ +

1

2ρ

)
. (16)

Substituting z and expanding

3

2

iω

χ
=

(
A′

A
+

1

2ρ

)2

+ 2iφ′
(
A′

A
+

1

2ρ

)
− (φ′)

2
. (52)

If the imaginary part is rewritten in terms of χ, it results in

χs1 =
3

4

ω

(φ′)2 . (53)

This variation was also derived in [18] based on Bessel functions and can be derived in

slab-geometry. The real part gives

χKj1A =
3ω

4
(
A′

A
+ 1

2ρ

)2 . (54)

The continued fractions with more terms lead to a mix between amplitude and phase, which

are complicated to solve. Hence, they are not calculated here.

3. Asymptotic expansions based on the Bessel function of the second kind

From [17] the asymptotic expansion for z ρ ≈ 0 and �xed integer order ν 6= 0 is given by

Kν ∼
1

2
Γ (ν)

(
1

2
z ρ

)−ν
, (55)

and for order ν = 0 is given by

K0 ∼ − ln (z ρ) . (56)

These can be substituted into (11) to describe Θ′/Θ around z ρ ≈ 0

Θ′

Θ
= −z

(
1
2
Γ (1)

(
1
2
z ρ
)−1
)

(− ln (z ρ))
. (57)

Simplifying yields
Θ′

Θ
=

1

ρ ln (z ρ)
. (58)
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This can again be expressed in terms of z

z = ρ−1 exp

((
ρ

Θ′

Θ

)−1
)
, (59)

which can be solved using the techniques given in Table I.
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