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Abstract

We have performed far-field extinction measurements and near electric field measurements on

gold bowtie antennas resonant at THz frequencies. These measurements show a very large shift

between the resonant frequencies of the near-field and the far-field spectra. We use the established

damped-driven harmonic oscillator model for resonators to model the far-field response of the

antennas from the near-field spectrum and show that there is a large discrepancy between the

predicted and measured far-field response. We were able to explain this discrepancy by improving

the oscillator model with a Fano model. This large shift makes the prediction of the near-field

response of resonant structures at THz frequencies very imprecise, provided that only information

of the far-field response is available and establishes the necessity of measuring near-fields for a

correct and accurate characterization of these structures.

PACS numbers: 73.20.Mf, 68.37.Uv, 78.47.D-, 07.57.Pt
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I. INTRODUCTION

When metallic structures are illuminated with electromagnetic radiation, the free charges

are driven into a periodic motion following the excitation field. This oscillation of free charges

can result into the generation of highly enhanced and confined local electric fields in the

vicinity of the structure that are referred to as near-field ’hotspots’1. At visible and infrared

frequencies the hotspots are caused by localized surface plasmon polaritons or the coherent

oscillation of charges in the metallic particle while at lower frequencies these hotspots are

the result of surface currents. The generation of these hotspots enables the manipulation

of electromagnetic fields in deep sub-wavelength volumes2–5, which opens up the possibility

of imaging and spectroscopy of small objects6–10. This concept has been also proposed and

demonstrated at THz frequencies11–15. Therefore, there is the necessity of optimizing the

intensity of confined fields as well as the frequency response for real applications, which is

achieved by designing the structure in such a way that it is resonant at the frequency of

interest. This resonant behavior is usually characterized with far-field measurements.

Since the interaction of the near-fields with sub-wavelength objects determines the spec-

tral response of the system, it is of utmost importance to characterize the near-field response

of the resonant structures. The relation between the near-field response of a structure and its

far-field spectrum has been the subject of several studies that have consistently reported a

small, yet distinct shift between the near- and far-field resonant frequencies.16–20. The origin

of this shift is ascribed to the intrinsic damping of the structure and has been modeled using

the damped-driven oscillator model19. Zuloaga et al. have shown that the oscillator ampli-

tude is related to the induced near-field by the surface plasmon polariton and the oscillator

dissipated power to the far-field extinction. In a more recent publication by Kats et al.21,

it is shown that there are two distinct loss channels by which the localized plasmon mode

decays: internal damping via free carrier absorption and emission of radiation or scattering

to free space. Using this simple model it was shown that the calculations were in excellent

agreement with the numerical simulations in the infrared range. Thus, this result suggests

the conjecture that we can accurately predict the near-field spectral response from a far-field

measurement, which is intrinsically much easier to perform.

In this manuscript we show experimentally that there can be an anomalously large shift

between the near- and far-field resonances, which can not be explained by the oscillator
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model. We have performed measurements of the THz near-electric field and of the THz far-

field extinction of resonant gold bowtie antennas. Our results show that the frequency shift

is comparable to the FWHM of the resonance. Even though our findings are in qualitative

agreement with previous studies, the observed spectral shift is significantly larger than what

has been previously reported and calculated. We ascribe this discrepancy to the fact that

the measured far-field is not just the scattered field from the structures but its interference

with the incident field22. This spectral interference, described by a Fano model,23 explains

the total response of the system and should be taken into account when designing resonant

structures for subwavelength spectroscopy.

II. SAMPLE DESCRIPTION

To study the interaction of THz waves with scattering structures, both in the near-

and far-field, we use bowtie antennas made of gold which are designed to resonate at THz

frequencies. A bowtie antenna consists of two triangles with pointed tips facing each other

and separated by a small gap. These structures are interesting because they combine two

distinct electromagnetic effects: the lightning rod effect due to the sharp metallic tips, which

leads to high electric field accumulation in the gap and resonant response to the driving field

which results from the size and shape of the bowtie. As a result, they do not only create

highly enhanced and localized fields in the gap between the two triangles13,24–27, but also

give precise spectral and spatial control over the response with relatively large bandwidths28.

These structures have been used in the optical range to study effects like single molecule

fluorescence25, two-photon photoluminescence24,surface-enhanced Raman scattering29, or as

sensors in the THz regime12.
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FIG. 1. Optical microscope images of two samples. (a) shows a single bowtie antenna on a quartz

substrate, and (b) shows a random array of antennas on a quartz substrate.
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The gold antennas were fabricated on quartz substrates using e-beam lithography in

combination with standard gold evaporation and lift-off process. Both triangles of the bowtie

are 108 µm long with a base of 40 µm each and a gap of 5 µm between them as shown in

Fig. 1(a). The bowties are ∼100 nm thick. We have used two different samples: for the

near-field measurements, we have fabricated single isolated bowtie structures, as shown in

Fig 1(a), to avoid any distortion of the near-field signal by neighboring antennas. For

measuring the far-field response we have made a random array of bowties (surface filling

fraction 5%) with the same orientation of the long axes, so that all of them are aligned with

the polarization of the driving THz field. A microscope image of the sample used for the far-

field measurements is shown in Fig. 1(b). This random ensemble increases the signal to noise

in the extinction measurements30 but, as we show later it also defines the interference path

that gives rise to a large discrepancy between the near- and far-field responses of the sample.

In a random array, as shown in Fig. 1(b), there can be two different kind of coupling effects

between neighbouring structures. First is the radiative or far-field coupling due to scattered

field from the nearby structures. Due to random distribution of the bowtie antennas in

the array, the phase relation between the scattered fields is averaged, and the effect due to

radiative coupling cancels out. We have measured the extinction at different locations on

the sample obtaining always the same result within the accuracy of the measurements. The

other coupling effect is due to near-field coupling between adjacent antennas due to spatial

overlap of the local fields. This coupling is minimized by placing the antennas sufficiently

far from each other.

The measurement of the near-field spectrum was done with a THz near-field micro-

spectroscopy setup. This setup is driven by a femtosecond IR oscillator, which operates at

800 nm with a pulse duration of 20 fs and repetition rate of 80 MHz. This train of pulses

is divided into two beams: the first beam carrying most of the power (∼350 mW) goes

through a delay stage and is incident on a photoconductive antenna which generates the

THz radiation31. The THz radiation is weakly focussed onto the sample by a pair of gold

off-axis parabolic mirrors. The other beam carrying a little amount of power (∼5 mW) is

used for biasing the probe-tip32 used for the near-field measurements. This tip is a small

photo-conductive antenna of 10 µm2, that measures the electric field amplitude by the

principle of photo-conductive sampling33. For each temporal position in the THz transient

the tip generates a proportional current, which is amplified and measured using a lock-in
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detection. By changing the path length of the THz generation beam with the delay stage the

whole THz transient is probed, and thus the electric field in the near-field of the sample is

measured. The measurements are polarization sensitive, i.e., they depend on the orientation

of the probe with respect to the incident THz. The sample is mounted on a combination

of three linear stages, making it possible to measure the local fields at all points above the

sample.

In the setup for measuring the far-field, the generation of THz is done using the same

technique as mentioned previously. However, the detection of THz radiation is done by a

conventional electro-optic THz sampling technique34,35 using the THz field amplitude in-

duced birefringence of a non-linear ZnTe crystal.

III. EXPERIMENTAL RESULTS

We define two quantities for comparing the near-field to the far-field measurements. First,

the near-field intensity spectrum, SNF , of the bowtie antenna is defined as, SNF (r, ν) =∣∣∣∣∣ ENF (r, ν)

ENF
ref (r0, ν)

∣∣∣∣∣
2

, where ENF (r, ν) is the electric near-field at frequency ν and position r in the

proximity of the bowtie antenna and ENF
ref (r0, ν) is the electric field at the same height and

frequency but at a position away from the antenna. For now, we define this quantity at the

gap between the triangles of the antenna. The second quantity is the far-field extinction

spectrum, SFF , of the sample. The extinction is defined as SFF (ν) = 1−

∣∣∣∣∣EFF (ν)

EFF
ref (ν)

∣∣∣∣∣
2

, where

EFF (ν) is the transmitted electric field through the sample with the random array of the

bowtie at frequency ν and EFF
ref (ν) is the transmitted field without the bowties, i.e. the bare

substrate.

The measured near- and the far-field spectra are shown in Fig. 2. The triangles represent

the near-field spectrum in the gap of the single bowtie antenna at a height of 1 µm above

the substrate and the circles correspond to the far-field extinction of the random array of

bowtie antennas. Both spectra show a resonant behavior but not at the same frequencies.

For the near-field spectrum, the resonant frequency is at 0.62 THz. The far-field spectrum

is remarkably blue-shifted from the near-field, with the resonant frequency at 0.85 THz. As

it is discussed in the following section, the observed shift in our measurements can not be

explained by the extensively used driven-damped oscillator model that approximates the
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FIG. 2. Near-field spectrum measured at the gap of a gold bowtie antenna (red triangles) and

far-field extinction spectrum (green circles). The solid curves are guides to the eye. The vertical

dashed lines indicate the resonant frequencies in the near- and far-field.

response of the bowtie.

To investigate the spectral properties of the near-field around the bowtie antennas, we

have measured spatial maps of the near-field at two different frequencies marked by the

dotted lines in Fig. 2. The first line at 0.62 THz indicates the resonant frequency of the

near-field and the second line at 0.85 THz corresponds to the resonant frequency of the far-

field spectrum. Figure 3 shows the spatial maps of near-field intensities around the bowtie

antenna at these frequencies. The color scale is kept the same in both the measurements to

facilitate a direct comparison. These measurements show the local intensity enhancement

in the gap of the bowtie at 0.62 THz (Fig. 3(a)). The sharp tips give rise to localized

electromagnetic fields, whereas the spectral resonance due to the dimensions of the bowtie

enhances these fields. The field is pronouncedly less enhanced at 0.85 THz (Figure 3(b)) in

spite of this being the resonant frequency of the far-field.

IV. NUMERICAL SIMULATIONS

We have performed numerical simulations using the Finite-Difference in Time-Domain

method (FDTD) to model the response of a single bowtie antenna. Since gold is a very

good conductor at THz frequencies we can approximate the material as a perfect electric

conductor. We have verified the validity of this approximation which neglects the penetra-
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FIG. 3. (a) Electric field intensity map measured at 0.62 THz and at a height of 1 µm above the

bowtie antenna.(b) Electric field intensity map at 0.85 THz and the same height. The color scales

are kept the same on both figures. In both panels the dashed lines indicate the boundaries of the

bowtie antenna.

tion of the electromagnetic field in the metal and simplifies the simulations significantly.

The excitation is done with a broadband THz source similar to the experiments. The sim-

ulation volume contains a single bowtie antenna and the boundary conditions are perfectly

impedance matched layers to the surroundings. Both the near-field and the far-field of the

bowtie are calculated by referencing the power of the total field by the power of the total

field without the antenna. Similar to the experiments, the illumination is done from the side

of the quartz substrate.

We have simulated the far-field extinction spectrum and the near-field intensity spectrum

at a height of 1 µm above the antenna and at the center of the gap. Figure 4(a) displays

the measured near-field (open circles) together with the simulation (solid curve). The ex-

perimental data and the simulation results are in a excellent agreement. From this result we

can conclude that the probe-tip used for the measurements does not perturb the near-fields

significantly. The inset of Fig. 4(a) illustrates the near-field intensity map at the resonance

frequency of 0.62 THz. The maximum enhancement in the near-field intensity is, as ex-

pected, in the gap. Figure 4(b) shows the measurements (open circles) and the simulations

(solid curve) of the far-field extinction, illustrating also the excellent agreement between the

measurement and the simulation. The small discrepancy at high frequencies is most likely

due to the fact that the experiments were performed with a weakly focussed beam, whereas

in the simulations a perfect collimated beam is used.
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FIG. 4. (a) The circles represent the measured near-field spectrum of the bowtie antenna on the

gap between the two triangles at a height of 1 µm, while the solid black curve is the simulated

spectrum. The inset shows the near-field intensity map at 0.62 THz.(b) The circles represents

the extinction spectrum of the random array of bowtie antennas and the solid black curve is the

simulated far-field extinction spectrum.

V. DRIVEN-DAMPED HARMONIC OSCILLATOR MODEL

The relation between the near- and the far-field response of resonant metallic structures

has been approximated in the literature by a driven-damped harmonic oscillator model.

This analogy is often justified by the fact that the dynamics of free electrons in a conducting

structure under the influence of a driving electric field follows an harmonic oscillation which is

damped by Ohmic losses in the metal and by radiation damping from the accelerated charges.

The resonant nature of the harmonic oscillator is determined primarily from the geometry

of the structure. The oscillatory motion of the electrons in the bowtie can be affected due to

the capacitive coupling between the two resonant elements of the bowtie antenna, i.e., the

gold triangles. A comparison between the simulations of individual triangles of the bowtie

(not shown here) with the whole bowtie structure establishes that although there is a weak

coupling between the triangles of the bowtie, both responses are similar. Thus, without the

loss of generality we can approximate the bowtie antenna as a single damped oscillator.

The spectral amplitude of the near-field close to the gap of the bowtie depends on the

localization of charges accumulated at the two tips of the bowtie structure. Due to the

symmetry of the structure, we can assume that both charge distributions are the same.

Using the model described in Refs. [18] and [21] we can describe the motion of free charges
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using the equation of motion of a damped harmonic oscillator,

d2Q

dt2
+ 2πν0Γa

dQ

dt
+ (2πν0)

2Q = A0(ν)e−2πiνt + 2πν0Γs
d3Q

dt3
(1)

where Q(ν, t) is the charge distribution as a function of time, A0(ν) is the harmonic driving

field, ν0 is the natural frequency of the oscillator, Γa is the internal damping constant and

Γs = (1/ν0)Q
2
tot/6πε0c

3 is the radiation reaction coefficient also known as Abraham-Lorentz

force, which represents the force that the free charges feel when they emit radiation36. The

1/ν0 term is a scaling factor and Qtot is the total number of free charges contributing to the

damped oscillation. The value of Qtot is estimated from the number of free electrons present

in the structure, which is calculated by taking into account the free-electron density of gold

(NAu = 5.9 · 1022cm-3). The harmonic charge oscillation is determined by solving Eq. (1)

and is given by,

Q(ν, t) =
√
SNF (ν)e−i(2πνt+φ(ν)), (2)

where,

SNF (ν) =

∣∣∣∣∣ 1√
(2νν0(Γa + ν2Γs))2 + (ν2 − ν20)2

∣∣∣∣∣
2

(3)

is the frequency dependent near-field intensity response with Γa + ν2Γs as the frequency

dependent damping term, and φ(ν) is the corresponding phase response of the damped

harmonic oscillator, both referenced with respect to the source.

From the fits of the calculated SNF (ν) to the near-field measurements as shown in

Fig. 5(a), we can extract the natural frequency and damping constant of the oscillator,

which are ν0 = 0.683 ± 0.004 THz and Γa = 0.302 ± 0.018, respectively. With these values

the harmonic oscillator model fits excellently the experimental near-field intensity.

The time averaged scattered and absorbed power spectra of the oscillator can be calcu-

lated using the following expressions,21

Pabs(ν) = ν2ν0ΓaSNF (ν), (4)

Pscat(ν) = ν4ν0ΓsSNF (ν). (5)

These spectra are shown in Fig. 5(b) with a dashed (absorption) and dotted (scattering)

red curves, where we can appreciate that both the absorption and scattering spectra are
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FIG. 5. (a) The open circles represent the measured normalized near-field intensity, while the solid

line is the fit to the measurements using the damped oscillator model. (b) Absorption and scattering

spectral powers calculated from the harmonic oscillator model using the same parameters as in (a).

The red dotted curve shows the scattering spectrum and the absorption spectrum is shown by the

red dashed curve. Both the scattering and the absorption spectra have been normalized to the

maximum of the scattering spectrum. The absorption spectrum is multiplied by a factor of 10

after normalization to elucidate its spectral response. The black line with circles represents the

measured extinction spectrum from the random bowtie sample normalized to its maximum.

blue-shifted with respect to the near-field intensity spectrum. The absorption spectrum

peaks at the natural frequency of 0.68 THz, whereas the peak of the scattering spectrum

is around 0.75 THz. These kind of shifts between scattering and absorption spectrum has

been experimentally as well as theoretically reported in several articles37–39. The use of a

good conductor at THz frequencies is manifested by the fact that the spectral absorption

is far lesser than the scattering. Gold behaves close to a perfect electric conductor in this

frequency range and the absorption is low. Thus, we can conclude that the extinction

spectrum of these structures in the far-field is dominated by scattering. This dominant

scattering at THz frequencies makes the resonance of the extinction spectra significantly

blue shifted from the resonance of the near-field as compared to similar measurements with

gold at optical frequencies, where the effect of absorption in extinction is comparable to the

scattering.

If we compare both the measured extinction (black circles in Fig. 5(b)) and the calculated

scattering (red dotted line), we see a discrepancy in the resonant frequencies. The resonance

of the scattering spectrum is at 0.75 THz, whereas the resonance of the extinction spectrum
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is at 0.85 THz. A quantitative description of this discrepancy is given in the next section.

VI. FANO MODEL

In order to explain the discrepancy between the experimental extinction and the oscillator

model, we need to consider the incident field in the extinction: The incident field that is not

perturbed by the bowtie, interferes with the scattered far-field defining the extinction. This

interference, which is not considered by the simple harmonic oscillator model, is the origin

of the discrepancy between this model and the extinction measurements. The interference

can be described with a Fano model23,40, which defines a distinctly asymmetric line-shape

with the functional form

F (ν) =
(qνDΓ + ν − νD)2

(ν − νD)2 + ν2DΓ2
, (6)

where νD and Γ are the frequency and line-width of a discrete state with a Lorentzian

resonance profile that interferes with a continuum. The phenomenological shape parameter,

q, is defined as the ratio between spectral amplitude of the discrete state and the continuum.

In the limit |q| → ∞ the resonance is dominated by the lineshape of the discrete state

(Lorentzian resonance), whereas at values close to unity (q ∼ 1) the discrete state and the

continuum have equal strengths and the resonance profile shows an asymmetric lineshape

similar to the one observed in the far-field extinction spectrum of the bowtie antennas

(Fig. 2).

Fano resonances in single scatteres have been described in the literature to arise form

different sources like coupling between spatially and spectrally overlapping adjacent bright

and dark modes37, coupling between resonant modes with induced image charges in sub-

strates with high dielectric constant41, from systems with broken symmetries42, or between

odd parity modes of single nano rods and background continuum43. However, the source

of the Fano resonance discussed here is not only coupling of a broad continuum to a sharp

resonant mode due to a single particle, but also the presence of many particle, which boosts

the signal strength of the interference channel of the resonant mode and thereby reshaping

the response of the system.

In the far-field extinction measurements the measured quantity is the total field, which

corresponds to the interference of the scattered (discrete state representing the oscillator)

and the incident field (continuum). Therefore, it is expected that these fields give rise
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to a Fano-like resonance: the interference pathway being the sharp radiant dipolar mode

which is resonantly scattered by the bowties and the fraction of the incident THz field

which is unperturbed (unscattered) forming the broad continuum. This gives rise to a

distinct asymmetry in the lineshape of the extinction and a consequent shift of the resonant

frequency from the Lorentzian resonant profile. This pronounced shift of the resonance

frequency depends on the relative strength of the incident field in the interference effect.
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FIG. 6. The black circles represent the measured and normalized extinction spectrum, while the

solid line is a fit to the measurements using the Fano model.

To verify the asymmetric nature of the far-field resonance and the consequent shift of

extinction peak from calculated values, we have fit Eq.(6) to the measured extinction spec-

trum using the parameters extracted from the fit of the oscillator model to the near-field

intensity spectrum, i.e., νD = 0.75 THz (the resonant frequency of the scattering spectrum)

and Γ = (ν0/νD)(Γa + ν2Γs) (the frequency dependent damping term from the oscillator

model with proper scaling factor) with q=2.02±0.05 as the only fit parameter. This result

is shown in Fig. 6, where the circles illustrate the far-field extinction measurements and the

solid curve is the fit. The small deviation of the fit at high frequencies can be attributed

to the approximation of the broad THz source as a continuum. Since the source spectrum

has a limited bandwidth, at higher frequencies its approximation to the continuum becomes

increasingly imprecise.

The relatively low value of q obtained from the fit indicates that the transmitted unper-

turbed field amplitude is marginally smaller than the scattered field by the bowtie. With

this value of q the large shift of the resonant frequency in the experiments can be explained.
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The shift depends on several factors: The most important one is the ratio between the total

spectral powers integrated over all frequencies of the scattered and the incident fields. The

filling fraction of the bowtie antennas forming the sample also determines the ratio of the

scattered to incident fields, and as a result, contributes to this Fano-like resonance. In order

to reduce the asymmetry in the Fano-like lineshape it is possible to increase the density

of the bowties, i.e. increase the fraction of scattered intensity relative to the incident THz

intensity. The far-field spectrum depends not only on the size and shape of the resonant

structures and on their surface filling fraction of the sample, but also on the properties of

the incident field.

The model presented above should be valid in all frequency ranges provided that material

resonances are far from the spectral window of interest. However, this spectral interference

effect should not affect substantially the spectrum of the near-fields in the confined hotspots

mostly due to the fact that the electric fields in these regions are enhanced with respect to the

incident field amplitude, hence approximating the condition q →∞. In this limit, the spec-

trum is dominated by the lineshape of the near-field and the measured near-field resonance

will be at the same frequency as the predicted resonance by the oscillator model. These

results establishes the necessity of measuring the near-field for an accurate characterization

of resonant structures.

VII. CONCLUSIONS

We have shown that the far-field extinction spectrum of resonant structures at THz fre-

quencies can have very large spectral blue-shifts with respect to the near-field intensity

spectra. These shifts can be comparable to the FWHM of the resonance and can not be

solely attributed to the intrinsic nature of the structures. Rather, the incident field plays

an important role in defining the far-field spectral response of these structures. The large

shifts can be explained analytically by using a Fano model that improves the driven-damped

harmonic oscillator model extensively used to describe these structures. An important con-

sequence of these results is that the characterization of resonant structures based solely on

their far-field response can lead to misleading results that suggest field enhancements at

frequencies at which the near-field is not changed significantly. Therefore, near-field mea-

surements are necessary for an accurate description of resonant structures.
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Rev. Lett. 101, 157403 (2008).

10 J. P. Camden, J. A. Dieringer, J. Zhao, and R. P. Van Duyne, Accounts of Chemical Research

41, 1653 (2008).

11 M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M.

Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, Nat Photon 3, 152 (2009).

12 A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. G. Rivas, Optics

Express 20, 5052 (2012).

14

mailto:A.Bhattacharya@amolf.nl
mailto:J.Gomez@amolf.nl
http://dx.doi.org/ 10.1103/PhysRevE.62.4318
http://dx.doi.org/10.1103/PhysRevLett.82.2590
http://dx.doi.org/10.1103/PhysRevB.62.R16356
http://dx.doi.org/ 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
http://dx.doi.org/ 10.1021/nl062101m
http://dx.doi.org/ 10.1364/AO.25.001890
http://dx.doi.org/10.1103/PhysRevLett.77.1163
http://dx.doi.org/10.1103/PhysRevLett.78.1667
http://dx.doi.org/10.1103/PhysRevLett.78.1667
http://dx.doi.org/ 10.1103/PhysRevLett.101.157403
http://dx.doi.org/ 10.1103/PhysRevLett.101.157403
http://dx.doi.org/10.1021/ar800041s
http://dx.doi.org/10.1021/ar800041s
http://dx.doi.org/ 10.1038/nphoton.2009.22
http://www.ncbi.nlm.nih.gov/pubmed/22418310
http://www.ncbi.nlm.nih.gov/pubmed/22418310


13 A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, Opt. Express 18, 23226 (2010).

14 V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, Opt. Express 18,

2797 (2010).

15 L. Razzari, A. Toma, M. Shalaby, M. Clerici, R. P. Zaccaria, C. Liberale, S. Marras, I. A. I.

Al-Naib, G. Das, F. D. Angelis, M. Peccianti, A. Falqui, T. Ozaki, R. Morandotti, and E. D.

Fabrizio, Opt. Express 19, 26088 (2011).
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