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Abstract

In this paper, we propose a special finite-volume scheme to test the importance of connectivity of the finite

volumes. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with

those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a model adaptation

of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

1 Introduction

Most of the techniques to handle diffusion in anisotropic media are based on finite-volume or finite-element
methods and revolve around handling the interpolation of the flux over the cell faces. A lot of work has
been done on finite-volume schemes for the solution of diffusion problems on unstructured grids with dis-
continuous and anisotropic diffusion tensors. Here an important assumption in constructing the formulation
of the cell-face fluxes is the continuity of the heat flux over the cell-faces, see for instance Edwards and
Rogers [7], Maire et al. [16] and Jacq et al. [12]. Vertex values are used in several cell-centered schemes to
approximate the flux over the cell face, see e.g. Le Potier [13], Lipnikov et al. [15], Coudière et al. [5]. The
vertex values are approximated with for instance continuity and monotonicity in mind. The vertex values
may be defined explicitly but this requires some sort of dual grid, see e.g. Hermeline [10], Le Potier [14],
Morel et al. [17]. Shashkov and Steinberg [19] put the flux values in the vertices and then average to the
centers of the cell-faces. For a more detailed overview of finite-volume methods the reader is referred to
the review paper by Droniou [6]. What motivated Morel et al. [17], Breil and Maire [3], Hyman et al. [11]
and others in developing flux(-normal) continuous schemes was grid robustness of finite-volume methods and
finite-element methods in case of diffusion-tensor discontinuities. Van Es et al. [22] looked at the importance
of alignment for a finite-difference method. In that paper several schemes are compared. The importance of
internodal/volume continuity was expected because the formal accuracy for all schemes using series expan-
sions was second order and a decisive effect of lower continuity at the boundaries was not visible in a local
error analysis although it clearly mattered in terms of boundary treatment.

In this paper we propose and apply a finite-volume scheme that can change the connectivity between the
volumes by changing the length of the cell faces with a free parameter. We apply both cell-face and vertex-
centered flux points.

As before we approximate the anisotropic thermal diffusion, described by

q = −D · ∇T, ∂T

∂t
= −∇ · q+ f, (1)
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where T represents the temperature, b the unit direction vector of the field line, f some source term and D

the diffusion tensor. The boundary conditions are of Dirichlet type and are discussed per test case.

2 Finite-Volume schemes

All the schemes to be discussed formally have local second-order accuracy, which can be shown by carefully
expanding the approximations using Taylor series, see appendix A. However, as can be seen in the results
of the test cases discussed in section 4, the accuracy of these methods may drop below their formal accuracy
even though the test cases have C∞ solutions and source functions. One important aspect that may be
overlooked by the local analysis is the continuity between elements, or some equivalent property for finite
differences. The symmetric scheme by Günter et al. [9] shows anisotropy independent results in case the
diffusion tensor components are captured exactly by the staggered grid points.
The symmetric scheme has C0 flux values and C1 temperature values at the flux points, in all directions,
i.e. on the dual grid the solution is C1. Or speaking in finite-volume terms, the values of the solution on
the flux points that connect neighbouring control volumes are C1. The equivalent control volume of the
asymmetric scheme, which shows a loss of accuracy and convergence, is only C1 connected to the control
volumes to the left/right and bottom/top, there is no direct connection with the diagonally neighbouring
control volumes. To test the hypothesis that continuity between elements is important for the capturing
of anisotropic diffusion we adapt the asymmetric finite-volume scheme so that all control volumes are C1
connected. Both the symmetric and the asymmetric scheme have equivalent finite-volume schemes, the

(a) Asymmetric (b) Symmetric

Figure 1: Control volumes, volume contour S indicated by dashed line.

difference now lies in the position of the fluxes on the surface of the control volume, see figure 1. A basic
assumption of the finite-volume method is that the solution is spatially constant inside the control volumes.
For the diffusion equation

Tt = − 1

V

∮

S

q · ndS +
1

V

∫

V

fdV, q = −D · ∇T,

we get the same discrete formulation when using finite differences or finite volumes in case of equidistant
grids, to be considered here. The mesh sizes are given by ∆x = ∆y = h. First we discuss the reference
methods, namely the asymmetric finite-volume scheme and the symmetric finite-volume scheme.
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2.1 Asymmetric finite volume

The first scheme we describe has the flux points defined on the cell-face centers, see figure 1a. We have the
following approximations for the gradients on the axes
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Finally, the contour integral of the fluxes is approximated by
∮

S
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2.2 Symmetric finite volume

Another approach is taken by Günter et al. [9], they use a symmetric scheme (with a symmetric linear
operator) that is mimetic by maintaining the self-adjointness of the differential operator. The flux points
are placed at the vertices of the control volumes. The control volume with the location of the fluxes is given
in figure 1b. The divergence terms are determined at the center points in the following manner

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

=
Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h
,

∂T

∂y

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

=
Ti,j+1 + Ti+1,j+1 − Ti+1,j − Ti,j

2h
.

(2)

Next, the diffusion tensor is applied to obtain the heat flux

qi± 1

2
,j± 1

2

= −Di± 1

2
,j± 1

2

·
(

∂T

∂x

∣

∣

∣

∣

i± 1

2
,j± 1

2

,
∂T

∂y

∣

∣

∣

∣

i± 1

2
,j± 1

2

)T

,

qi± 1

2
,j∓ 1

2

= −Di± 1

2
,j∓ 1

2

·
(

∂T

∂x

∣

∣

∣

∣

i± 1

2
,j∓ 1

2

,
∂T

∂y

∣

∣

∣

∣

i± 1

2
,j∓ 1

2

)T

.

Finally, the contour integral of the fluxes is approximated by
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2.3 Eight point flux scheme

To investigate the importance of flux continuity and connectivity we apply a cell-face-centered flux (CF)
scheme and a vertex-centered flux (VF) scheme on a grid with varying connectivity. The grid is varied

Figure 2: Part of hybrid grid (0 < e <
√
2h).

through a parameter e, e ∈ [0,
√
2h], where for e = 0 and e =

√
2h the grid is uniform and rectangular, and

for e between 0 and
√
2h we have a hybrid grid consisting of octogonals with edges of lengths e and ∆s and

squares with edge length ∆s (figure 2).

(a) (b) (c)

Figure 3: (a) e = ∆s, (b) e = 0, (c) e =
√
2h.

Note that it holds ∆s = h−e/
√
2, and hence, with all edges of the same length, e = ∆s, ∆s = (2−

√
2)h.

The latter situation has been depicted in figure 3a. The two extreme cases e = 0 and e =
√
2h are given in

figures 3b and 3c, respectively. Note that in the case of e =
√
2h the grid may be better aligned to features

that are oblique with respect to the coordinate axes, but it will be coarser and have less finite volumes. For
each volume we approximate the contour integral of the fluxes as follows

∮

S

q · ndS ≈
M
∑

i=1

q̃i · ni li,

where q̃i is an approximation of the flux across cell face i, and where M = 4 and M = 8 for the square and
octogonal finite volume, respectively. Extending this approach to three dimensions is straightforward for a
uniform Cartesian grid.
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2.3.1 Vertex-centered fluxes

The VF scheme has the following description of the divergence
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∮
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(3)

where we have to retain the normality of the resulting unit direction vector for the averaging of the fluxes.

(a) Octogonal volume (b) Square volume

Figure 4: Control volumes with vertex centered fluxes, contour S indicated by solid line.

The averaged flux vectors qur,ru,qul,lu, · · · generally denoted as qA,B, are computed as

qA,B =
1

4

[

(

(D‖)A + (D‖)B − (D⊥)A − (D⊥)B
) (

bbT
)

A,B
+ ((D⊥)A + (D⊥)B) I

]

(∇TA +∇TB) ,

with bA,B = (bA + bB)/|bA + bB|. Here the gradient approximations follow from the interpolation, see
figure 4 for the nomenclature. Note that applying a separate normalized averaging of the unit direction
vectors gives a division by zero if the unit direction vectors are opposed. In this case we simply have to
pick one of the directions, or, if we know that an opposed direction means there is an O-point, we can set
the respective parallel flux to zero. Almost directly opposed field lines are numerically not an issue for the
normalisation. With O-point we refer to the center of rotation of closed field lines, exactly at the O-point
the direction is not defined.
In case of diffusion tensor values not defined exactly in the flux points but rather in the cells, or in case of
sharply varying densities, harmonic averaging is preferred for the tensor values on the cell faces (see Edwards
and Rogers [7] and Sharma and Hammett [18]). This is generally not the case, e.g. for MHD simulations of
fusion plasmas where the density and the diffusion tensor vary smoothly. For this reason we do not consider
piecewise constant diffusion tensors, rather we apply a continuous nine-point interpolation. We define the
diffusion tensor values exactly in the flux evaluation points.

5



2.3.2 Cell-face centered fluxes

With the flux vectors in the corner points of the control volume pointing in a direction of 45◦ with respect
to the coordinate axes, the scheme is written as

Octogonal volume:

∮
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,
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(4)

where the cell-face fluxes qc1 ,qc2 ,qc3 ,qc4 and qr,ql,qu,qd are given in figure 5. Using a circle with radius
1

2

√
2h we ensure that the flux points c1, c2, c3, c4 lie exactly on the average points of the four surrounding

nodes (see figure 5). For the x- and y-derivatives in the vertical and horizontal flux points respectively we

(a) Octogonal volume (b) Square volume

Figure 5: Control volumes with cell-face centered fluxes, contour S indicated by solid line.

use a nine-point interpolation scheme for the temperature, see section 3. For e = 0 the scheme reduces to
the asymmetric scheme from section 2.1. For e =

√
2h we end up with a symmetric description for the

derivatives. This is equivalent to the symmetric scheme from section 2.2 if we use symmetric approximations
for the derivatives. For verification we will also show the results for the asymmetric and symmetric schemes
from sections 2.1 and 2.2 respectively.

3 Interpolation for fluxes

Given the formulation of the discrete divergence for the VF and CF scheme we need to find the discrete
description of the fluxes. We discuss the use of a local and a non-local flux approximation.

3.1 Multi-point flux approximation for eight point flux scheme

Suppose we apply a local multi-point flux interpolation with the volumes surrounding the flux point, assuming
we have cell-centered temperature values. Just like the Multi-Point Flux Approximation (MPFA) method
the flux through the interfaces is determined using subcell-descriptions of the temperature. Here triangles
may be formed by connecting the center points of three neighbouring volumes, see figure 6. We need two
triangles for the determination of one edge flux, as per triangle we determine half of the flux going through
the edge (see figure 7). We consider the approach described in e.g. Aavatsmark et al. [1,2] and Edwards and
Rogers [7], i.e. we consider subcells with one temperature value per subcell face. Unlike the MPFA-methods,
we do not have cellcentered diffusion tensors, but rather edge centered or vertex centered diffusion tensor
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Figure 6: Interaction triangles, indicated by red lines

values. We have already surrounded each vertex with an interaction triangle, which connects the surrounding
temperature unknowns. The octogonal volume has eight vertices and thus eight interaction triangles, the
square volume has four. It is clear that using a mixture of octogonals and squares for the finite volumes

(a) (b)

Figure 7: Interaction triangles for (a) octogonal volume, (b) square volume, solid squares (�) indicate temperature unknowns
and solid circles (•) indicate added unknowns to solve for the fluxes.

leads to a mixture of nine-point stencils and five-point stencils when applying a locally conservative method
(see figure 7). Only for e =

√
2h and e = 0 a nine-point stencil emerges. It is known from literature that

to properly resolve non-grid-aligned anisotropic diffusion with a linear scheme at least a nine-point stencil is
required (see e.g. Umansky et al. [21]). The five-point stencil for the square volumes, which is unavoidable
when using a combination of octogonal and square volumes, does not satisfy this requirement. Hence we will
not further consider this multi-point flux approach.

3.2 Non-local flux approximation

Since the flux points r, l, u, d are off-center with respect to the centered temperature values we are forced to
involve more points to obtain second-order accuracy in approximating the derivatives in these flux points.
To have second-order accuracy for general values of e we apply biquadratic interpolation of the surrounding
temperature values. When applying a nine-point interpolation we are assuming to have a continuous tem-
perature and flux distribution. In case of a smoothly varying diffusion tensor and temperature value this
assumption is realistic. Also see the Center Flux Scheme by Ferziger and Peric [8].
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We have the following description for the derivatives:
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where the set of coefficients γij is found by applying the Vandermonde matrix to the cell-centered temperature
unknowns and subsequently differentiating the interpolation function, see appendices B and C. A second
option is to weigh the symmetric approximation of the derivatives given e.g. by equation(2) such that the
derivatives are given by
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These derivatives are consistently summed in a weighted fashion, where the weights are given by
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We call the resulting coefficients locally symmetric, see appendix C for the contribution to the linear operator.

4 Numerical results and methodological adaptations

In the following test case we will consider both Vandermonde and locally symmetric coefficients. If results
are similar we only show the results for the Vandermonde coefficients.

4.1 Closed field-line test cases

In this section we show the results for closed field-line test cases with extreme levels of anisotropy. In this test
case b · ∇T = 0. We vary the values of the parameters e and ς . The test cases we consider have continuous
distributions for the diffusion tensor and the temperature. The error norm is defined by

ǫ∞ =
|T̃ − T |max

|T |max
,

where T̃ is the approximate temperature. The problem is considered on a square domain, described by
−0.5 ≤ x, y ≤ 0.5. The following steady-state solution is assumed on the domain:

T (x, y) = 1− (x2 + y2)3/2, (8)
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with the unit direction vector given by

b =
1

√

x2 + y2

(

−y
x

)

.

In figure 8, we study the accuracy of the various schemes for two anisotropic cases, one being extremely
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Figure 8: Error ǫ∞ for anisotropy ratios ς = 103 and ς = 109, CF scheme with (a) Vandermonde coefficients, (b) locally
symmetric coefficients, and (c) the asymmetric and symmetric scheme of Günter et al.

anisotropic, ς = 109. The main observation to be made from figure 8 is that for the extremely anisotropic
ς = 109 case only the symmetric scheme by Günter et al. and the CF scheme, with e =

√
2h and locally

symmetric coefficients, are second-order convergent and moreover of low error magnitude. Using the locally
symmetric coefficients; for e →

√
2h we go from a non-local interpolation involving all the temperature

unknowns for each derivative to a local interpolation involving only the volumes surrounding the flux points.
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Figure 9: Error ǫ∞ for anisotropy ratios ς = 103 and ς = 109, VF scheme with (a) Vandermonde coefficients, (b) locally
symmetric coefficients.

This explains the jump in (order of) accuracy going from e = 0.95
√
2h to e =

√
2h in figure 8b. In figure

9 we still present results obtained with the VF scheme for the same test case. Here, as opposed to the CF
scheme with locally symmetric coefficients (figure 8), the VF scheme with locally symmetric coefficients does
not perform well for ς = 109.

4.2 e-dependency

We proceed by studying the e-dependency in more detail. We consider a constant angle test case which is
described by

T (x, y) = xy [sin (πx) sin (πy)]
10
, x, y ∈ [0, 1],

where the angle of misalignment α is set to a constant value. The solution simulates a temperature peak.
For both the cell face-centered scheme and the vertex-centered scheme we observe a noticeable influence of
the dominant angle of anisotropy on the e-dependency of the error, see figure 10. Concerning the effect of
e-variation, notice the opposite behavior of the VF scheme and the CF scheme. Also note that for most
values of e the error increases as the dominant angle of anisotropy goes to 45◦. At and near e =

√
2h, for

the CF scheme the behavior is opposite though; CF scheme’s best results are obtained for α = 45◦. For the
CF scheme, we also clearly observe the best behavior is at or near e =

√
2h.

4.3 Adaptations for closed field lines

There is a clear distinction between closed and open field-line cases. The closed field-line cases allow for
specific adaptations to improve the accuracy. The common point around which the field lines rotate is called
the O-point.

4.3.1 Topology mimicking

To incorporate the closed field-line topology in the finite-volume discretisation we enforce that the unit
direction vectors are tangential to the edges of the finite volume, see figure 11. Also note that in this
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Figure 10: Error ǫ∞ for constant angle test case, ς = 109, 50×50 grid and varying values of e, (a) VF scheme, (b) CF scheme.

way we enforce that ∇ · b = 0. In general this is not consistent with the diffusion equation because in
general ∇ · b 6= 0. Sovinec et al. [20] devised a test containing only closed field lines to directly compare

(a) (b)

Figure 11: Topology local field lines for (a) octogonal volume, (b) quadrilateral volume.

the perpendicular numerical diffusion to the actual numerical diffusion. The exact solution and the forcing
function are given by

T =
1

D⊥
ψ, f = 2π2ψ, ψ = cos(πx) cos(πy), x, y ∈ [−0.5, 0.5]. (9)

The error in the perpendicular diffusion is given by |T (0, 0)−1−D⊥|. We use homogeneous Dirichlet boundary
conditions. The field lines are tangential to the contours of constant temperature, i.e.

b =
1

√

ψ2
x + ψ2

y

(

−ψy

ψx

)

.

We obtain fourth-order convergence for the Sovinec test case independent of the level of anisotropy, using
Vandermonde coefficients, with e =

√
2h, with vertex averaged gradients and with the unit direction vectors

enforced to be tangent to the cell faces, see figure 12a. The Sovinec test case has closed field lines, as such
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Figure 12: Error ǫ∞ for Sovinec test case, ς = 109, with varying values of e, using Vandermonde coefficients. Here the
symmetric scheme by Günter et al. is used as a reference. (a) VF scheme, (b) CF scheme.

the topology of the entire domain is mimicked by the individual volumes. We believe this is key to the
high-order approximation. We see that the accuracy increases monotonously as e goes to

√
2h, and that

it seems to jump to fourth-order for e =
√
2h. Further, we see the inverse for the CF scheme, where we

have fourth-order accuracy for e = 0 and second order for higher values of e, with a subsequent decrease in
accuracy for increasing e, see figure 12b.
The VF scheme with exact unit direction vectors and the VF scheme with averaged unit direction vectors
are identical since the local values for the unit direction vector (and thus also its approximation) do not play
a role in the accuracy. We note that using the locally symmetric coefficients the results are almost identical,
without the fourth-order convergence for e =

√
2h.

If we force the field lines for the parallel diffusion coefficient to be tangential to the cell faces, letting
the field lines for the perpendicular diffusion coefficient untouched, we get the same result as setting D‖ to

zero everywhere in the domain for any level of anisotropy without the fourth-order accuracy for e =
√
2h.

4.3.2 Importance of O-point

We now apply the VF and CF scheme to the Sovinec test case, without the foregoing enforcement of field
line topology. We notice a huge difference between odd and even numbered grids; both the VF and the CF
scheme perform much better on odd-numbered grids than on even-numbered grids. On the odd-numbered
grids, for both schemes, the error of the perpendicular diffusion remains fairly constant with increasing
anisotropy, see figure 13.

The gain in accuracy is caused by the fact that the central volume exactly mimicks the topology of the
closed field line with b · ∇T = 0 leading to a zero contribution of D‖. To verify this we enforce D‖ = 0 for
the flux points positioned closest to the O-point for the even-numbered grids. The results, given in figure 14,
show that enforcingD‖ = 0 close to the O-point has a similar effect as having a volume exactly on the O-point.

For both the VF scheme and the CF scheme we get O(h4) convergence for e →
√
2h and e → 0 re-

spectively for the isotropic case if we have a finite volume exactly on the O-point, see figure 15c. The
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Figure 13: Error |T−1 − 1| for Sovinec test case with varying anisotropy, e = ∆s, Vandermonde coefficients, with odd and
even number of finite volumes (a) VF scheme, (b) CF scheme.
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Figure 14: Error |T−1 − 1| for Sovinec test case for varying anisotropy for e = ∆s, Vandermonde coefficients, odd and even
grid with D‖ 6= 0 and D‖ = 0, respectively (a) VF scheme , (b) CF scheme.

4th-order convergence becomes independent of the level of anisotropy if we mimick the topology everywhere
in the domain as we saw in section 4.3.

4.3.3 Enforcing D‖ = 0

We see that enforcing D‖ = 0 around the O-point, as well as placing a volume exactly on the O-point leads to
a considerable gain in accuracy for the Sovinec test case. This approach is interesting as a means to improve
existing methods because the location of the O-point can be derived from the magnetic field data. The same
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Figure 15: Sovinec test case, Error |T−1 − 1| for varying e with anisotropy ς = 1, 103, 109, N = 51, Vandermonde coefficients
(a) VF scheme, (b) CF scheme, (c) convergence of error ǫ∞ for ς = 1.

caveat as for the topology mimicking holds here; validity is limited to situations where the parallel flux is
zero. However, it is not necessarily limited to steady cases. The involvement with the problem parameter D‖

might be seen as a form of model reduction. If a point on the last closed field line is found and subsequently
D‖ is enforced to be zero on the line connecting the outer point and the O-point (see figure 16), we now have

full second-order accuracy for e = 0, e = ∆s and e =
√
2h, see figure 17. We know from Van Es et al. [22]

that the symmetric scheme by Günter et al. loses anisotropy independence for tilted elliptic temperature
distributions. Note that the symmetric scheme is identical to the symmetric finite volume scheme for a
uniform rectangular grid. This tilted elliptic distribution has no symmetry axes aligned with the coordinate
axes and as such is more general than the previous test case.
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Figure 16: Points where we set D‖ to zero.
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Figure 17: Convergence of |T−1 − 1| for Sovinec test case with ς = 109 , (a) VF scheme , (b) CF scheme.

The distribution for the tilted test case is given by

T (x, y) = 1− (a2(x cos θ + y sin θ)2 + b2(x sin θ − y cos θ)2)3/2, x, y ∈ [−0.5, 0.5], (10)

with b given by

b =
1

√

T 2
x + T 2

y

(

−Ty
Tx

)

,

which ensures that b · ∇T = 0. First we set D‖ = 0 on a vertical line through the O-point. Second-order
accuracy is obtained for e = 0 using the VF scheme, see figure 18. Continuing with e = 0 we try different
enforcements of D‖ = 0, from enforcement in the O-point only to enforcement along the full vertical. Second-
order accuracy convergence for the VF scheme is obtained completely when we set D‖ to zero on the line
x = 0, y > −0.5 through the origin and likewise for D‖ set to zero on the line x = 0, y > 0, see figure 19. For
an enforcement along the line x = 0, 0 < y < 0.2 stagnation of convergence sets in for a moderate resolution.
In general the stagnation of convergence is delayed further for a longer line of D‖ = 0 enforcement. An
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Figure 18: Convergence of ǫ∞ for the tilted elliptic test case with D‖ set to zero on vertical line through origin, for varying

e, ς = 109, θ = 1/3π, a = 0.15, b = 0.85, Vandermonde coefficients, (a) VF scheme , (b) CF scheme.
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Figure 19: Convergence of ǫ∞ for the tilted elliptic test case for e = 0, ς = 109, θ = 1/3π, a = 0.15, b = 0.85, Vandermonde
coefficients, (a) VF scheme , (b) CF scheme.

explanation for this is that the longer we make this line of enforcement, the more closed field lines we are
able to resolve. This explains the fact that we do not see an improvement for D‖ = 0 on the full vertical
line compared to the half vertical line for the VF scheme since for both x = 0, y > −0.5 and x = 0, y > 0 we
treat all the closed field lines. The results for the CF scheme also improve, but there is no full recovery of
the second-order accuracy. Here we should note that for e = 0 the only difference between the CF scheme
and the VF scheme is the treatment of the temperature gradients. Finally we apply the D‖ = 0 enforcement
on the line x = 0, y > 0 to the test case given by equation(8). Comparing the convergence results shown
in figure 20 to those in figures 8, 9 we see a full anisotropy independent recovery of the convergence for
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Figure 20: Error ǫ∞ for test case with solution(8) using the VF scheme with Vandermonde coefficients, (a) convergence with
ς = 109 and D‖ = 0 on x = 0, y > 0, (b) anisotropy dependency on 100 × 100 grid with e = ∆s.

e = 0,∆s,
√
2h.

4.3.4 Enforcing D‖ = 0 unsteady

To further test the influence of the closed field line adaptations discussed in section 4.3 we approximate the
unsteady diffusion equation with a zero initial condition and a source function that produces the Sovinec
distribution, i.e. the exact final temperature distribution and source f are given by equation(9). We apply
D‖ = 0 on the half line of the domain for the VF scheme with e = ∆s. For the time-integration we use the
Crank-Nicolson scheme. The analytical solution (see Chacón et al. [4]) is given by

T (x, y, t) =
1− exp

(

−2D⊥π
2t
)

D⊥
cosπx cosπy. (11)

In figure 21 we show the temporal value of the infinity error norm for an anisotropy level of ς = 106. It is
clear from the figure that setting D‖ to zero on the half line greatly improves the accuracy, the accuracy for
the 32× 32 grid is comparable to the result by Chacón et al. [4].
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Figure 21: Error ǫ∞ for unsteady test case(11) using the VF scheme with Vandermonde coefficients, e = ∆s, ∆t = 1/400,
ς = 106, (a) without adaptation, (b) with D‖ = 0 on the half line x = 0, y > 0.

5 Conclusion

The motivation for this research was that C1 continuous connections of each volume with all of its nine neigh-
bouring volumes would improve the accuracy for large values of the anisotropy. To have varying connectivity
we introduced a parameter e. For 0 < e <

√
2h we have octogonal and quadrilateral volumes connected

with each other. The results indicate that connectivity plays a role in the accuracy. For all test cases the
optimal result in terms of convergence was obtained for either e = 0 or e =

√
2h, which is equivalent to the

symmetric scheme. The connectivity as such is not of primary importance for maintaining the convergence
and accuracy for the extreme anisotropy. Since a variation in e does not require any regridding, it may be
beneficial for an unsteady problem to adapt the value of e based on previous timesteps. An extension to
three dimensions is possible.

We further conclude that D‖ = 0 enforcement is a viable approach to improve numerical methods in case of
extremely anisotropic problems with closed field lines and zero parallel diffusion. Inserting D‖ = 0 on a line
connecting the O-point with the last closed field line recovers the formal accuracy in all the test problems
described in this paper, including the Sovinec test case and the tilted elliptic test case. We also conclude that
having a temperature unknown exactly in the O-point can improve the anisotropy independence significantly
in case of closed field lines.
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A Taylor expansions

For the Asymmetric Scheme described in section 2.1 the local truncation errors of the different terms are
found by writing out the Taylor expansions

(D11Tx)x : TxD11x + TxxD11 + h2
[

1

24
TxD11xxx

+
1

8
TxxD11xx

+
1

6
TxxxD11x +

1

24
TxxxxD11

]

+O(h4),

(D21Ty)x : TyD21x + TxyD21 + h2
[

1

24
TyD21xxx

+
1

144
TyyyD21x +

1

8
TxyD21xx

+
1

6
TxyyyD21

+
1

6
TxxxyD21 +

1

4
TxxyD21x

]

+O(h4),

and similarly for (D22Ty)y and (D21Tx)y respectively. Likewise for the Symmetric Scheme found in section
2.2 the approximations are given by

(D11Tx)x : TxD11x + TxxD11 + h2
[

Tx

(

1

8
D11xyy

+
1

24
D11xxx

)

+ Txx

(

1

8
D11yy +

1

8
D11xx

)

+
1

4
TxyD11xy

+
1

4
TxyyD11x +

1

4
TyyxD11y +

1

6
TxxxD11x +

1

4
TxxyyD11 +

1

12
TxxxxD11

]

+O(h4),

(D21Ty)x : TyD21x + TxyD21 + h2
[

Ty

(

1

8
D21xyy

+
1

24
D21xxx

)

+ Txy

(

1

8
D21yy +

1

8
D21xx

)

+
1

4
TyyD21xy

+
1

24
TyyyD21x +

1

16
TxyyD21y +

1

16
TyxxD21x +

1

6
TxyyyD21 +

1

6
TyxxxD21

]

+O(h4),

and similarly for (D22Ty)y and (D21Tx)y respectively.
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B Interpolation Coefficients

Given an interpolation for T

T (x, y) =

2
∑

i=0

2
∑

j=0

γijx
iyj , (12)

the coefficients γij follow from
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and are given by

γ22 =
1

h4

(

Ti,j −
Ti,j−1

2
− Ti−1,j

2
− Ti+1,j

2
− Ti,j+1

2
+
Ti−1,j−1

4
+
Ti+1,j−1

4
+
Ti+1,j+1

4
+
Ti−1,j+1

4

)

,

γ21 =
1

4h3
(2Ti,j−1 − 2Ti,j+1 + Ti−1,j+1 + Ti+1,j+1 − Ti−1,j−1 − Ti+1,j−1) ,

γ12 =
1

4h3
(2Ti−1,j − 2Ti+1,j + Ti+1,j−1 + Ti+1,j+1 − Ti−1,j−1 − Ti−1,j+1) ,

γ20 =
1

2h2
(Ti−1,j − 2Ti,j + Ti+1,j) , γ02 =

1

2h2
(Ti,j−1 − 2Ti,j + Ti,j+1) ,

γ11 =
1

4h2
(Ti−1,j−1 + Ti+1,j+1 − Ti+1,j−1 − Ti−1,j+1) ,

γ10 =
Ti+1,j − Ti−1,j

2h
, γ01 =

Ti,j+1 − Ti,j−1

2h
,

γ00 = Ti,j ,

(13)

which we call the Vandermonde coefficients. Note that the coefficients γ1, . . . γ8 are all approximations of
differential terms in point i, j,

γij =
1

i!j!

(

∂

∂x

)i (
∂

∂y

)j

T (x, y). (14)
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C Linear operator

For the determination of the linear operator we write,

Tx(x, y) =
∂

∂x
[a0,0Ti,j + a1,0Ti+1,j + a−1,0Ti−1,j + a0,1Ti,j+1 + a0,−1Ti,j−1

+a1,1Ti+1,j+1 + a−1,1Ti−1,j+1 + a1,−1Ti+1,j−1 + a−1,−1Ti−1,j−1] ,

Ty(x, y) =
∂

∂y
[a0,0Ti,j + a1,0Ti+1,j + a−1,0Ti−1,j + a0,1Ti,j+1 + a0,−1Ti,j−1

+a1,1Ti+1,j+1 + a−1,1Ti−1,j+1 + a1,−1Ti+1,j−1 + a−1,−1Ti−1,j−1] ,

where the operators ∂
∂x ,

∂
∂y only work on the coefficients ak,l, k, l = −1, 0, 1, with x, y centered around i, j,

where for the Vandermonde coefficients we have

a0,0 =
x2y2

h4
− x2

h2
− y2

h2
+ 1,

a±1,0 =
1

2

(

−x
2y2

h4
∓ y2x

h3
+
x2

h2
± x

h

)

,

a0,±1 =
1

2

(

−x
2y2

h4
∓ x2y

h3
+
y2

h2
± y

h

)

,

a±1,1 =
1

4

(

x2y2

h4
+
x2y

h3
± y2x

h3
± xy

h2

)

,

a±1,−1 =
1

4

(

x2y2

h4
− x2y

h3
± y2x

h3
∓ xy

h2

)

.

(15)

Using the expressions for α given in equation(7) the contributions of the local symmetric coefficients to the
linear operator are given by

∂

∂x
a0,0 =

1

2h
(−αru + αlu + αld − αrd) ,

∂

∂y
a0,0 =

1

2h
(−αru − αlu + αld + αrd) ,

∂

∂x
a1,0 =

1

2h
(αru + αrd) ,

∂

∂y
a1,0 =

1

2h
(−αru + αrd) ,

∂

∂x
a−1,0 =

1

2h
(−αlu − αld) ,

∂

∂y
a−1,0 =

1

2h
(−αlu + αld) ,

∂

∂x
a0,1 =

1

2h
(−αru + αlu) ,

∂

∂y
a0,1 =

1

2h
(αru + αlu) ,

∂

∂x
a0,−1 =

x

2h
(αld − αrd) ,

∂

∂y
a0,−1 =

1

2h
(−αld − αrd) ,

∂

∂x
a1,1 =

αru

2h
,

∂

∂y
a1,1 =

αru

2h
,

∂

∂x
a−1,1 = −αlu

2h
,

∂

∂y
a−1,1 =

αlu

2h
,

∂

∂x
a1,−1 =

αrd

2h
,

∂

∂y
a1,−1 = −αrd

2h
,

∂

∂x
a−1,−1 = −αld

2h
,

∂

∂x
a−1,−1 = −αld

2h
.

(16)
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