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Abstract

Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside
a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied
through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full
MHD equations is addressed here. Our computational method is presented along with measures against possible
problems regarding pollution, stability, and regularity.

The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite
element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here.

Useful analytical test cases are devised to verify the correct implementation of the momentum and induction
equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A
striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic
diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown
to be associated with our use of a magnetic vector potential to describe the magnetic field.

Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear
growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code.
The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The
results are compared with predictions from the reduced MHD model.

Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method
without the need to add any physical dissipation.

Keywords: magnetohydrodynamics, finite element method, implicit time integration, magnetic vector potential,
anisotropic diffusion, internal kink mode, tearing mode, ballooning mode

1. Introduction

The hot plasma in a tokamak knows many ways to escape the grip of the confining magnetic field. Most of these
have been long understood and this understanding has led to a tremendous increase in the time a plasma can be kept
in place. A first understanding of the development of instabilities in tokamak plasmas starts with an understanding of
their linear phase. The theory of magnetohydrodynamics (MHD) has been successful in understanding many linear
instabilities like kink, tearing, and ballooning modes. The kink mode is at the basis of what is called the sawtooth
instability, named after the shape of the resulting magnetic signals. Tearing modes grow to form magnetic islands,
while the ballooning mode plays an important role in the formation of Edge Localized Modes (ELMs). An accurate
description of these phenomena typically requires the inclusion of effects outside of the MHD model, like the effects
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of fast particles or neoclassical effects. Linear MHD instabilities and their nonlinear development can already account
for many aspects of the observations though.

While purely theoretical analyses are arguably still the most important tool for understanding the linear phase of
instabilities, for their nonlinear development this role is more and more taken over by numerical simulations. Over the
last few decades the computing power has increased to a level that the nonlinear development of instabilities can be
routinely simulated with sufficient resolution in both space and time. As a result, many codes have been developed that
can solve a sub- or super-set of the MHD equations. Codes used for tokamak applications include NIMROD [1, 2],
BOUT++ [3, 4], M3D(-C1) [5, 6], XTOR(-2F) [7, 8], FAR [9], MEGA [10], and JOREK.

The JOREK code was initially developed as a reduced MHD code. It has been used to calculate various instabilities
like the peeling(-tearing) mode [11], ballooning modes [12], and their combined nonlinear development in the form
of ELMs [13, 14, 15, 16]. The influence of flows on ELMs [13, 17] and various mechanisms to trigger or mitigate
instabilities through resonant magnetic perturbations [18, 19], pellet injection [14], and massive gas injection [20]
have also been studied extensively with JOREK.

These simulations were all performed using the reduced MHD model. In this model typically only one or two
variables are used to describe the velocity. The primary difference with the full MHD model is the possibility of
supporting fast magneto-acoustic waves, which require compression of the toroidal magnetic field. Since these waves
are very stable and have a frequency that is much higher than most other phenomena of interest, this is typically
considered to be an advantage. However, there are situations in which compression of the toroidal magnetic field can
be important. A particular instance may be the accurate description of fast poloidal rotation, for which ‘magnetic
pumping’ acts as a damping mechanism. Since in this case anisotropic pressure and diamagnetic effects are expected
to be important as well, extension from reduced to full MHD can be considered as an important step towards more
complete tokamak modeling.

The numerical methods for the reduced MHD equations, as implemented in the JOREK code, are described
in [21, 22]. Here we focus on the extension of these methods to the full MHD equations. In Section 2 we first describe
the strong form of the equations and how the gauge freedom introduced by the use of a magnetic vector potential was
used. Next, after discussing the simple boundary conditions used in this work, we derive a suitable weak form of the
equations.

Some background with respect to the numerics is presented in Section 3. The spatial discretization is discussed
as far as required for what follows, while the time integration is discussed in more detail. In Section 4 we discuss our
solution to a problem encountered with spectral pollution.

Next, we thoroughly verify our implementation through a series of tests. We test the equations individually in
Section 5 and the complete system of equations in Section 6. Finally, Appendix A discusses a possible method to
guarantee continuity of the solutions at the center of a polar grid.

2. Model

2.1. Equations

Our goal is to implement the following system of viscoresistive MHD equations:

∂ρ

∂t
= −∇ · (ρu + qm) + S m, (1a)

∂ρu
∂t

= −u∇ · (ρu) − ρu · ∇u − ∇p + J × B + ∇ · Tv, (1b)

∂p
∂t

= −∇ ·
[
γpu + (γ − 1) qh

]
+ (γ − 1)

(
u · ∇p + ηJ2 + Tv : ∇u + S h

)
, (1c)

∂A
∂t

= −ηJ + u × B, (1d)

for the primitive variables ρ,T,u and A, the density, temperature, velocity, and magnetic vector potential respectively.
The coefficient γ is the adiabatic constant expressing the ratio of specific heats. In this work we will use the mono-
atomic ideal gas value γ = 5/3. For describing other plasma phenomena different values may however be more
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appropriate [23]. As secondary variables we use the current density J = ∇ × B, and pressure p = ρT . The magnetic
field B is expressed in terms of a magnetic vector potential A as

B = ∇ × A + F, (2)

where we allow for the addition of a divergence-free vector F that is constant in time, see section 2.8. The continuity
and heat equation are supplemented with mass and heat sources S m and S h. The constitutive relations for the fluxes
qm and qh are given by

qm = −
(
D⊥∇⊥ρ + D‖∇‖ρ

)
+ Dh∇∇

2ρ, (3a)
qh = −

(
K⊥∇⊥T + K‖∇‖T

)
, (3b)

where ∇‖ = (B/B2)B · ∇ and ∇⊥ = ∇ − ∇‖. The parallel conductivity K‖ and mass diffusion coefficient D‖ in general
depend on the temperature, which is fully allowed for in the code, but will not be done in the test cases to be considered
in this paper. The perpendicular diffusion coefficients D⊥ and K⊥ and the hyperdiffusion coefficient Dh can be used
to phenomenologically model turbulence effects beyond MHD, which can be useful for simulations on a transport
time scale. Hyperdiffusive terms may also be introduced in the temperature equation, or the induction equation, as
in [4, 24].

The righthand side of the momentum equation (1b) can be written as the divergence of the stress tensor

T = −

(
p +

1
2

B2
)

g − ρuu + BB + Tv. (4)

Under the assumptions of isotropy and a linear relation between stress and strain, the most general viscous stress
tensor Tv is given by

Tv = TN + λ(∇ · u)g, (5a)

TN = µ
(
∇u + (∇u)T

)
. (5b)

Here TN is the Newtonian part of the stress tensor proportional to the dynamic viscosity µ, g is the metric tensor, and
λ the second coefficient of viscosity. The quantity µB = λ + 2µ/3 is called the bulk viscosity or dilatational viscosity
and is, confusingly, also sometimes used in place of λ in Eq. (5a). Throughout this paper we use λ = µ = 0, except in
a test case shortly discussed in Section 5.1 where we use a very large value of λ to enforce incompressibility.

2.2. Gauge
Eq. (1d) for the magnetic field, results from ‘uncurling’ Faraday’s law:

∂B
∂t

= −∇ × E. (6)

Using Eq. (2) with ∂F/∂t = 0 gives
∂A
∂t

= −E. (7)

Eq. (1d) is obtained after using Ohm’s law for moving media:

J = η−1 (E + u × B) , (8)

where E is the electric field. To Eq. (7) the gradient of an arbitrary time-dependent scalar field Φ can be added, without
changing Eq. (6). We have used this ‘gauge freedom’ to set Φ = 0, with obvious advantages. This gauge is called
the Weyl gauge, also known as the Hamiltonian or temporal gauge. In the Weyl gauge, a time-independent gradient
of a scalar field can still be added. Therefore the gauge is not completely fixed, which is sometimes referred to as an
‘incomplete gauge’. An electric potential Φ can always be reintroduced by replacing a part of ∂A/∂t with ∇Φ. This
gauge transformation leaves both the electric and magnetic fields unchanged.

Several other choices for Φ, like the Coulomb gauge in which ∇ · A = 0, require the solution of a costly Poisson
equation. Some numerical aspects of the various gauges in a finite volume setting are described in [25]. An interesting
option specifically for tokamak applications is presented in [6], where instead of an additional variable Φ to fix the
gauge, one variable less is used. The freedom in A introduced by ∇ · B = 0 is used to describe the magnetic vector
potential in terms of only two scalar components instead of three.
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2.3. Weak forms
To obtain the weak formulation of the equations (1a)-(1d) we multiply these with a test function and integrate over

the entire domain. We then have the choice of partially integrating some or all of the terms. This choice potentially
influences stability and accuracy. Also, a smart choice of which terms to partially integrate can lead to a more
convenient implementation of the equations.

2.3.1. Continuity equation
We multiply Eq. (1a) for the density ρ with a test function ρ∗ and integrate over the entire domain∫

ρ∗
∂ρ

∂t
dV =

∫ [
−ρ∗∇ · (ρu + qm) + ρ∗S m

]
dV (9a)

=

∫ [
(ρu + qm) · ∇ρ∗ + ρ∗S m

]
dV −

∮
ρ∗ (ρu + qm) · dS, (9b)

where the surface element dS is oriented normal to the boundary in the outward direction. The weak formulation of
the pressure equation (1c) follows in a similar way.

For the hyperdiffusive term −Dh∇∇
2ρ in qm we can perform one more partial integration to write1

−

∫
Dh∇∇

2ρ · ∇ρ∗dV =

∫
∇2ρ∇ · (Dh∇ρ

∗) dV −
∫

Dh∇
2ρ∇ρ∗ · dS. (11)

2.3.2. Momentum equation
Taking the inner product of Eq. (1b) with a vectorial test function m∗ and integrating by parts we get∫

m∗ ·
∂ρu
∂t

dV =

∫
−T : ∇m∗dV +

∫
T ·m∗ · dS. (12)

For the stress tensor (4) the boundary term reads∫
T ·m∗ · dS =

∫ [
−

(
p +

1
2

B2 − λ(∇ · u)
)

m∗ + (−ρuu + BB + TN) ·m∗
]
· dS. (13)

This surface integral represents the total stress in the direction of m∗, normal to the boundary. The integrand of the
first term on the righthand side of Eq. (12) reads

−T : ∇m∗ = ρu · (u · ∇m∗) − B · (B · ∇m∗) +

(
p +

B2

2
− λ∇ · u

)
∇ ·m∗ − TN : ∇m∗, (14)

where we used that g : ∇m∗ = ∇ ·m∗.

2.3.3. Induction equation
Transforming Eq. (1d) to weak form, using

ηA∗ · ∇ × B = ∇ · (B × ηA∗) + B · ∇ × ηA∗, (15)

we obtain ∫
A∗ ·

∂A
∂t

dV =

∫ [
A∗ · (u + ∇η) × B − ηB · ∇ × A∗

]
dV +

∫
ηA∗ × B · dS. (16)

1An alternative weak formulation can be obtained for the hyperdiffusive term. Integrating by parts with respect to the divergence operators
acting on Dh∇ρ

∗, we obtain the alternative weak form

−

∫
Dh∇∇

2ρ · ∇ρ∗dV =

∫
∇∇ρ : ∇Dh∇ρ

∗dV −
∫

Dh
(
∇ρ∗ · ∇∇ρ

)
· dS. (10)
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2.4. Boundary conditions

In this paper we will primarily use the simplest possible boundary conditions. We will fix all the primitive variables
at the boundary:

∂

∂t
(ρ,T,u,A) = 0. (17)

These boundary conditions are imposed for convenience. They allow internal modes. More general boundary condi-
tions will have to be taken into account when modeling for example the divertor, where plasma can freely flow out of
the domain. Such outflow conditions have already been implemented for the reduced MHD models in [26]. Also to
simulate a resistive wall mode, different boundary conditions should be used, which requires evaluation of the surface
terms of the previous sections. See [27] for an effort to simulate resistive wall modes. The conditions (17) can be
shown to describe an ideally conducting wall, impermeable for both plasma and electric current. When no current
can penetrate the boundary, Ohm’s law (8) with u = 0 shows that the normal component of the electric field vanishes.
When the boundary of the domain consists of an ideally conducting wall also the tangential component of the electric
field vanishes. With Eq. (7), the boundary condition ∂A/∂t = 0 then follows.

The unknowns are the changes of the primitive variables from one time step to the next. Therefore the condi-
tions (17) constitute simple Dirichlet boundary conditions. Because the test functions should live in the same space
as the unknowns, Dirichlet boundary conditions also hold for the test functions. We can use this property to neglect
almost all boundary integrals of the weak formulations derived in the previous section. In the code this is imple-
mented in the matrix equation that results from the discretization, by taking out those lines corresponding to the basis
functions that do not satisfy the boundary conditions. These lines are then replaced by conditions that implement the
boundary conditions (17).

The only surface term that does not necessarily vanish is the hyperdiffusive term in Eq. (11). By not taking into
account this boundary term, the natural boundary condition ∇2ρ = 0 is implemented. This is a boundary condition
that seems reasonable in the sense that it will probably not alter the interior solution too much.

2.5. Summary of the weak forms

When the test functions vanish at the boundary, all the surface integrals in the above weak formulations disappear.
The weak formulation can be summarized as

∫
ρ∗
∂ρ

∂t
dV =

∫ [
(ρu + qm) · ∇ρ∗ + ρ∗S m

]
dV, (18a)∫

m∗ ·
∂ρu
∂t

dV =

∫ [
ρu · (u · ∇m∗) − B · (B · ∇m∗) + (p +

1
2

B2 − λ∇ · u)∇ ·m∗ − TN : ∇m∗
]

dV, (18b)∫
p∗
∂p
∂t

dV =

∫ [[
γpu + (γ − 1)qh

]
· ∇p∗ + (γ − 1) p∗

(
u · ∇p + ηJ2 + Tv : ∇u + S h

)]
dV, (18c)∫

A∗ ·
∂A
∂t

dV =

∫ [
(∇ × A∗) · ηB − A∗ · (u + ∇η) × B

]
dV, (18d)

where the hyperdiffusive term in qm will be partially integrated once more as indicated in Eq. (11).
Alternatively, for comparison, we also implement a more primitive formulation in which only partial integration
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is used when it reduces the order. The magnetic terms are left unaltered:∫
ρ∗
∂ρ

∂t
dV =

∫ [
ρ∗

[
−∇ · (ρu) + S m

]
+ qm · ∇ρ

∗] dV, (19a)∫
m∗ ·

∂ρu
∂t

dV =

∫ [
m∗ ·

[
−u∇ · (ρu) − ρu · ∇u − ∇p

]
+

(
1
2

B2 − λ∇ · u
)
∇ ·m∗ (19b)

− B · (B · ∇m∗) − TN : ∇m∗
]

dV,∫
p∗
∂p
∂t

dV =

∫ [
p∗

[
−γp∇ · u − u · ∇p + (γ − 1)

(
ηJ2 + Tv : ∇u + S h

)]
(19c)

+ (γ − 1) qh · ∇p∗
]

dV,∫
A∗ ·

∂A
∂t

dV =

∫ [
∇ × A∗ · ηB − A∗ · (u + ∇η) × B

]
dV, (19d)

where we left out the same surface integrals as before. In some test cases, notably the artificial compressibility test
case shortly mentioned in Section 5.1 and considered in more detail in [28], this formulation is found to be more
stable.

2.6. Coordinate system

We use the cylindrical coordinate system for toroidal problems (R,Z, φ). Being a righthanded coordinate system,
this differs from the standard cylindrical coordinate system (R, φ,Z) in the direction of ∇φ.

With a3 ≡ (∂r/∂φ) = Rêφ we have A3 ≡ a3 · A = RAφ. In an axisymmetric equilibrium, A3 can be identified with
the poloidal magnetic flux function ψ, that will be introduced in Eq. (22). Therefore we use this covariant component
of A as a primitive variable. For the velocity however we use the physical component uφ = êφ · u. Our primitive
variables then read

y =
(
AR, AZ , A3, uR, uZ , uφ, ρ,T

)
. (20)

For scalar test functions like ρ∗ we will use the basis functions (Galerkin method). For the vectorial test functions
m∗ and A∗ we use

m∗ = u∗RêR + u∗Z êZ + u∗φêφ, (21a)

A∗ = A∗RêR + A∗Z êZ + A3∗a3, (21b)

where for the components u∗R, u
∗
Z , etc., we will also simply use the basis functions. Inserting these expressions into

the weak formulations and subsequently choosing only one of the six test functions to be nonzero gives six scalar
equations. After this step it is a matter of working out the integrands of the weak formulation explicitly in the
(R,Z, φ)-coordinate system to obtain a formulation that is suitable for implementation.

2.7. Dimensions

Introducing a characteristic length l0, a characteristic magnetic field strength B0, a characteristic density ρ0, ve-
locities normalized by the Alfvén velocity vA = B0/

√
µ0ρ0 and pressures normalized by ρ0v2

0 = B2
0/µ0, in the ideal

MHD equations µ0 is divided out [29]. Non-ideal terms are non-dimensionalized by dividing the diffusion coefficients
by l0vA. Often Alfvén units are used in which the tokamak minor radius, toroidal magnetic field and density on the
magnetic axis are used as characteristic values. We take µ0 = 1, but no explicit non-dimensionalization is applied to
the input or output.

Note that by defining T = p/ρ we absorb the factor kB/m, with m the average particle mass, into our definition of
the temperature.

6



2.8. Initial conditions
For an axisymmetric MHD equilibrium, the magnetic field can be written as

B = ∇φ × ∇ψ + F(ψ)∇φ, (22)

with F ≡ RBφ. The stationary, axisymmetric, ideal form of the MHD equations (1a)-(1d) with purely toroidal rotation
u = RΩêφ can, using Eq. (22), be reduced to the extended Grad-Shafranov equation

R2∇ ·
(
R−2∇ψ

)
= −F

dF
dψ
− R2 ∂p

∂ψ

∣∣∣∣∣
R
. (23)

This equation represents the force balance normal to the magnetic surfaces labeled by ψ. Within these magnetic
surfaces, the force balance is given by

∂p
∂R

∣∣∣∣∣
ψ

= ρRΩ2. (24)

We assume that pρ−γe is a function of ψ only. Here, γe is the adiabatic constant of the equilibrium [30]. Eq. (24) can
then be solved analytically by

p = p0(ψ)

1 +
ρ0

(
R2 − R2

0

)
Ω2

2p0ζγ


ζγ

, (25a)

ρ = ρ0(ψ)

1 +
ρ0

(
R2 − R2

0

)
Ω2

2p0ζγ


ζγ−1

. (25b)

Different choices of γe ≡ ζγ/(ζγ − 1) lead to different quantities being constant on the flux surfaces. The most natural
choice for tokamak applications is γe = 1 in which case the temperature T = p0/ρ0 ≡ T0 is constant on the magnetic
surfaces.

As input we supply the parametric dependencies of T0, ρ0, F, and Ω on ψn, with ψ normalized between zero and
one. The extended Grad-Shafranov equation (23) is then solved with the boundary condition ψ = 0. We implement the
parameterizations of Eqs. (25a) and (25b) for the pressure and the density for a general equilibrium adiabatic constant
γe. The resulting ψ(R,Z), T (ψ,R), ρ(ψ,R), F(ψ), and Ω(ψ) are then used as initial conditions for the simulation, in
particular A3 = ψ, uφ = RΩ, and

F = F(ψ)∇φ. (26)

The equilibrium is calculated on a polar grid of Nr elements in the radial direction and Nθ elements in the poloidal
direction. The grid used for the simulations is typically aligned with the equilibrium magnetic field, obtained by
accurate interpolation from the polar grid, and can have a different number of radial and poloidal elements Nψ and
Nϑ respectively. The equilibrium is then recalculated on the new grid to ensure an accurate representation. Note
that including also poloidal flow in the equilibrium would require much more effort than required for including only
toroidal flow. See for example [31] on how this could be done.

In an ideal equilibrium with toroidal rotation u = RΩêφ there exists an electric field (8)

E = −u × B = Ω∇ψ. (27)

A scalar potential Φ(ψ) =
∫

Ω(ψ)dψ can be conveniently introduced to describe such an electric field. In the present
gauge (7), this equilibrium electric field is described by a magnetic vector potential A that increases linearly in time.
A time-varying quantity is therefore an inherent part of the equilibrium.

A problem with this is that sometimes we want to study for example the linear growth rate of an instability,
while keeping fixed the n = 0 harmonic provided by the initial conditions. If we do this by restraining the primitive
variables from changing in time, we effectively remove the equilibrium electric field. Another problem is that when
there is plasma flow near the boundary, the normal component of A has to change in time, in violation of our boundary
conditions (17). For these reasons, when including equilibrium rotation, we prefer to add the static equilibrium electric
field Ω∇ψ directly as a source to the righthand side of Eq. (1d).
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Often a next step is to compute axisymmetrically, using only n = 0. When the ideal MHD equations are used,
the variables should not evolve in this case. This is because the initial conditions are an equilibrium solution of these
equations. With the Dirichlet boundary conditions this equilibrium is also stable to n = 0 perturbations. To verify that
this is indeed the case actually provides a good first test of the implementation of the equations.

Often we want to start a simulation from a non-ideal equilibrium with various diffusivities and resistivities. In
the corresponding steady state however some of the profiles may have completely diffused away. To avoid this we
can introduce sources in the equations that balance the diffusion. In tokamak simulations, the diffusivities are often
so low, and the time scales of interest so fast, that for practical purposes the ideal initial conditions provide a quasi-
equilibrium.

3. Numerical method

We use a mixed spectral / finite element spatial representation. A real sine-cosine Fourier expansion is used in the
toroidal direction. Finite elements are used in the poloidal plane [21].

A general multi-step method, allowing for second-order accurate fully implicit time integration, is used. The MHD
equations can be quite stiff; the three fundamental waves in MHD for example, can have widely varying frequencies.
When we are not interested in the highest of these frequencies, a very attractive feature of so-called L-stable implicit
methods [32] is that the time step can be chosen much larger than what is required to resolve the highest frequencies.

The integrals of the weak formulation are calculated per element and put into an element matrix. These element
matrices are then combined in an assembly stage after which the Dirichlet boundary conditions (17) are imposed.
The resulting sparse system of linear equations is saved in coordinate format and is solved using the direct solver
Pastix [33].

In addition, an iterative solver has been implemented based on the Generalized Minimal RESidual (GMRES)
method. A preconditioner has been implemented based on the fact that, because of the axisymmetry of the initial
conditions, the various Fourier harmonics are initially primarily influenced by the n = 0 equilibrium component [22].
Because the inversion of the sub-matrices for different harmonics can be done independently, this allows for an easily
parallelizable solver.

The integrals of the weak formulation are split into separate contributions from the individual elements. Because
the basis functions are nonzero only in the elements bordering the node at which the unknown is defined, this gives
a small element matrix and element vector. These are constructed on separate processors for separate groupings of
elements.

A fourth-order accurate Galerkin method based on the Bézier formalism is used. This approach has been described
in detail in [21]. Here we recollect only those details relevant for the present exposition.

The integrals of the weak formulation are not evaluated in (R,Z, φ)-coordinates, but only after a coordinate trans-
formation to a unit square. An isoparametric formulation is used in which the coordinates are transformed using the
same basis functions as those used for the other variables. An arbitrary quantity, coordinate or variable, is expanded
on a unit square as

P(s, t) =

4∑
i=1

4∑
j=1

pi, jσi, jbi, j(s, t), (28)

where the coordinates s and t run from 0 to 1. The outer sum runs over the four vertices of the element, while the inner
sum runs over the four basis functions bi, j(s, t) per vertex. The coefficients pi, j are the unknowns living on the vertices,
while the quantities σi, j arrange the continuity of P across elements. In the local coordinates (s, t) this continuity is
only geometric [21]. In the Cartesian coordinates (R,Z) however, the variables are continuously differentiable or
C1. The basis functions or shape functions bi, j(s, t) are products of cubic polynomials in s and t. They follow from
Bernstein polynomials after taking into account continuity requirements at the edges of the elements [21]. For the first
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Figure 1: A schematic representation of the coordinate transformation from an element in (R,Z) to a reference unit square with
coordinates (s, t).

vertex i = 1:

b1,1(s, t) = (1 − s)2(1 − t)2(1 + 2s)(1 + 2t), (29a)

b1,2(s, t) = 3(1 − s)2(1 − t)2(1 + 2t)s, (29b)

b1,3(s, t) = 3(1 − s)2(1 − t)2(1 + 2s)t, (29c)

b1,4(s, t) = 9(1 − s)2(1 − t)2st. (29d)

For the second vertex, referring to Fig. 1 for the labeling of the vertices, we have the same basis functions with
s → 1 − s. That is b2, j(s, t) = b1, j(1 − s, t). For the other two basis functions we have b3, j(s, t) = b1, j(1 − s, 1 − t) and
b4, j(s, t) = b1, j(s, 1 − t).

3.1. Spatial discretization

The basis functions are zero in elements to which the vertex does not belong. All basis functions labeled i vanish
on the two edges opposite to the vertex i.

Non-axisymmetric variables acquire an additional dependence on the toroidal angle φ by multiplication of the
parameterization (28) with cos (nkφ) or sin (nkφ). This adds another index to the unknowns pi, j → pi, j,k and the basis
functions bi, j → bi, j,k. The toroidal mode numbers nk = (k − 1)/2 typically run from nk = 0 for k = 1 to nk = n for
k = 2n + 1. However, it is also possible to use only a fraction of the full toroidal angle, so that mode numbers nk that
are not a multiple of some integer periodicity are excluded. This allows us to focus on a single mode number n, only
even n, only multiples of 3, etc.

In the Galerkin method, the test functions are equal to the basis functions. The integrands of the weak formula-
tion (18a)-(18d) will therefore contain Fourier harmonics of at most a toroidal mode number 2n and polynomials of
sixth-order in s and t. Such integrals can be evaluated exactly using a four-point Gaussian integration method [21].
The toroidal integration can be done using a fast Fourier transform. Alternatively, the integration over the toroidal
angle can be done exactly with a Riemann sum using N = 4n points. These points are chosen to be evenly distributed
over the full toroidal angle so that φk = 2π (k − 1) /2n. The volume integral of a quantity f is then given by∫

f dV ≈
∑

elements

1
N

N∑
k=1

4∑
j=1

4∑
i=1

f
(
si, t j, φk

)
wiw j2πR det(J), (30)

with wi the weights. The evaluation points satisfy 0 < s1 < s2 and s3 = 1 − s2 and s4 = 1 − s1. The fact that none of
the integration points lies on the boundary of the elements has a clear advantage when the elements tend to a position
where the determinant

det(J) =

∣∣∣∣∣∣ Rs Rt

Zs Zt

∣∣∣∣∣∣ = RsZt − RtZs (31)
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vanishes. The Jacobian matrix J provides the coordinate transformation from the poloidal plane in (R,Z) to the unit
square in (s, t), see Fig. 1. The inverse provides the back-transformation for, for example, the derivatives:(

∂R

∂Z

)
= J−1

(
∂s

∂t

)
=

1
det(J)

(
Zt −Zs

−Rt Rs

) (
∂s

∂t

)
. (32)

For second-order derivatives we apply this operation twice, taking into account derivatives of det(J).

3.2. Time integration

3.2.1. Method
We consider the most general two-step time-integration method for solving Ṗ = Q. Following the derivation

in [34], but allowing for a variable time step, we obtain to first-order

(1 + ζr) Pn+1 − (1 + ζ (1 + r)) Pn + ζPn−1 = ∆t+
(
θQn+1 + (1 + φ − θ) Qn − φQn−1

)
, (33)

where ζ, θ, and φ can be chosen freely. The parameter r ≡ ∆t−/∆t+, where ∆t+ is the time step when going from
the time level n to n + 1. This can be different from the time step ∆t− used to go from n − 1 to n. For r = 1 the
Beam-Warming scheme [34] is obtained.

The condition for second-order accuracy reads

φr + θ − ζr (1 + r) =
1
2
. (34)

Eq. (33) gives the most general two-step method for variable time step. It includes the well-known θ-schemes for
ζ = φ = 0, of which forward Euler θ = 0, backward Euler θ = 1, and Crank-Nicolson θ = 1/2 are classical examples.

3.2.2. Properties
For the model eigenvalue equation Ṗ = Q = λP [35], the growth factor Pn+1/Pn = Pn/Pn−1 ≡ G for r = 1 reads in

the limit of large time steps

lim
∆t→∞

G =
1 + φ − θ

2θ
∓

√
φ

θ
+

(
1 + φ − θ

2θ

)2

. (35)

Note that in this limit the growth factor becomes independent of ζ. It vanishes for φ = 0, θ = 1, which is the
backward-differencing second-order accurate scheme (BDF2, or Gear’s scheme). In this scheme the solution compo-
nent corresponding to any large eigenvalue λ, real or imaginary, is heavily damped, unless the time step is sufficiently
small. This scheme is therefore suitable for, for example, marching towards an equilibrium. The scheme can also be
useful in stiff problems, such as the simulation of a tokamak plasma. With a suitably chosen time step, the fastest
waves will be damped while the slower dynamics can be resolved.

Regarding stability of these numerical schemes, it is necessary that |G|2 ≤ 1 when Re (λ) ≤ 0, in which case the
scheme is A-stable. It can be shown [34] that this holds when

1
2

+ φ ≤ θ and −
1
2
≤ ζ ≤ θ + φ −

1
2
. (36)

When next to A-stability also G → 0 when |λ∆t| → ∞, as is the case for BDF2, the scheme is L-stable.
For the Crank-Nicolson scheme θ = 1/2, ζ = φ = 0, the limit of Eq. (35) gives −1. This implies that the solution

can display numerical oscillations Pn+1 = −Pn = Pn−1.
For real eigenvalues λ > 0 and φ = 0 and ζ > 0, a positive quantity can be shown to remain positive when

∆t <
1 + ζ

λθ
. (37)

This provides rather demanding conditions on the time step for assuring positivity.
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Figure 2: The error |ρ(1) − e|, when calculating dρ(t)/dt = ρ with ρ(0) = 1, using various time-integration schemes. The first two
methods give first-order convergence, while the final Crank-Nicolson method shows second-order convergence. The BDF2 scheme
with θ = 1 and ζ = 0.5 only shows second-order convergence when for the first time step a different method with ζ = 0 is used.

3.2.3. Implementation
The integrands of the weak formulation (18a)-(18d) or (19a)-(19d) can be written in matrix form as

∂P(y)
∂t

= Q (y, t) , (38)

with each of the entries of this vector equation representing one of the scalar MHD equations.
Nonlinear terms are treated using linearization,

Qn+1 = Qn +

(
∂Q
∂y

)n

· δyn + O(∆t2), (39)

where δyn ≡ yn+1 − yn. Similarly for Qn−1, Pn+1 and Pn−1. The matrix ∂Q/∂y is the Jacobian that contains the
derivatives of all the righthand sides of the equations with respect to all the primitive variables. These derivatives are
evaluated analytically in our method.

After linearization, the two-step scheme (33) reads with ∆t = ∆t+[
(1 + ζr)

(
∂P
∂y

)n

− ∆tθ
(
∂Q
∂y

)n]
· δyn = ∆tQn +

(
ζ

(
∂P
∂y

)n

+ φ∆t
(
∂Q
∂y

)n)
· δyn−1. (40)

This matrix equation is solved for the unknowns δyn. In the remainder of this work we will use φ = 0.

3.2.4. Test
In Fig. 2 we show the error after numerically integrating

dρ(t)
dt

= ρ(t) with ρ(0) = 1, (41)

from t = 0 up to t = 1.
Using a single time step, the implicit Euler scheme diverges. This can be understood from Eq. (40), because with

∂P/∂y = ∂Q/∂y = ∂ρ/∂ρ = 1, θ = 1, ζ = φ = 0, and ∆t = 1, the term between square brackets vanishes, while the
righthand side is finite.
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Figure 3: The results for an internal kink mode simulation with η = 10−5. The numerical artifacts in the variables are caused by
weak noise in the Lorentz force. This was found to be avoided when instead of a projection of the momentum equation in (a) the
toroidal direction, a projection in (b) the direction of the magnetic field is used.

When ζ is nonzero, the time-integration scheme (33) requires Pn−1, or equivalently Eq. (40) requires (∂P/∂y)n−1.
At the start of a simulation this information of the previous time level is not available, which endangers the properties
of the scheme. This is the reason why the second-order BDF2 scheme (θ = 1, ζ = 1/2) only shows first-order
convergence in Fig. 2. It is well-known that the accuracy of the approximation for Pn−1 can be at most an order lower
in the time step than that required for the remainder of the time evolution. For example, Pn−1 should be supplied with
an accuracy of at least first-order in time to ensure second-order accuracy for the remainder of the time evolution.
To supply such an approximation we can use any first-order scheme. Using Crank-Nicolson for the first time step
recovers the expected second-order convergence.

We note that the same problem occurs when adjusting the time step during the simulation. Using a scheme that
has ζ = 0 for at least one new time step before proceeding with a scheme that has ζ nonzero ensures the convergence
properties of the scheme also in this case.

With λ = 1, Eq. (37) predicts oscillatory behavior for ∆t > 2 with Crank-Nicolson and for ∆t > 1.5 with BDF2,
which was verified to be the case.

4. Parallel projection

MHD instabilities in tokamak plasmas avoid to a large degree compression of the toroidal magnetic field because
of the large amount of energy this requires. It can require some special care to accurately represent such perturbations
numerically. This problem of ‘spectral pollution’ is the primary reason why for example in the method from [6] the
choice is made for a representation of the velocity in terms of a stream function that does not compress the magnetic
field.
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Our simulations of linear MHD instabilities are found to be polluted by spurious fluctuations in the magnetic
vector potential components AR and AZ making up the toroidal magnetic field. This small noise primarily influences
the solution through the Lorentz force in the toroidal component of the momentum equation. Before we discuss our
internal kink mode simulations in more detail in Section 6.1, in Fig. 3(a) we already show results for this test case. In
particular the toroidal velocity can be seen to be dominated by non-physical noise.

This can be avoided by projecting the momentum equation in the direction of the magnetic field, instead of in
the toroidal direction. Under such a parallel projection the Lorentz force vanishes. The resulting solutions are much
smoother, as is shown in Fig. 3(b).

With the test function

m∗B = m̄∗BB = m̄∗B
(
BRêR + BZ êR + Bφêφ

)
, (42)

we obtain a scalar equation that contains terms from projections in all three directions.∫
m∗B · ∇ (∇ · u) dV =

∫ (
∇ ·m∗B

)
(∇ · u) dV +

∫
(∇ · u) m∗B · dS. (43)

Since ∇ · B = 0 we have that ∇ ·m∗B = B · ∇m∗B, which does not require the calculation of derivatives of the magnetic
field. Note that of the six test function components of Eqs. (21a) and (21b) we only replace u∗φêφ. Furthermore we
leave our primitive variables the same as in Eq. (20). We thus do not change our basis vectors for the primitive
variables, as would be the case in a strict Galerkin approach. It may seem strange that in the projected equations both
the primitive variables and their derivatives, through B, appear. As long as B is however not linearly dependent on the
other two projection directions êR and êZ , such a choice of projection is allowed and indeed found to be very useful in
this case.

There may be some concern about whether the use of implicit time integration for an equation like

B ·
∂ρu
∂t

= B · f (44)

requires special care, because the projection operator can change during a time step. Following the derivation leading
up to the time-integration scheme (40) we find that with ∂ρuR/∂t = fR and ∂ρuZ/∂t = fZ solved, what remains of
Eq. (44) is Bφ∂ρuφ/∂t = Bφ fφ. With ∂ρuφ/∂t = fφ and ∂2ρuφ/∂t2 = ḟφ to balance the different orders in the time step,
the derivation proceeds unaltered, leading to the same time-integration scheme. To show that indeed the second-order
time behavior of the parallel projected momentum equation can be guaranteed, in [28], an appropriate test case is
considered in detail.

Note that it will be different if we want to solve for example

ρ
∂u
∂t

= f, (45)

since ρ now appears only on the lefthand side. To second-order in the time step the derivation requires the time
derivative of both sides, where ρ̇ enters.

5. Testing individual equations

5.1. Vector equations

Aspects of our implementation of the momentum equation are tested using the analytical solution from [36]. In
this paper an analytical solution is derived for the incompressible flow of a Newtonian fluid in a toroidal geometry
of large aspect ratio. A toroidal momentum source introduces toroidal rotation and secondary flows in the poloidal
plane. For brevity, here we only sketch the outline of the followed approach, which may also be interesting for testing
other hydrodynamic and magnetohydrodynamic codes. For details, we refer to [28].

We use a very large aspect ratio, ε−1 = 106. To ensure incompressibility numerically, we tested both a penalty
method by choosing a large value for λ and an artificial compressibility method by choosing a large value for γ. The
same analytical solution can also be used to test parts of the induction equation (1d). With u = 0 Eq. (1d) becomes a
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pure diffusion equation for the magnetic field B and because ∇·B = 0 the same analytical expression is also a solution
of this equation.

Fourth-order convergence of the error in the size of the elements is observed in all cases. We note that the error
in the numerical solution primarily originates from the edge. This is because the polynomial basis functions cannot
describe circular boundaries exactly [21]. Therefore, the essential boundary condition u = 0 is not exactly prescribed
on a circle but on a shape that converges to a circle with an error of order 1/N4

θ .
Another notable observation from the artificial compressibility test is that the weak formulation of Eq. (19c),

without partial integration of the first-order terms, turns out to be more stable for very high values of γ than that of
Eq. (18c). Therefore in the following we will use the formulation of Eqs. (19a)-(19d).

5.2. Scalar equations
5.2.1. Hyperdiffusivity

To test some aspects of our implementation of the hyperdiffusive term in the continuity equation we investigate a
circular tokamak in the cylindrical limit. We look for an analytical solution to the stationary inhomogeneous hyperdif-
fusion equation 0 = ∇4ρ+ S ρ for constant S ρ. In polar coordinates (r, θ), assuming symmetry in the θ and φ direction,
this equation reads

1
r

d
dr

(
r

d
dr

(
1
r

d
dr

(
r

dρ(r)
dr

)))
= −S ρ. (46)

The solution that is regular for r → 0 is given by

ρ(r) =
1
64

(
r̄2 − r̄4

)
a4S ρ + ρ0

(
1 − r̄2

)
+ ρar̄2, (47)

where r̄ ≡ r/a. With ρa = ρ(r = a) = 0 we see that

∇2ρ
∣∣∣
r̄=1 =

1
r

d
dr

(
r

dρ(r)
dr

)
= −4

(
ρ0 +

3
64

S ρ

)
. (48)

When the natural boundary condition is such that ∇2ρ vanishes at r̄ = 1 the central density becomes ρ0 = −3S ρ/64.
Taking a constant density source S ρ = −1 and a large aspect ratio ε−1 = 100, the resulting density distribution along
a line Z = 0 is plotted in Fig. 4. The central value can indeed be seen to approach ρ0 = 3/64 ≈ 0.047. The overall
agreement with the analytical result is also good, even on the relatively coarse grid with Nr = Nθ = 10 elements.

5.2.2. Anisotropic diffusion
In a fusion plasma the diffusivities in the direction parallel to the magnetic field may easily be many orders of

magnitude larger than those perpendicular to the magnetic surfaces. Anisotropies of O(109) are not uncommon. A
potential problem in numerically simulating such conditions is that a small error in the calculation of the parallel
diffusion ‘pollutes’ the much smaller perpendicular diffusion. Since one of the most valued properties of a fusion
device is its ability to keep heat and matter locked up, for some purposes it is important to make sure this can also be
made to hold numerically.

A good two-dimensional stationary test case was devised in [1], based on the anisotropic heat diffusion equation

∂T
∂t

= ∇ ·
[(
κ‖ − κ⊥

)
∇‖T + κ⊥∇T

]
+ S T . (49)

The temperature T and poloidal magnetic flux ψ were chosen to have the same analytical dependence on a unit square
− 1

2 ≤ x ≤ 1
2 , − 1

2 ≤ y ≤ 1
2 :

T, ψ ∼ cos (πx) cos (πy). (50)

Since the magnetic field B = ∇φ×∇ψ is oriented parallel to the iso-contours of the temperature, the parallel diffusion
should vanish exactly. When increasing the parallel diffusion coefficient, any deviation from the isotropic case can
then be attributed to numerical pollution. Performing this test case, we find no dependence of the error on the amount
of parallel diffusion for anisotropies of O(109). The fourth-order convergence is completely unaffected by the parallel
diffusion coefficient, as it should of course.
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Figure 4: The profile resulting from solving the stationary hyperdiffusive equation ∇4ρ = 1 on a mesh with Nr = Nθ = 10 elements,
compared with the analytical solution.

Interestingly, we do find that the error does increase dramatically with increasing anisotropy when we enter the
analytical expressions for Bx = ∂ψ/∂y, By = −∂ψ/∂x directly, instead of obtaining these as numerical derivatives from
the analytical expression for ψ. In this case we lose four orders of accuracy for an anisotropy of 109 compared to the
error for the isotropic case. The reason for the fact that this pollution does not occur when we use ψ, must lie in the
fact that the polluting term,

B · ∇T = Bx
∂T
∂x

+ By
∂T
∂y

=
∂ψ

∂y
∂T
∂x
−
∂ψ

∂x
∂T
∂y
, (51)

can be represented very accurately in this case. We would like to test the accuracy with which anisotropic diffusion
can be calculated on other grids as well. Therefore we devise a very similar test case as the one that was used on a
rectangular domain.

For a constant source S T , the isotropic diffusion equation (49) with κ⊥ = κ‖ and boundary condition T = 0 is solved
on a circular domain by T (r̄) = (S T /4)

(
1 − r̄2

)
. With ψ also proportional to 1− r̄2, the solution of the anisotropic heat

equation is again independent of the parallel conductivity κ‖. We run the diffusion equation to steady state for a single
very large time step, with θ = 1. It is found again that the error is not influenced by the anisotropy.

The polar grid that is used in this test case is however aligned with the magnetic field. Since anisotropy usually
causes problems when the grid is not aligned, we test this as well. To create a non-aligned grid we make use of the
machinery that is normally used to create a flux-aligned grid. We set up a toroidal equilibrium with ε−1 = 3 and
a Shafranov shift of approximately 0.15a to which we align our grid. This is done using an interpolation from the
polar grid on which the equilibrium is calculated. Now we re-run the anisotropic diffusion equation to steady state on
this grid that is misaligned with the isocontours of our analytical ψ. Now the error does increase with the anisotropy.
Fig. 5 compares the case where the grid is aligned with the magnetic field with the case where the grid and magnetic
field are not aligned, using an anisotropy of κ‖/κ⊥ = 109. The figure also shows what happens when we poloidally
refine the initial polar grid from which the misaligned grid is obtained by interpolation. What is found is that when
a poloidally much finer mesh is used for this initial polar mesh, the error can be greatly reduced. For an initial mesh
that is four times finer in the poloidal direction, the solution approaches that on the aligned mesh, which is again the
same as the solution for isotropic diffusion.

This leads us to the conclusion that accurately capturing highly anisotropic diffusion is not a problem when the
mesh that is used is of sufficient quality. It does not have to be aligned with the magnetic field, but it has to be set up
either from an analytical representation or an accurate numerical interpolation.

15



10-7

10-6

10-5

10-4

10-3

10-2

10-1

 1

er
ro

r

N
ψ
= N

ϑ

N
ϑ 
/ N

θ
 = 1

N
ϑ 
/ N

θ
 = 2

N
ϑ 
/ N

θ
 = 4

aligned

321684

~N-4

Figure 5: The maximum difference between the numerical and analytical solution for an anisotropy of κ‖/κ⊥ = 109 as a function of
the number of elements Nψ = Nϑ, interpolated from a mesh with a potentially different number of poloidal elements Nθ. For more
information on the difference between Nθ and Nϑ, see section 2.8.

6. Integrated test cases

The various tests performed in the previous sections were necessary to provide confidence that the equations are
implemented correctly and can be solved accurately. Next, we deploy the newly implemented full MHD equations to
show that they can be used to simulate various well-known MHD instabilities. For the test cases in this chapter we
have used the Crank-Nicolson time integration scheme, Eq. (40) with θ = 1/2, ζ = φ = 0.

6.1. Resistive m = n = 1 internal kink mode
We start from an ideal equilibrium with circular cross-section and ε = 0.1 with the profiles

ρ/ρ0 = 1 − 0.9ψn, (52a)
T/T0 = 1 − 0.8ψn, (52b)

F2 = F2
0 − 4 (ψe − ψm)

(
ψn − 0.5ψ2

n

)
, (52c)

where the normalized ψn ≡ (ψ − ψm)/(ψe − ψm) is scaled to zero at the magnetic axis, where ψ = ψm, and unity at the
plasma edge, and where ψ = ψe. We use ρ0 = 1, T0 = 2 · 10−3, F0 = R0 = 10 so that B0 = 1 and β ∼ 4 · 10−3. In
this case the units are essentially Alfvén units. The enclosed poloidal flux ψe − ψm ≈ 0.48 is an integral part of the
solution to the Grad-Shafranov equation. The safety factor monotonically increases from 0.73 at the axis to 1.6 at the
plasma edge.

We use the resistive MHD equations without any additional diffusivities. Under these conditions, the q = 1 surface
becomes unstable against an n = m = 1 internal kink mode. Kink modes perturb the plasma in a shift-tilt fashion that
displaces rather than bends the field lines. In the absence of resistivity the source of their instability is a combination
of current and pressure gradient. Because of the relative unimportance of pressure, as indicated by the low β, we
expect for the present test case the current density to be the main source of instability. Resistivity can greatly enhance
the growth rate. We fix the equilibrium n = 0 component and take into account only a single toroidal Fourier harmonic
n = 1. We use an aligned grid of approximately Nψ = 30 radial and Nϑ = 30 poloidal elements, which is refined when
necessary to obtain a grid-independent solution. As can be seen from Fig. 6 the structures in the solution can become
very fine. Therefore we use local static grid accumulation. Fig. 6 is obtained for η = 10−8 on a grid of Nψ = Nϑ = 30
elements, using Gaussian grid accumulation with a width of 0.03a.
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Figure 6: The perturbed poloidal flux ψ and vertical velocity uZ of an internal kink mode after 50 time steps of ∆t = 400 with
Crank-Nicolson. Shown is a poloidal cut of the Fourier harmonic ∼ cos φ at φ = 0.

The structures become finer with smaller resistivity. Both the unstable layer size and the growth rate are known to
scale as η1/3. We start from an initial perturbation in the n = 1 harmonic of the toroidal velocity given by

un=1
φ = 10−12ψn (1 − ψn) . (53)

Next we let the equilibrium develop in time, keeping the axisymmetric n = 0 component fixed. After some time all
solution components y show exponential growth with the same growth rate γ = (∂y/∂t)/y. This growth rate is shown in
Fig. 7 for various resistivities. Also shown is the growth rate as calculated from the linear MHD code PHOENIX [37,
38]. This code uses Fourier harmonics in the poloidal direction. The inclusion of only five poloidal mode numbers
is found to be sufficient for accurate results. The equilibrium is calculated with the ideal MHD equilibrium code
FINESSE [31], using the same parameters as in Eqs. (52a)-(52c). The current full MHD results and the linear MHD
results show good agreement for the full range of resistivities tested. For η < 10−4 the growth rate nicely follows
the η1/3 scaling. For higher values of the resistivity, η > 10−4, the mode width becomes comparable to the machine
size and the scaling is lost entirely. This is therefore a good test case of the ideal wall boundary conditions that are
also present in PHOENIX. Instead of driving the resistive kink mode, resistivity starts to damp the mode. These
resistivities are much too high to be relevant for most tokamak plasmas.

6.2. Tearing modes

A next test case is the simulation of tearing modes. These are resistive, current-driven modes, that can become
unstable around a rational surface. Tearing modes are primarily driven by the radial variation in the toroidal current
density and are typically stabilized by pressure. The growth of these modes is much slower than that of the internal
kink mode. Since their growth relies on the ‘tearing’ of field lines which is only possible for a finite resistivity, the
time scale associated with their growth is closer to the resistive time scale than to the Alfvén time scale. For small
resistivities this results in a scaling of the growth rate proportional to η3/5.

6.2.1. Linear simulations
Zero pressure. We start from the same equilibrium as was used for the internal kink simulations of Section 6.1, only
for now with zero temperature. We also modify the toroidal magnetic field function to

F2 = F2
0 − 4 (ψe − ψm)

(
ψn − 0.35ψ2

n

)
. (54)
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Figure 7: A comparison of the internal kink mode growth rate as a function of resistivity between the current full MHD method and
the linear MHD method coded in PHOENIX.

With F0 = 18 and ψe − ψm ≈ 0.4, this results in a safety factor q between 1.8 and 2.9. The q = 2 surface is located
at ψn ≈ 0.28. The q = 3 surface was intentionally positioned outside the plasma to avoid the occurrence of a second
tearing mode. First, we only take into account the evolution of a single n = 1 harmonic, fixing the axisymmetric
n = 0 component. We start from the same initial perturbation as in Eq. (53), but now for the n = 1 component
of A3. The required radial resolution for accurate tearing mode calculations was found to be substantially higher
than for the internal kink mode. We restrict ourselves to the calculation of the growth rate for three resistivities, just
to demonstrate agreement with the result obtained by PHOENIX, as shown in Fig. 8. Both the resistivity and the
growth rate are multiplied by the characteristic magnetic field strength B0 = F0/R0 = 1.8 to convert the standard
dimensionless Alfvén units used in PHOENIX to the units of the current full MHD method.

Fig. 8 also shows a comparison with a reduced MHD method. This reduced method uses a single stream function
to describe the velocity perturbation in the poloidal plane. The method does not allow a velocity component in the
toroidal direction. See for example [14] for the specific set of equations that are solved. The figure shows good
agreement with PHOENIX’s linear MHD results.

For the full MHD model we use a mesh of Nψ = 104, Nϑ = 36 elements, for which the growth rates are approxi-
mately converged to their grid-independent values. We use Gaussian grid refinement with a width depending on the
resistivity. It seems to be a general characteristic of the current full MHD method that convergence is achieved from
the stable side. That is, the growth rate converges to its grid-independent value from below. This is usually considered
to be a favorable property.

The reduced MHD simulations are performed on a mesh with Nψ ≥ 101, Nϑ ≥ 41; at this resolution the growth
rate has converged. Note that there is no particular reason why a slightly different number of elements were used
compared to the full MHD simulations.

As the resistivity increases beyond some critical value, damping becomes more important than driving and the
growth rate decreases. At the same time, the eigenvalue obtained by PHOENIX acquires an imaginary component,
representing oscillatory behavior. These oscillations are indeed also observed in the full MHD simulations. The
growth rates shown for the higher resistivities represent an average over several of these oscillations.

Outside of a reasonable middle-range of tokamak resistivities, the linear MHD code PHOENIX exhibits difficulty
to converge to an eigenvalue with a sufficiently small residual. For this reason the PHOENIX results in Fig. 8 are not
shown over the full broad range of resistivities where full MHD results are calculated.

Nonzero pressure. Next we introduce a small equilibrium pressure. When the safety factor is above one, the average
magnetic field curvature becomes favorable, causing a finite pressure to exert a stabilizing influence. We design a
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Figure 8: The growth rate of an n = 1 tearing mode as a function of the resistivity. Results for the current full MHD method are
compared to results for PHOENIX and a reduced MHD method from JOREK. For the β = 0 and β , 0 results a reduced MHD
model without and with a toroidal velocity are used respectively.

pressure profile that is small enough to allow the instability to grow, but large enough to have a significant influence
on the tearing mode growth rate. We choose the same temperature profile as in Eq. (52b). With T0 = 4.3 · 10−4 and
B0 = F0/R0 = 19.5/10 this results in a value of β on the magnetic axis of βm = 2pm/B2

0 = 2.3 · 10−4. Using the same
parameters in an equilibrium constructed with FINESSE, allows again a comparison with the growth rates calculated
by the linear MHD code PHOENIX.

Comparing the zero- and finite-β curves in Fig. 8 we see that indeed the growth rates are lowered by the finite
pressure. The growth rates obtained with the current full MHD method for three different resistivities are again found
to converge to the linear MHD results.

Finite-β growth rates calculated with the simplest reduced MHD model available to us, that was successfully
used to obtain the zero-β tearing mode growth rates, are almost an order of magnitude smaller than those of the full
MHD model. A second reduced MHD model, that includes a toroidal velocity component, produces results that agree
reasonably well with the linear and the full MHD results. These are the finite-β results plotted in Fig 8. The growth
rates obtained with this reduced MHD model are still slightly lower than those obtained with the full MHD model.
Special care has been taken to ensure convergence in the number of elements and the time step. Therefore this small
deviation may be attributed to a genuine difference between full and reduced MHD models.

Figs. 9(a)-(b) show the n = 1 mode structure, which has a clear dominant m = 2 structure that can be compared
with the internal kink mode structure in Fig. 6.

6.2.2. Nonlinear simulations
n = 2. During the linear growth phase of the tearing mode, we add another toroidal Fourier harmonic n = 2. This
harmonic is not unstable by itself, but arises due to nonlinear coupling with the n = 1 harmonic. After some time, the
magnitude of the physical variables of the n = 2 harmonic are found to be approximately given by the square of those
of the dominant n = 1 harmonic. Correspondingly the growth rate is found to be twice as large as that of the n = 1
harmonic. Fig. 9(c) clearly shows the m = 4 structure that is expected for a mode that is resonant with q = m/n = 4/2.

n = 0. When we follow the evolution of a tearing mode into the nonlinear phase, we would like to take into account
the evolution of the axisymmetric component as well. Using η = 10−6, the force equilibrium quickly changes. As the
current resistively diffuses, the safety factor goes up and the q = 3 surface enters the plasma. This allows an associated

19



a) b)

A
3, n=1

u
Z, n=1 A

3, n=2

c)

-1.7∙10-5 1.7∙10-5-0.012 0.012 -2.9∙10-4 2.9∙10-4

Figure 9: The cos φ component of (a) the perturbed A3, (b) uZ , and (c) the cos 2φ component of the perturbed A3 of a tearing mode
in the finite pressure equilibrium.

Figure 10: A Poincaré plot of the magnetic island in the saturation phase of Fig. 12. The starting values are homogeneously
distributed radially, but with a higher density near the island. The magnetic field lines are followed for only 1000 turns, explaining
why at certain radii close to rational magnetic surfaces the magnetic surfaces are not yet fully traced out. For example the seventh
circle from the outside shows nine dashes, indicative of its closeness to a value of q where the field lines go around toroidally nine
times for an integer number of poloidal turns.

3/1 tearing mode to grow. To counteract the resistive diffusion of the n = 0 component we add a current source. This
is realized by changing the resistive term in the induction equation from ηJ to η

(
J − Jeq

)
, with Jeq the equilibrium

current density. This change allows the ideal equilibrium solution to be an equilibrium solution of the resistive static
equations as well.

n = 1. By perturbing the magnetic field, the instability changes the topology of the previously nested magnetic
surfaces. By tracing the magnetic field lines around the torus for many times, new magnetic surfaces become visible.
The resulting Poincaré plot is shown in Fig. 10. The field lines form new nested surfaces inside magnetic islands.

In reduced MHD the magnetic field is described by Eq. (2) with F constant in space and time. We consider a single
helical perturbation f (ψ0,mϑ − nφ) with ψ0 the equilibrium value of ψ and the coordinate ϑ such that the equilibrium
field lines satisfy dφ/dϑ = q(ψ0). Then we can show that B · ∇ψ∗ = 0 with the helical flux

ψ∗ = ψ −
n
m

∫
q(ψ0)dψ0. (55)

For tearing modes this quantity can be nicely used to visualize the magnetic islands. In full MHD however this is no
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Figure 11: The normalized island width w/a as estimated from Poincaré plots compared to the quartic root of EM⊥,n=1, the normalized
magnetic energy in the n = 1 Fourier harmonic of the poloidal magnetic field.

longer true. It turns out that at a given time in the tearing mode simulations the perturbed A3 of the full MHD model
is much larger than the perturbed ψ in the reduced MHD models. The other components AR and AZ of the magnetic
vector potential grow along with A3 to cancel part of the poloidal field associated with A3. Neither the perturbed ψ
relative to the equilibrium value nor the helical flux in this case are a measure of how much the magnetic topology is
affected.

Instead we measure the island widths ‘by hand’ from Poincaré plots, the result of which is shown in Fig. 11 as
a function of the quartic root of EM⊥,n=1 = 1

2

∫ (
B2

R,n=1 + B2
Z,n=1

)
dV , the perturbed magnetic energy in the poloidal

magnetic field. In reduced MHD, the island width is proportional to the square root of ψ∗ so that the magnetic
energy, which is proportional to the square of ψ∗, is proportional to the fourth power of the island width. From
Fig. 11 the resulting scaling can be seen to hold well also in full MHD. Therefore we can use the quartic root of
the normalized magnetic energy in the poloidal magnetic field as a measure of the island width. Since the magnetic
energy is proportional to the square of the magnetic field, the magnetic energy initially increases with twice the linear
growth rate. Actually this is the way that growth rates are typically calculated in the current method:

E ∼ e2γt → γ =
ln (E1/E0)
2(t1 − t0)

, (56)

where for the energy E any quadratic quantity of a Fourier harmonic can be used. Using for example the kinetic
energy Ek = 1

2

∫
ρv2dV or the magnetic energy EM = 1

2

∫
B2dV gives the same linear growth rate.

We follow the evolution of the tearing mode into the nonlinear regime using Nψ = 80, Nϑ = 40 for the full MHD
simulations and Nψ = 101, Nϑ = 61 for the reduced MHD model. The island width as a function of time is shown in
Fig. 12. The island width initially grows with half the linear growth rate γ, as is shown in Fig. 12. After some time
this exponential growth stalls and the island width oscillates with a small amplitude around its saturated size. There
does not seem to be a clear region in which the island width grows linearly in time, as in the Rutherford regime. We
think that for this test case saturation occurs at a value of w, which is too large to see the linear regime.

The saturation phase is particularly challenging to simulate with the full MHD model. The small or negative
tearing mode growth rates in this phase allow the growth of an instability on the grid axis associated with the violation
of regularity discussed in section Appendix A. To suppress this numerical instability we restrain also the coefficients
of the second and fourth basis functions b1,2 and b1,4 on the axis to deviate from zero. The resulting decrease in the
local order of accuracy on the axis is compensated by a local refinement of the elements near the axis, leading to a
stable and accurate solution.
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Figure 12: The normalized island width w/a as a function of time for the current full and a reduced MHD method including a
toroidal velocity.
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Z

Figure 13: A typical grid with radial grid accumulation. The height profile gives the equilibrium temperature, while the coloring
denotes the equilibrium ψ.

In these simulations we allow the axisymmmetric component of all variables to evolve in time. To counteract
resistive diffusion, the equilibrium current is subtracted from the current in the resistive term. Most of the n = 0
variables do not significantly change in time now. There is a clear flattening of the temperature and density profiles
though. This is expected as a consequence of the changed magnetic topology. The resulting flattening of the current
density profile causes the growth of the tearing mode to saturate.

6.3. Ballooning modes

As a final illustration we take a first look at the ballooning mode instability. A standardized set of equilibria to
study these instabilities was developed by Snyder. Here we use the cbm18 dens8 equilibrium used for benchmarking
NIMROD [39], M3D-C1 [40], and BOUT++ [4, 24] against various linear stability codes.

We leave a full benchmark and a comparison with the reduced MHD model for future work, and present here the
result for a single toroidal mode number n = 12.

The equilibrium has an ideally conducting circular wall with an aspect ratio ε−1 = 3/2. The density is constant,
but the temperature profile has a strong H-mode-like pedestal gradient in a narrow layer. This profile is shown as an
elevation in Fig. 13. The coloring denotes the equilibrium poloidal magnetic flux ψ and a typical computational mesh
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Figure 14: The magnitude of the perturbed n = 12 magnetic field (left) and velocity (right). The dashed box indicates the region
shown in figure 15.

is shown. The peak value of β is approximately one percent. The safety factor profile ranges from around one on the
axis, to between two and three in the pedestal region, while continuing to grow to large values outside this region.

The large pressure gradient in combination with unfavorable magnetic field curvature at the low field side is
assumed to lead to an instability in which the plasma ‘balloons’ outwards; a topic for future research. Many poloidal
harmonics that are resonant on different rational q-values overlap to form structures that are dominant on the low-field
side. The total perturbed n = 12 velocity and magnetic field are depicted in Fig. 14, showing the ballooning character
of the mode and the strong radial and poloidal localization. Note how the structures get much more narrow near the
high-field side where the local magnetic shear is higher.

Fig. 15 shows the perturbed density and plasma velocity at the low field side, revealing vortical structures of
plasma motion. Note however the net plasma motion to the left of the figure, the top of the plasma. Because of
symmetry in the top-bottom direction there should be an eigenmode with the exact same growth rate but with a net
plasma motion towards the bottom of the plasma.

As was shown in [39] the linear instabilities of this equilibrium experience a significant kink drive, particularly
impacting the smallest n-modes. The combination of external kink / peeling and ballooning effects is at the basis of
Type-1 ELMs.

7. Conclusion

We presented our extension to full MHD of the reduced MHD methods implemented in JOREK. To ensure a
divergence-free magnetic field we deploy a vector potential formulation. The resulting gauge freedom is used to set
the electrostatic potential to zero. Small noise in the components of the magnetic vector potential is found to pollute
the solutions of linear MHD instabilities. We showed that this problem can be solved by projecting the momentum
equation in a direction parallel to the magnetic field instead of in the toroidal direction.

The use of a structured rectangular mesh in a circular domain was shown to lead to an underdetermined system of
equations. Additional conditions have to be supplied to ensure regularity of the solutions at the center of the grid. We
derived conditions that can be imposed on the coefficients of the basis functions to ensure continuity of the solutions.

Various test cases based on analytical solutions were constructed to verify the implementation of the individual
equations. Test cases with highly anisotropic diffusion showed that the same convergence as for isotropic diffusion can
be obtained with our implementation. This surprising feat does not require the grid to be aligned with the magnetic
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Figure 15: The perturbed n = 12 density at the low-field side together with the perturbed plasma velocity showing vortical structures
with the same poloidal periodicity. See Fig. 14 for an indication of the location of the shown section.

field, as long as the grid is of good quality. This can be achieved by constructing the grid analytically or by accurate
interpolation. The description of the magnetic field in terms of a stream function was shown to be essential for this
property.

The complete system of full MHD equations was used to study what are the arguably three most important MHD
instabilities in a tokamak: an internal kink mode, a tearing mode, and a ballooning mode. Their growth rates were
compared with the result from linear stability codes and showed good agreement. A nice feature of our full MHD
method is that it does not necessarily require a source of physical dissipation. Ballooning modes are driven by
large pressure gradients and as such have a finite extended structure. These modes have been simulated without any
resistivity, viscosity, or other physical diffusivity.

The tearing mode simulations were extended into the nonlinear regime and an insightful comparison was made
with the reduced MHD models. For zero pressure, the reduced MHD models were found to be accurate in reproducing
the full MHD growth rates. However, the inclusion of a toroidal velocity component was required, to approach the
full MHD growth rates when including a finite pressure. Only minor differences between the two models remained in
this case.

By and large these tearing mode simulations confirm what has been long known from research, namely that the
reduced MHD model can give a reasonably accurate description of the predictions of the full MHD model. Agreement
at nonzero pressure however requires a reduced MHD model that also includes a toroidal velocity component. For
other phenomena the differences between the two models can be much larger. With the present extension of JOREK
to the full MHD model we now have the possibility to easily verify this in the future.

8. Acknowledgements

This work, supported by NWO and the European Communities under the contract of the Association Euratom/FOM,
was carried out within the framework of the European Fusion Program. The views and opinions expressed herein
do not necessarily reflect those of the European Commission nor those of the ITER Organization. Part of this work
was carried out using the HELIOS supercomputer system at the Computational Simulation Centre of the International
Fusion Energy Research Centre (IFERC-CSC), Aomori, Japan, under the Broader Approach collaboration between
Euratom and Japan, implemented by Fusion for Energy and JAEA. Part of this work was carried out using the HPC-FF
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Appendix A. Grid axis

Near the axis of the grid, the quadrilateral elements are deformed into triangular elements. At the grid axis, there
will typically be much more than the usual four nodes per vertex. Therefore, there will be more unknowns than
equations, rendering the system of equations underdetermined. The corresponding freedom in the solutions may give
rise to numerical instability, starting with oscillations near the axis. The solution is to either increase the number of
equations, or to decrease the number of degrees of freedom. In principle, the same issue also holds for X-point grids,
where six elements come together in a single point.

Additional equations can be obtained by imposing regularity of the solution at the axis. Expanding a continuous
function f (R,Z) to first-order in the distance to the axis at R = R0 and Z = Z0 gives

f (R,Z) ≈ f (R0,Z0) +
∂ f
∂R

(R − R0) +
∂ f
∂Z

(Z − Z0). (A.1)

The scalar function f can be any of our primitive variables (20). Introducing a polar coordinate system R = R0+r cos θ,
Z = Z0 + r sin θ we have for r → 0:

∂ f
∂θ

= 0, (A.2a)

∂ f
∂r

=
∂ f
∂R

cos θ +
∂ f
∂Z

sin θ, (A.2b)

∂2 f
∂r∂θ

= −
∂ f
∂R

sin θ +
∂ f
∂Z

cos θ. (A.2c)

The first of these equations shows the trivial fact that functions do not vary with θ at the single point in space corre-
sponding to r = 0. Eq. (A.2b) shows that for r → 0 the radial derivative is only nonzero for functions with periodicity
2π. For such functions, ∂ f /∂r changes sign when rotating over an angle π.

The regularity conditions (A.2a)-(A.2c) can provide the additional constraints required to reduce the redundancy
in the degrees of freedom on the grid axis. Eq. (A.2a) for example excludes the use of the third basis function b1,3 and
b4,3 for vertices 1 and 4, of the elements near the axis. This is because ∂b1,3/∂t and ∂b4,3/∂t do not vanish for s → 0.
Since the coordinates s and t become locally proportional to r and θ respectively, these basis functions therefore
violate Eq. (A.2a). Writing down Eq. (A.2b) and (A.2c) for two values of θ, we can solve for

∂ f
∂R

=
∂ f
∂r

∣∣∣∣∣
θ1

cos θ1 −
∂2 f
∂r∂θ

∣∣∣∣∣∣
θ1

sin θ1 =
∂ f
∂r

∣∣∣∣∣
θ2

cos θ2 −
∂2 f
∂r∂θ

∣∣∣∣∣∣
θ2

sin θ2, (A.3a)

∂ f
∂Z

=
∂ f
∂r

∣∣∣∣∣
θ1

sin θ1 +
∂2 f
∂r∂θ

∣∣∣∣∣∣
θ1

cos θ1 =
∂ f
∂r

∣∣∣∣∣
θ2

sin θ2 +
∂2 f
∂r∂θ

∣∣∣∣∣∣
θ2

cos θ2. (A.3b)

For s → 0 and t = 0 we have ∂2b1,4/∂s∂t = 9 and ∂b1,2/∂s = 3. With θ1 and θ2 the values of θ for two consecutive
axis nodes, Eqs. (A.3) give additional conditions for the coefficients of these basis functions.

Instead of adding these conditions as additional equations, we can also impose them on the basis functions them-
selves. We then look for basis functions that are local to all the elements near the axis and satisfy the above regularity
conditions. Additionally they should allow for continuity of the variables along element boundaries, and preferably
also be exactly integrable with the Gauss quadrature presently used. Obvious candidates are linear combinations of
our basis functions. A first one, bax,1 is easy. The sum of all b1,1 and b4,1 of the elements that border the axis satisfies
these conditions. A second basis function follows from Eq. (A.3a) as

bax,2 = cos θ1b1,2 −
1
3

sin θ1b1,4 + cos θ2b4,2 +
1
3

sin θ2b4,4. (A.4)

A third one follows from (A.3b) as

bax,3 = sin θ1b1,2 +
1
3

cos θ1b1,4 + sin θ2b4,2 −
1
3

cos θ2b4,4. (A.5)
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Figure A.16: The three basis functions that satisfy the regularity conditions at the axis describe: (a) the function value f , (b) ∂ f /∂R,
and (c) ∂ f /∂Z at the axis.

These three basis functions are shown in Fig. A.16. The coefficients of these basis functions represent the respective
values of f , (∂ f /∂R)(∂r/∂s), and (∂ f /∂Z)(∂r/∂s) at the axis. Using these modified axis basis functions, the regularity
conditions are automatically satisfied, and C1 continuity at the axis is guaranteed. Note that the basis function bax,3 is
equal to bax,2 when rotated over π/2. As such, taking a linear combination of these two new basis functions amounts
to a rotation and scaling.

What is being done to ensure unique function values at the axis is: we make the coefficients of the first basis
functions of all axis nodes equal. This is equivalent to introducing the single axis basis function of Fig. A.16. This
already reduces a lot of the redundancy in the degrees of freedom and is often enough to ensure stable and accurate
solutions. However, the coefficients of the b1,3 and b4,3 basis functions may still become significant. Therefore, in
the following, we effectively remove these inadmissible basis functions by forcing their coefficients to be zero. For
the simulation of the tearing mode saturation phase we furthermore constrain the coefficients of the b1,2 and b1,4 basis
functions to zero on the axis.

Note that this locally reduces the order of convergence. Probably because of the typically mild variation of the
solutions near the grid axis and the relatively small element sizes near the grid axis, this does not adversely impact the
error in the test cases considered in this paper. Therefore we implement the other two axis basis functions bax,2 and
bax,3, shown in Fig. A.16(b) and (c) respectively. If regularity at the axis is an issue, then the solution proposed in this
section can be fully implemented.
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[30] J.W. Haverkort, H.J. de Blank, and B. Koren. The Brunt-Väisälä frequency of rotating tokamak plasmas. J. Comput. Phys., 231:981–1001,

2012.
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