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One of main mission of KSTAR is to develop long pulse operation capability relevant to the production of fusion energy. 

After ITER has decided to begin with full metal wall configuration, KSTAR has planned a major upgrade to tungsten first 

wall similar to JET ITER-Like Wall (coatings and bulk tungsten plasma-facing components). To accomplish the upgrade, 

tungsten bonding technology has been developed and tested. Since leading edges of each castellation structure have to be 

protected, shaping of tungsten blocks has been studied by ANSYS simulation and the miniaturized castellation has been 

exposed to Ohmic plasma to confirm the simulation results. It is found that shaped castellation block has more heat handling 

capability than that of conventional block. For more dedicated experiments, a multi-purpose castellation block is fabricated 

and exposed to Ohmic, L- and H-mode plasmas and observed by IR camera from the top. During the fabrication and 

assembly of the blocks, leading edges caused by “naturally misaligned” blocks due to engineering limit with a maximum 

level up to 0.5 mm have been observed, which has to be minimized for future fusion machine. 

 

 

  



I. INTRODUCTION 

In-vessel components are exposed to hash environments, namely to high heat, energy, and particle flux, and radiation. 

The components inside the vacuum vessel on which those particle, heat flux and radiation reach, are called plasma facing 

components (PFCs), and the interaction between plasma and surrounding PFC surface is called plasma-surface interaction 

(PSI). The consequence of PSI leads to the erosion of PFC materials and it is one of the main topics to be tackled and solved 

as soon as possible for future fusion reactors. Recently, ITER IO has finally decided to have full tungsten divertor from the 

beginning of the ITER first campaign1. Therefore, ITER will have a full metal wall configuration consisting of Beryllium and 

Tungsten. ASDEX Upgrade (AUG) has employed full tungsten first walls and JET has equipped beryllium and tungsten 

walls for ITER-relevant experiments (ITER-Like Wall)2,3,4,5. Tore Supra and EAST have started to change of major machine 

configuration into a tungsten divertor machine6,7. 

Although we have witnessed the success of the ILW experiment at JET8, there are many open issues concerning the use 

of metal PFCs. KSTAR (Korean Superconducting Tokamak Advanced Research) has started research activities on tungsten 

PFC material since 2012 to join the global research activity of metal wall experiments9. Parallel to the research activities, 

KSTAR has a master plan to upgrade the entire wall into tungsten similar to that of JET ILW, namely, tungsten coated 

graphite at the inner wall limiter and bulk tungsten blocks at the diveror10. In this paper, we introduce the research activities 

towards development of tungsten wall in KSTAR.  

 

II. A SHORT INTRODUCTION ON KSTAR TOKAMAK AND LONG PULSE H-MODE PLASMAS 

KSTAR is a superconducting tokamak with first wall fully covered by ~3400 graphite tiles on passive stabilizer made of 

Copper. The area of the inner wall is 54 m2 while the total volume of the vacuum vessel including all side and vertical ports is 

~110 m3. The minor and major radius are a = 0.5 m and R = 1.8 m, and the corresponding plasma volume is in a range of 7-

16 m3 depending on the plasma scenarios. The toroidal magnetic field (BT) is varied from 1.6 to 3.5 T, maximum plasma 

current (Ip) achieved is ~1.0 MA with average line density up to ne~5×1019 m-3. 

500 kW ICRH at the frequency of 30 MHz (at BT = 2 T) is applied, and the injected power of NBI is up to 5.0 MW, with 

the beam energy 70–90 keV. Two ECRH of 84 and 110 GHz gyrotrons have capability to inject 500 kW for plasma heating 

and ECH assisted startup. 

KSTAR has achieved the first H-mode shot in 2010 just after the very first boronizaion. Since then, most of KSTAR 

discharges are neutral beam injection (NBI) driven H-mode discharges. Typical pulse length is ~ 20 sec, and the longest H-



mode plasma shot has been achieved in 2014 with total pulse length of 49 sec with H-mode flat-top length of 43 sec. 

Therefore, KSTAR is ideal place to test materials for future fusion machines by utilizing long pulse ELMy H-mode 

discharges.  

 

III. DEVELOPMENT OF TUNGSTEN BONDING TECHNOLOGY 

First of all, a proper tungsten bonding technology has to be developed for the upgrade of inner wall of KSTAR. 

Furthermore, final goal of this research is to gain expertise on tungsten bonding technique, which can be applied to 

manufacture tungsten PFCs for future fusion devices like K-DEMO. Fig. 1a) shows the 10 mm tungsten brazed sample on 15 

mm CuCrZr base with 2 mm pure oxygen-free high thermal conductivity (OFHC) copper interlayer. Corresponding brazing 

process is given in Fig. 1b). Each process is undertaken as follows: (1) Heat up to 750 °C for 30 min. of baking, further 

increase to 980 °C, (2) Brazing at 980 °C for 30 min, (3) Quenching from 980 °C to 400 °C with a decreasing rate of -90 °C 

/min in Ar gas, (4) Aging treatment at 470 °C for 180 min, (5) Cool down. 

A series of samples were fabricated by varying pressure load (g/cm2) to find optimum value, and the shear strength test 

has been performed at two different joints: one at the interface between tungsten and copper, and the other between copper 

and CuCrZr base. Fig. 2a) shows the two locations of joint for the shear strength test and pictures of samples after the test. 

Samples brazed by a pressure level of 50 g/cm2 show lowest strength and separation has occurred at the interface between 

copper and CuCrZr in both cases. From the pressure level of 100 g/cm2, the bonding at both interfaces shows better adhesion. 

However, rupture has always occurred at the tungsten part near the interface between tungsten and copper above the pressure 

level of 100 g/cm2 indicating that tungsten material itself used in this experiment couldn’t sustain the shear stress: Bonding 

between tungsten and pure copper is strong enough to sustain the shear stress, but it is not in the case of tungsten just above 

the interface. Fig. 2b) shows the summary of the shear strength test and we have determined the optimum loading pressure as 

200 g/cm2.  

 

IV. TEST OF TUNGSTEN MATERIALS WITH CASTELLATION BLOCKS 

Particles from the plasma follow preferentially the magnetic field lines to limiter and divertor. Materials for such high 

flux region have to tolerate a fluence of up to 20 MW/m2 during steady state operation, while materials for relatively low flux 

region such as main chamber wall, have a little more margin. As a consequence, two different schemes can be applied: Bulk 

material for limiter and divertor, and coated material for main chamber wall. 



In order to test materials, experiments will be divided into two categories: long term test and short term test. The long 

term test is a test for a whole campaign which is equivalent to several thousand seconds of plasma exposure time. The short 

term test is a test for a day or a week which is equivalent to several hundred seconds of plasma exposure time, to check the 

time evolution of the sample materials. Furthermore, the shape of PFCs have to be optimized to sustain high heat load by 

changing angle of incident of ions towards surface which reduces significant amount of peak heat load on PFCs. As a result, 

a new shape of castellation block is proposed11. This new shape provide much low peak heat load during the steady state 

operation of ITER with 10 MW/m2 and 20 MW/m2 even in the misaligned case (0.3 mm). A test mockup has been 

manufactured as a miniaturized version of ITER monoblock, which consists of two conventional and two shaped blocks 

aligned by 2 by 2, and each block has a dimension of 10 mm × 10 mm × 15 mm with a gap distance of 1 mm. Several 

machines are participating on the development and test of new castellation design, and the results from KSTAR confirms 

partly the modelling results9. Nevertheless, the surface temperature of the test block couldn’t be measured directly by IR 

camera. In order to confirm the findings provided by modelling works, the test mockup is exposed to Ohmic plasmas and the 

temperature evolution of both conventional and shaped blocks is measured by thermocouples installed at the bottom of each 

block as shown in Fig. 3. The Ohmic plasmas have been performed with a BT = 2T and a plasma current of IP=400 kA. Line 

integrated density was around 1019/m3. The duration of the shots was ~ 3 sec. Fig. 3c) shows the temperature evolution of 

blocks exposed to one of the Ohmic shots. The blocks have direct contact with the plasma. The temperature of the 

conventional castellation block increases rapidly up to 180 °C in 14 sec, while that of optimized one shows much slower 

increase up to 120 °C in 78 sec. When the conventional one reaches the maximum temperature of 180 °C, the temperature of 

the optimized one is only about 80 °C. This indicates clearly that the optimized one has better power handling capability 

compared with conventional one as expected from the ANSYS simulation11. Care must be taken, since the thermocouples 

were installed at the bottom of both targets. Therefore, the temperatures shown in Fig. 3c) are not surface temperature, but 

bulk temperature of the targets, and they don’t represent the quantified heat flux on the targets or the way how thermal energy 

was transferred through the target body. Furthermore, the heat flux was transiently applied, not in a steady state: Since the 

exposure time to plasma (direct contact) was short (~1 sec), sharp increase of the temperature of the unshaped target in Fig. 

3c) was caused by leading edge directly exposed to the plasma. Slow increase of the temperature indicated the heat flux was 

distributed more homogeneously on the shaped target, thus maximum temperature is much lower than that of conventional 

target with leading edge exposed at the given time. However, both temperature profiles approach to their thermal equilibrium 



at a temperature around 115-120 °C, indicating that they were exposed to the same level of thermal energy (both targets have 

almost same volume except for the shaped part less than 1 mm). 

For further optimization of the shape, especially for KSTAR upgrade, we have developed three different shapes of 

castellation blocks as shown in Fig. 4. The base design is a slight modification of the conventional castellation block of right 

angled square structure with 30 mm × 20 mm × 12 mm size, which is very similar with ITER mono-block. The castellation 

block consists of three different materials: 5 mm tungsten top layer, 13 mm CuCrZr base, and 2 mm pure cupper intermediate 

layer. One side edge of the tungsten layer has slightly different height of 4 mm to have a chamfer structure (see Fig. 4a). 

Incident angle of particles and heat flux on divertor at KSTAR is depending on the position in a range between 5 to 8 °, and 

we have chosen 5 ° (3 ° in ITER) in this study. The second design is double chamfered one as shown in Fig. 4b). The slope of 

base design along the incident angle was cut so that some portions of surface are protected. The third is rounded edge, similar 

with the one proposed by A. Litnovsky et al.11 which was also tested in KSTAR9, but with different angle and radius: Edges 

were rounded to have the corner curvature of 3.4 mm radius and 1.7 mm, respectively, as depicted in Fig. 4c). The thermal 

response of the blocks is simulated by ANSYS with 20 MW/m2 steady state perpendicular heat load with cooling (150 °C). 

Note that, 20 MW/m2 heat load is not realistic in KSTAR, since it was adopted from the ITER scenario, but for comparison 

with ITER case. Nonetheless, KSTAR has already equipped active cooling system, and mono-block type tungsten PFCs 

shown in Fig. 4 are currently under development. One of optimized block designs in Fig. 4 would be employed for major 

upgrade of PFCs. The ANSYS analysis results in Fig. 4 shows that the maximum temperature of base design reaches up to 

2976 °C at the leading edge, while that of the double chamfered one increases up to 2552 °C. The rounded one shows the 

maximum temperature of 2366 °C, which is much less than that of other two designs indicating that the rounded design has 

more heat handling capability. The castellation blocks are manufactured and installed in KSTAR for 2014 campaign, as 

shown in Fig. 5a) and 5b). We have varied the base design parameters such as tungsten thickness, width, and gap distance to 

see any effect such as the bonding strength, transient heat transfer characteristics, and to find optimum condition. The tile is 

observed by divertor IR system during plasma shots to measure the temperature increase (Fig. 5c). 

Fig. 5c) shows an example of divertor IR measurement of the inter-ELM heat flux during an H-mode shot. Divertor IR 

shows that the heat flux pattern on carbon tiles shows shadow region, where some portion of surface are hidden from the 

particle and heat flux. The strike point on tungsten castellation tile is also observed with a bright spot at leading edges. Since 

the emissivity of tungsten is different from that of carbon and we expect some carbon deposition on the surface, the thermal 

emission from tungsten blocks might not represents the surface temperature. Assuming toroidal symmetry, we obtain heat 



flux on carbon tile at the same poloidal location as tungsten blocks as shown in Fig. 5c). In this case, the heat flux on the 

surface is 3 MW/m2. Further analysis is under way to quantify heat flux on the inner and outer divertor. 

We would like to point out an important experience during this tungsten block experiment. Although we have given 

enormous efforts, there was certain engineering limit on the fabrication and assembly of the tungsten block tile: the vertical 

alignment of each block was not perfect and there is always so called “naturally misaligned”, which makes unwanted leading 

edges. We have measured the level of this misalignment of entire block tile by using 3D laser profiling technique. The level 

of the misalignment has been identified by comparing 3D height profile measurements with 3D cad drawing (perfectly 

aligned case) of the entire block tile. Fig. 6 shows the color map of the level of misalignment and a picture of tungsten block 

tile after the campaign. The green part, e.g., outer graphite shield, represents ∆h≈0. Each block has a level of misalignment of 

∆h ±0.25 mm, which indicates a maximum level of misalignment of ∆h≈0.5 mm, which is larger than that allowed in ITER 

(0.3 mm). The consequence of the misalignment is exposure of leading edges, and shadow for particles and heat flux which 

can be seen in Fig. 6. The lesson from this experiment suggests that this natural misalignment has to be carefully monitored 

during the fabrication, assembly, and installation of ITER divertor. The tungsten blocks are disassembled for further analysis. 

The results will be published in forthcoming paper. 

 

V. SUMMARY AND DISCUSSION ON FURTHER EXPERIMENTS 

The research interests on PSI moves from low Z PFC materials to metal PFCs, and it is expected that the use of metal 

PFCs would be advantageous to operate a fusion power plant. KSTAR has joined the research activity on metal wall 

environment recently. As a first step, we have developed tungsten bonding technology and shape design optimization of the 

block has been performed. As a result, brazing bonding technique has been successfully developed. From the direct exposure 

of the castellation structures to Ohmic plasmas, it is found that shaped castellation has more heat handing capability than that 

of conventional design. Further optimization of the shape of the castellation blocks, three different shapes were designed, 

analyzed by ANSYS, and tested under H-mode discharges with deposited heat flux of 1-3 MW/m2. Analysis is still under 

way. One of most important findings in this study is the naturally misaligned blocks of a maximum level of 0.5 mm caused 

by engineering limit, which leads to unwanted leading edges. Such misalignment should be carefully monitored. 

Eroded tungsten atoms from tungsten PFCs lead to a negative effect on the plasma operation: Tungsten is a high Z 

material which causes radiation loss of core plasma energy. As AUG has reported, the use of metal PFCs has reduced the 

operation window for the plasma experiments12. This reveals that the change of wall materials, i.e. the wall condition has 



direct influence on the plasma start up and plasma operation at flat top. Therefore, the quantification of the tungsten impurity 

concentration during accumulation has to be measured and removal technique of impurity from the core by ECRH or ICRH 

injection should be developed in parallel with the metal PFC developments. In order to investigate the tungsten concentration 

during accumulation and the removal from the core, a particle injection system consisting of an injection gun, a trigger, a 

piezoelectric motor, and a particle storage compartment is developed13. The injection system was successfully tested under 

vacuum and strong magnetic field of a level of up to 7 T. A multi-machine cross comparison experiment is planned in 2015 

ASDEX Upgrade, EAST, and KSTAR campaign. Once a quantitative tungsten concentration during accumulation is obtained, 

removal of tungsten impurities from core by ECRH or ICRH injection will be performed with theoretical modeling by using 

UTC-SANCO code. 

Another important topic to be studied is long term fuel retention inside the gap between castellation blocks. We have 

analyzed the deposition inside the gaps of castellation proposed by A. Litnovsky et al.11 and found that the deposition is 

reduced at least by a factor of two by using optimized castellation structure9. For the removal of the deposition inside the gap 

during intermission, Ion Cyclotron Wall Conditioning (ICWC) has been suggested which is included into the ITER baseline 

for in-between plasma shots wall conditioning. Dedicated ICWC experiments in KSTAR have found that the deposition 

inside the gap can be treated and eroded by He ICWC plasmas9. However, the results show a strong effect at the midplane 

region while a weak effect at divertor region due to strong inhomogeneity of ICWC plasma. Applying vertical magnetic field 

could bring more homogeneous ICWC plasmas14, but still it has to be studied to enhance removal rate and efficiency.  
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FIGURE CAPTIONS 

 

Fig. 1. a) Tungsten brazed sample, b) temperature waveform for brazing process. 

 

Fig. 2. Shear strength test of tungsten brazed sample. a) test points and pictures of samples after the test, b) Measured shear 

strength as a function of pressure load (g/cm2) during the brazing process (red: W-OFHC joint, black: OFHC-CuCrZr joint).  

 

Fig. 3. Castellation samples exposed to an Ohmic discharge in KSTAR. a) Visible CCD image of the exposure, b) exposed 

castellation with unshaped and shaped blocks, c) the temperature evolution of each block measured by thermocouples. 

 

Fig. 4. Three different shapes of castellation structures for further optimization of the shape together with ANSYS simulation 

results. a) base design, b) double chamfered design, c) rounded design 

 

Fig. 5. a) Manufactured castellation blocks with different design parameters such as tungsten thickness, block width, and gap 

distance, b) block installed in KSTAR, c) IR observation during an H-mode plasma shot from the top. 

 

Fig. 6. The color map of the level of misalignment and a picture of tungsten block tile after the campaign. 
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