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Abstract

We demonstrate that a periodic lattice of detuned resonators can suppress the THz

extinction at the central resonant frequency, leading to an enhanced transparency due

to diffraction. The system consists of metallic rods of two different sizes, each of them

supporting a strong half-wavelength (λ/2) resonance, which are spatially displaced
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within the unit cell of the lattice. Using a coupled dipole model we show that the

Diffraction Enhanced Transparency (DET) window has its origin in the interference

between two surface lattice resonances, arising from the diffractively enhanced radia-

tive coupling of the λ/2 resonances in the lattice. Group-index measurements show

that the THz field is strongly delayed by more than four orders of magnitude at the

transparency window. Since DET does not involve the near-field coupling of resonators,

the fabrication tolerance to imperfections is expected to be very high. This remarkable

response renders these systems as very interesting components for THz communication.
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Small metallic particles are among the simplest electromagnetic resonators. The reso-

nances in these scatterers depend on the particle size, shape, orientation and material,1 and

are usually broad due to radiative losses.2 Ensembles of scatterers have properties that de-

pend on the individual scatterers, as well as their relative arrangement. For instance, bringing

two metallic nanoparticles close together in dimer3–5 or more elaborate6 configurations can

have a significant effect on the resonance frequency. An important recent development in

nanophotonics involves the generation of transparency windows induced by coupling of elec-

tromagnetic resonances.7–9 This phenomenon usually involves a bright (dipolar) resonance

that can couple to the radiation field and a dark (multipolar) resonance that couples to the

bright resonance through its near field.8 The coupling and interference of the two resonances

leads to a frequency window in which the transmission is close to unity, while local fields

are enhanced.10,11 These transparency windows are analogous to the electromagnetically in-

duced transparencies (EIT) observed in atomic systems coupled to light fields.12 The most

important characteristic of these systems is that they can slow light to extremely low group

velocities while having a transmission close to unity. Bozhevolnyi and coworkers have re-
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cently demonstrated the existence of a transparency window in the transmission spectrum

of a system of two coupled particles of different dimensions, such that their dipolar reso-

nant frequencies are detuned from each other at optical frequencies.13–15 The mechanism

leading to this transparency window is the radiative coupling between the two resonators

and the destructive interference of the electromagnetic fields radiated into the far-field, and

can be described as a coupled resonator induced transparency.16,17 Other examples include

resonators coupled to a waveguide,18,19 coupled microcavities20 and ring resonators.21

In this article, we demonstrate a spectral transparency window at THz frequencies with

nearly perfect transmission in a periodic lattice of metallic rods with different dimensions.

In contrast to previous works on detuned resonant particles,13–15 we consider here a periodic

lattice of detuned resonators, which supports surface lattice resonances (SLRs). These res-

onances are the result of the enhanced radiative coupling of the localized resonances in the

individual particles through diffraction orders in the plane of the array (Rayleigh Anoma-

lies).22–33 Periodic arrays of detuned dipoles have been recently considered by Humphrey

et. al. as a means to reduce the line-width of surface lattice resonances.34 Our experimen-

tal results show a highly enhanced group-index, i.e., reduced group velocities, in the trans-

parency window. Since the periodic arrangement of particles are responsible for the enhanced

transparency of the sample, we term this phenomenon as diffraction enhanced transparency

(DET). These results are explained with a coupled dipole model, which describes the system

as interfering SLRs. Slow THz light has been reported in several works.35–38 In contrast to

these works, our system of detuned-dipoles shows a simple approach to engineer frequency

selective transparency windows with very large transmission and group velocity reduction.

The group velocity reduction is significantly larger than in plasmonic induced transparency

systems.7,8,39 The enhanced reduction of group velocity is a result of DET not relying on

near-field coupling, but on the interference of surface waves, as shown in the manuscript.

These remarkable properties make these arrays interesting components for the emerging field

of THz communication.
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Sample design and measurements

Using optical lithography, metal deposition and lift-off, we have fabricated samples contain-

ing 2D periodic lattices of gold rods on top of a 3 mm thick amorphous quartz substrate.

Before the thermal evaporation of the 100 nm gold layer a 2 nm chromium adhesion layer

was deposited.

Figure 1(a) shows an optical microscope image of the periodic lattice of detuned res-

onators. This sample consists of two gold rods with different sizes per unit cell of the lattice.

The dimensions of the rods are 200 µm × 40 µm and 125 µm × 60 µm, and are referred

to as the ‘long’ and ‘short’ rods, respectively. Both type of rods support resonances when

illuminated with THz radiation, however the resonant frequencies are detuned from each

other due to the different dimensions. Note that the width of the short rods in Figure 1(a)

is larger than that of the long rods, which ensures a similar volume and surface coverage for

the two types of rods. The lattice has a square symmetry with a period of 300 µm in both

directions. The separation between the detuned resonators is 150 µm along the short axis

of the rods.

A similar sample was prepared in which the short rods were replaced by the long rods in

each unit cell. An optical microscope image of this sample is shown in Figure 1(b). We refer

to this sample as the array of identical resonators. Two other samples are shown in Figures

1(c) and 1(d). These samples represent the periodic arrays of the individual long and short

rods in each unit cell respectively. The periodicity of all the samples is the same as in the

array of detuned resonators. The samples shown in Figure 1(b), (c) and (d) are control

samples to understand the underlying mechanism of DET in the sample of the detuned

resonators. To study the effect of periodicity on the response of these samples we have also

made samples where each of the detuned, identical, long and short resonators respectively

are randomly distributed over the substrate. (See images in the supporting information.)

The experiments were carried out using a THz time domain spectrometer. In this setup

a train of femtosecond pulses with a central wavelength of 800 nm from an Ti:Sapphire
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Figure 1: Optical microscope images of square periodic arrays of (a) detuned, (b) identical,
(c) long and (d) short gold rods defining THz resonators with a period of 300 µm on top of
a quartz substrate. The dimensions of the long rods are 200 µm × 40 µm, and those of the
short rods are 125 µm × 60 µm. (e) THz transients of the forward transmission measured
for the periodic arrays of detuned (red curve), identical (blue curve) long (magenta curve)
and short (green curve) rods respectively, as well as the reference (black curve) measured
through a quartz substrate without rods are shown. The transients are displaced vertically
for clarity.
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oscillator is split in two beams that are respectively used for the generation and detection

of broadband single-cycle THz pulses. For the generation we use a biased photoconductive

antenna that is switched on by the pulses from one of the 800 nm optical beams. The THz

pulses, after transmission through the sample, are detected with a second photoconductive

antenna that it is gated by the pulses from the other optical beam. By controlling the time

delay between the generation and detection optical pulses, the spectrometer measures the

transmitted THz electric field amplitude as a function of this time delay. The numerical

aperture of the collection lens is ∼0.34. This guarantees that it collects only the zeroth

order transmission for frequencies below 1.5 THz.

Figure 1(e) displays the transients of the THz transmission in the forward direction

through the periodic arrays containing the detuned (red curve), the identical (blue curve),

the individual long (magenta) and the individual short (green) resonators. The polarization

of the THz electromagnetic field is set parallel to the long axes of the rods, and the THz

beam propagates at normal incidence through the sample. The black curve in Figure 1(e)

corresponds to a reference measurement taken through a quartz substrate without any rods.

This reference shows the single-cycle THz pulse. The thickness of 3 mm of the substrate

leads to a first reflection which is delayed by 40 ps with respect to the main THz pulse,

i.e., outside the time window of the measurements. The transient measured through the

array of identical resonators shows some oscillations (blue curve in Fig. 1(e)) after the main

peak. For the long resonators, the oscillations (the magenta curve in Fig. 1(e)) extend to

later times up to around 12 ps and for the array of shorter resonators the oscillations (the

green curve in Fig. 1(e)) vanish within 6-7 ps. The main peaks in the transients at 0 ps

correspond to the fraction of the THz amplitude that it is not scattered or absorbed by

the array. The rapid vanishing of the THz amplitude is an indication of a limited resonant

interaction of the THz pulse with the array. The THz transient of the transmission through

array of detuned resonators is pronouncedly different although the metal filling fractions

of both samples are very similar. For the array of detuned resonators we observe that the
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THz transient contains a harmonic damped oscillation (red curve in Fig. 1(e)) which extends

up to 25 ps. Such strong dispersion due to a periodic system is a characteristic behavior

of diffraction enhanced transparency (DET). The harmonic THz signal at long time delays

indicates the reduction of the group velocity in a narrow frequency window, as we show next.

The THz transients can be Fourier transformed to obtain the extinction of the arrays

and the phase spectra of the transmitted signal. The complex transmitted field through

the sample of detuned resonators can be written as E(ν) exp (iφ′(ν)), where E(ν) is the

transmitted amplitude and φ′(ν) the phase. The transmitted field through the bare substrate

is given by Eref (ν) exp (iφref (ν)). The resulting amplitude transmission can be expressed as

t =
E(ν)eiφ

′(ν)

Eref (ν)eiφref (ν)
=

E(ν)

Eref (ν)
ei∆φ(ν) , (1)

where ∆φ(ν) = φ′(ν) − φref (ν) is the phase delay spectrum. We define the THz extinction

spectra of the samples as

S = 1− |t|2 . (2)

The extinction spectra are shown in Figure 2(a), where the blue curve corresponds to the

extinction of the array of identical resonators and the red curve to the extinction of the

arrays of detuned resonators. The former is characterized by a broad resonance with a

maximum extinction at 0.45 THz. This resonance in the extinction corresponds to the

resonant absorption and mainly to the resonant scattering of the λ/2 resonance along the

long axis of the rods. The THz electric field drives an electrical current along this axis that

resonates over the length of the rods at this particular frequency. Note, that the resonance

wavelength (667 µm) is longer than 2 times of the physical length of the rods, which can

be attributed to the presence of the quartz substrate, the impedance at the edges of the

rods,40 and diffractive coupling with the other rods in the array. The extinction spectrum

changes drastically when one of the rods in the unit cell is replaced by the shorter one (red
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open circles in figure 2(a)). A window in which the extinction vanishes (the DET window)

appears at 0.45 THz, and an additional maximum in the extinction appears at 0.4 THz. The

vanishing extinction corresponds to a nearly full transmission at this particular frequency

(Transmission = 99.2 ± 0.5 %). In the next section we show, using a coupled dipole model,

that the DET window is the result of the interference of surface lattice resonances in the

array of detuned resonators. The period of the lattice, which plays a crucial role, was chosen

such that the DET is the largest in the frequency range of maximum sensitivity of the

THz spectrometer. The importance of the lattice constant is illustrated in Fig. S3 of the

Supporting Information.

The frequency-dependent phase delay, ∆φ(ν), obtained from the Fourier transform of the

THz pulses transmitted through the arrays are displayed on Fig. 2(b). The phase delay for

the array of identical resonators (blue open squares) presents the characteristic dispersion of

a damped oscillator, with a change of sign in the phase at the resonant frequency of maximum

extinction (marked by the vertical dashed line in the figure). The phase delay dispersion for

the array of detuned oscillators (red open circles in Figure 2(b)) is pronouncedly different.

The phase changes sign at the frequency of maximum extinction, but recovers its positive

values at the transparency frequency (marked with the dashed line in the figure), where the

system is highly dispersive in spite of the vanishing extinction. The phase delay, as defined

earlier, can be written as,

∆φ(ν) = φ′(ν)− φref (ν) = (φ(ν) + φquartz(ν))− (φ0(ν) + φquartz(ν)), (3)

where, φ(ν) is the phase introduced solely by the array of the detuned resonators, φquartz(ν)

is the phase introduced by the quartz substrate (which is the same for sample and the

reference) and φ0(ν) is the phase introduced by the layer of air with the same thickness as
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the lattice of detuned resonators. Therefore,

∆φ(ν) = (k(ν)− k0(ν))L, (4)

where k(ν) is the wave vector in the array of the detuned dipole and k0(ν) = 2πν/c is the

wave vector in air and L is the thickness of the array of resonators. The group index can be

determined from the phase delay using the following expression41,42

ng(ν) =
c0

vg(ν)
= c0

dk(ν)

dν
=
c0

L

d∆φ(ν)

dν
+ 1 , (5)

where c0 is the speed of light in vacuum and vg(ν) is the group velocity, and phases are in

units of 2π radians. In figure 2(c) we plot the dependence of the group index on the frequency

for both arrays of detuned (red open circles) and identical (blue open circles) resonators. The

group index has a maximum value of more than 6× 104 for the array of detuned resonators.

This remarkably large change in group index, corresponds to a group velocity of 5 × 103 m/s

at 0.45 THz, i.e., at the frequency of full transmission. At this frequency the wave is delayed

by scattering within the array and is re-radiated in the forward direction. In comparison, it

can be seen that no such dramatic increase in the group index is observed for the array of

identical dipoles.

We have performed more measurements to elucidate the mechanism of such a unique

spectral behavior. First, we have measured a random array of the detuned resonators to

illustrate the influence of the periodic array on the DET. We see from Figure 3(a)(red open

circles), that although there is a window of partial reduction of the extinction, it does not

reach very low values at that frequency. This indicates that the periodicity in the array of

the detuned resonators plays an important role in the DET. The spectral response from the

random array of the identical resonators is also shown in Figure 3(a) (blue open squares). The

different curves in Fig. 3(b) show the extinction due to the periodic array of the individual

long rods (magenta open circles), the periodic array of the individual short rods (green open
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Figure 2: Extinction (a), phase delay (b), and group index (c) spectra of the arrays of
detuned (red open circles) and identical (blue open squares) resonators corresponding to the
transients shown in figure 1(e). The reference sample is an empty quartz substrate. The
vertical dotted line at 0.45 THz indicates the frequency of induced transparency for the array
with the detuned resonators.
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triangles), the random array of the long rods (magenta solid) and the random array of short

rods (green dashes). The measurements in random arrays are done to elucidate the spectral

responses of the individual rods keeping in mind that the randomness averages out any effect

due to diffractive coupling between individual rods. Hence, the extinction of the random

arrays of the short and the long rods are proportional to their individual spectral responses.

We can appreciate in Fig. 3(b) that the spectral responses of the periodic arrays of both

the short and long rods are different from the response of the random arrays of similar

rods. This difference is the result of the radiative coupling of the rods. This coupling is

enhanced through diffraction in the periodic array. In particular, when the wave-vector of

the scattered wave is equal to an integer number times the inverse of the lattice constant

of the array, the condition for in-plane diffraction is fulfilled. This condition known as the

Rayleigh anomaly, leads to an increased scattered intensity along the plane of the array,

which causes an enhanced coupling between the rods. This enhanced coupling is known

as surface lattice resonances24,25,27,31 and gives rise to the red-shift and narrowing of the

resonance. Note that the values of the extinctions of the arrays of long and short resonators

(Figure 2(a)) do not reach zero around the DET frequency of 0.45 THz. Therefore, the

incoherent sum of the two extinctions will never vanish at the DET window. This finite

extinction of the arrays of equal resonators supports the interpretation that the response of

the array of detuned resonators is the result of the coherent interference of the amplitudes

of the two SLRs. The physics behind the formation of SLRs and their interference can be

explained by considering the rods as radiatively coupled resonant dipoles. Therefore, in the

following section we use the coupled dipole model to elucidate the underlying mechanism of

DET.
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Figure 3: (a) Extinction through a random array of detuned resonators (red open circles) and
through a random sample of identical resonators (blue open squares). (b) Extinction through
periodic array of individual long rods (magenta open circles), periodic array of individual
short rods (green open triangles), random array of individual long rods (magenta solid) and
random array of individual short rods (green dashes).
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Coupled dipole model

We have used a coupled dipole model to elucidate the underlying mechanism that gives rise

to DET. For simplicity we have considered a 1D chain of dipoles embedded in a homogeneous

environment with the refractive index of quartz (n=2). These approximations facilitate the

interpretation of the results, without reducing their generality.

The extinction cross section of an ensemble of metallic scatterers is related to the amount

of work an incident electromagnetic wave does while driving the conducting electrons of these

scatterers. This cross section can be expressed in terms of the wavenumber k, the polarization

pi of the ith-scatterer and the incident field Einc
i according to the following equation,43

Cext = 4πk
∑
i

Im(Einc
i ·pi)

|Einc
i |2

. (6)

The polarization in turn depends on the incident field, the properties of the scatterer like

material and shape and, for an ensemble of scatterers, their relative arrangement. The

properties of the scatterer are described by the polarizability tensor α which relates the

polarization and the local field as pi = αiE
loc
i . In an ensemble of scatterers the local field

at each scatterer i is the sum of the incident field, Einc
i , and the field scattered by all other

scatterers, Esca
i :

pi = αiE
loc
i = αi(E

inc
i + Esca

i ) . (7)

The interaction through scattering between two sub-wavelength scatterers as a function of

their respective distance r can be approximated with the dipole-dipole interaction tensor

G(r).44 Considering the sum over all dipoles gives

Esca
i =

∑
j 6=i

G(ri − rj)pj . (8)

In an infinite periodic lattice that is illuminated by a plane-wave, the behavior of all

unit cells is identical over the full array and similar scatterers will have similar polarizations.
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When each unit cell contains two -not necessarily similar- scatterers the sum over all dipoles

in Eq. (8) can be split in two contributions: one accounting for the interaction with all like

dipoles, and the other accounting for the interaction with all unlike dipoles. If we label the

dipoles either ◦ or •, we can express the polarization of Eq. (7) as

p◦ = α◦

[
Einc
◦ +

∑
j∈◦

G◦,jp◦ +
∑
j∈•

G◦,jp•

]
, (9)

and

p• = α•

[
Einc
• +

∑
j∈•

G•,jp• +
∑
j∈◦

G•,jp◦

]
. (10)

Equations (9) and (10) can be re-written in matrix form Einc = M ·P, where the matrix M

accounts for the diffractive coupling. More explicitly,

 Einc
◦

Einc
•

 =

 α◦
−1 − S◦◦ −S◦•

−S•◦ α•
−1 − S••


 p◦

p•

 . (11)

Each of the S matrices contains a lattice sum, which is defined as

S
AB

=
∑
j∈B

G
A,j

pB , (12)

where A and B correspond to either ◦ or •.

The dipole interaction tensor takes a simple scalar form, G(r), when a 1D chain of dipoles

is considered and the polarization is orthogonal to the direction of the chain. The scalar

approximation is justified since, as a result of symmetry, the polarization of the particles

is always parallel with the polarization of the incident field. The interaction tensor can be

simplified to45

G(r) = exp (ikr)

(
ik

r2
− 1

r3
+
k2

r

)
, (13)
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in which r is the distance between the respective dipoles. Solving the above equations for

P, and applying Eq. (6), the total extinction cross section of the array can be expressed as

Cext = 4πkIm

(
2S◦• − 2S◦◦ + α−1

◦ + α−1
•

S2
◦◦ − S2

◦• − (α−1
◦ + α−1

• )S◦◦ + α−1
◦ α

−1
•

)
. (14)

The periodic array of the long rods is a limiting case of this equation in which we have

α• = 0. In this case Eq. 14 is reduced to

C◦ = 4πkIm

(
1

α−1
◦ − S◦◦

)
. (15)

For the calculations the rods are approximated as perfect electric conductors, i.e., the

permittivity of the metal is −∞. The polarizability of the particles is calculated assuming

that they have an ellipsoidal shape46 and using the modified long wavelength approximation

described in Ref. [ 43], which accounts for a finite size dynamic polarization and radiative

damping. This results in

α◦ =
1

3F
V
− 2

3
ik3 − 2k2

d

, (16)

where V is the volume, d the length and F the form factor of the rods for a wave vector k.

Figure 4(a) shows the calculated extinctions of the periodic array of the long rods (magenta

solid curve) and of one individual isolated long rod (magenta dotted curve) as a function

of frequency. Diffraction from the lattice modifies the extinction spectrum of the localized

resonance, with a reduction at the Rayleigh anomaly frequency and an enhancement at lower

frequency, which leads to a narrowing of extinction spectrum. This is the characteristic line

shape of surface lattice resonances. Figure 4(b) shows the lattice sum of the array of the long

rods (black curve) as well the inverse polarizibility (magenta curve) of the individual long

rods. The frequency of maximum extinction is indicated with the vertical dashed line in the

figure, and it occurs when α−1
◦ equals S◦◦, as shown in Figure 4(b). At this frequency the

denominator in Eq. 15 vanishes. The dotted line at 0.5 THz corresponds to the frequency
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of the Rayleigh anomaly condition, where a diffraction order propagates along the plane

of the array. Constructive interference of the scattered amplitudes by the array gives rise

to the suppression of extinction in the forward direction at the Rayleigh anomaly, which

corresponds to the divergence of the lattice sum, S.
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Figure 4: (a) Coupled dipole model calculation of extinction for an 1D array of long rods
(magenta solid curve) and a single isolated long rod (magenta dotted curve), and (b) the
real components of the lattice sum S◦◦ and the inverse polarizibility tensor, α−1

◦ of each rod.
Both the quantities are in units of inverse volume.

Figure 5(a) displays the calculated spectrum using Eq. 14 for arrays of detuned dipoles

with dimensions similar to those used in the experiments. This spectrum shows a sharp reso-

nance with an enhanced extinction followed by a window of diffraction induced transparency

at 0.45 THz. This window, indicated by the vertical dotted line in Fig. 5(a), qualitatively

reproduces the main characteristics from the experimental response of the detuned dipoles

as shown in Fig. 2(a).

The interference of the fields scattered in the plane of the array by the individual lattices

of the detuned resonators, indicated by the lattice sum S◦•, is essential for explaining Fig. 5.
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If we consider S◦• = 0 in Eq. 14, the equation is reduced to

Cext = 4πkIm

(
1

α−1
◦ − S◦◦

+
1

α−1
• − S◦◦

)
= C◦ + C•. (17)

This expression corresponds to the incoherent sum of the extinctions of the two individual

lattices of long and short rods, and is plotted in the Supporting Information in Fig. S2.

Both C◦ and C• are SLRs which have finite and positive extinctions for frequencies lower

than the Rayleigh anomaly. Therefore, the incoherent sum can not vanish. This situation

is represented in the measurements of Fig. 3(b) by the black dotted curve and is distinctly

different from the diffraction induced transparency shown by the red open circles in Fig. 2(a).

The necessity to include S◦• in our analysis confirms that DET is the result of the interference

of the electromagnetic fields scattered in the plane of the array defined by the lattice sum of

equal and unequal scatterers.

Figure 5(b) shows the calculated real components of S◦◦ (black solid curve), S◦• (black

dashed curve), α−1
◦ (magenta curve), and α−1

• (green curve). The lattice sums (S◦◦ and S◦•)

diverge at the Rayleigh anomaly condition, i.e. at 0.5 THz, but the corresponding extinction

is still finite at this frequency because of their similar values and opposite signs. The opposite

signs of the lattice sums can be attributed to the fact that the distances between the like

dipoles follow the progression |r| = a, 2a, 3a..., whereas for the unlike dipoles |r| = a
2
, 3a

2
, 5a

2
...,

where a is the period of the lattice. Hence, the periodicity is the same for both lattice sums,

which explains the divergence at the same frequencies; However, they are out of phase,

which explains the opposite signs. The large group index, i.e., low group velocity, described

in the previous section with the measurements can be understood by the delay in the wave

propagation introduced by scattering into the surface modes of the array. We note that

the experimental results do not show a strong reduction of the extinction due to Rayleigh

anomalies for single SLRs (open circles and triangles in Fig. 3(b)). This discrepancy with

the calculations can be explained by the presence of air-quartz interface in the experiments.
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This interface leads to an inhomogeneous surrounding around the particle array. However,

the inhomogeneous surrounding does not suppress the DET window introduced by the array

of detuned resonators in the measurements, which confirms the robustness of these structures

for the realization of induced transparencies.
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Figure 5: Coupled dipole model calculation for a 1D chain of 2000 unit cells of an array of
detuned dipoles. (a) Extinction spectrum (b) real components of S◦◦ (black solid curve), S◦•
(black dashed curve), α−1

◦ (magenta curve) and α−1
• (green curve) as presented in Eq. 14.

The dependence of the extinction with displacement between the two detuned dipoles

within the unit cell is shown in Fig. 6. Figure 6(a) shows the spectra calculated for three

different displacements: 150 µm (red curve), 100 µm (black curve) and 75 µm (blue curve).

The curves are vertically offset to elucidate the spectral features with respect to each other.

The Rayleigh anomaly, which is represented by the dash-dotted vertical line at 0.5 THz, is

fixed for all the calculations. However, for the three different cases the spectral response is

very different. By changing the displacement between the two detuned dipoles, it is possible

to tune the transparency window in the response of the array. This indicates that even
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though the individual SLRs do not change, it is the interference between the two SLRs that

is modified due to the relative displacement between the dipoles. Figure 6(b) shows the

extinction due to the lattice of detuned dipoles as a function of frequency and displacement

between the two dipoles. The three cases shown in Fig. 6(a) are marked by the three

horizontal lines at 150, 100 and 75 µm displacement. The Rayleigh anomaly is indicated

by the vertical white dash-dotted line at 0.5 THz. The transparency window is symmetric

on both sides of the horizontal line at 150 µm where the window is the widest. This is the

result of rotational symmetry at this displacement, as the pitch of the array is 300 µm.

In conclusion, we have demonstrated that a periodic array of scatterers with different

dimensions can give rise to a narrow spectral transparency window with a transmission close

to unity and very large group index. This transparency, which we have termed diffraction

enhanced transparency (DET), is the result of the interference of collective resonances known

as surface lattice resonances. The surface lattice resonances are the result of the enhanced

diffractive coupling of localized resonances in the individual scatterers. The slow wave propa-

gation (the group velocity is reduced by more than 4 orders of magnitude) due to the in-plane

scattering and the near perfect transmission, makes DET an interesting phenomenon for the

design of components for THz communication, such as modulators or delay elements.
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Figure 6: (a) Extinction spectra for two detuned dipoles in a 1D lattice with a pitch of 300
µm. The three cases represents the different displacements between the dipoles; from top,
150 µm (in red), 100 µm (in black) and 75 µm (in blue). The dimensions of the dipoles are
the same as before. The spectra are displaced vertically to elucidate the behavior clearly. The
dash-dotted vertical line marks the position of the Rayleigh anomaly. (b) Extinction spectra
for the lattice of detuned dipoles as a function of frequency and displacements between them.
The Rayleigh anomaly condition is indicated by the white dash-dotted vertical line. The
three cases shown in (a) is represented by the three horizontal lines at 150, 100 and 75 µm
with same color coding.
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Graphical TOC Entry
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Only
Diffraction enhanced transparency and slow THz light in periodic arrays
of detuned and displaced dipoles by M. C. Schaafsma, A. Bhattacharya
and J. G. Rivas
We demonstrate that a periodic lattice of detuned resonators can suppress
the THz extinction at the central resonant frequency, leading to diffrac-
tion enhanced transparency (DET). The system consists of metallic rods
of two different sizes, each of them supporting a strong half-wavelength
(λ/2) resonance, which are spatially displaced within the unit cell of the
lattice. Using a coupled dipole model we show that the DET window
has its origin in the interference between two surface lattice resonances,
arising from the diffractively enhanced radiative coupling of the λ/2 res-
onances in the lattice. Group-index measurements show that the THz
field is strongly delayed by more than four orders of magnitude at the
transparency window. Since DET does not involve the near-field cou-
pling of resonators, the fabrication tolerance to imperfections is expected
to be very high. This remarkable response renders these systems as very
interesting components for THz communication.
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