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Abstract 

A glow like atmospheric pressure dielectric barrier discharge in a roll-to-roll setup was used 

to synthesise 90 nm silica-like bilayer encapsulation films composed of a 30 nm dense 

‘barrier layer’ and a comparatively less dense 60 nm ‘buffer layer’ onto a polyethylene 2,6 

naphthalate substrate by means of plasma enhanced chemical vapour deposition.  Tetraethyl 

orthosilicate was used as the precursor gas, together with a mixture of nitrogen, oxygen and 

argon.  The microstructure, chemical composition, morphology and permeation properties of 

the films were studied as a function of the specific energy delivered per precursor molecule, 

and oxygen concentration in the gas mixture, during the deposition of the barrier layer.  The 

presence of the buffer layer within the bilayer architecture critically enhanced the 

encapsulation performance of the bilayer films, and this in conjunction with increasing the 

specific energy delivered per precursor molecule during the barrier layer deposition to a value 

of 20 keV, enabled an effective water vapour transmission rate as low as 6.9×10-4 g m-2 day-1 

(at 40 °C, 90% relative humidity) to be achieved.  Furthermore, the bilayer film structure has 

given rise to a remarkable 50% reduction in deposition energy consumption per barrier area 

with respect to single layer silica-like films of equivalent encapsulation performance and 

thickness. 
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Introduction 

Flexible electronics are an innovative array of devices that have the potential to revolutionise 

the electronic and energy markets.  They cover a wide range of applications, from light-

emitting or photovoltaic diodes to thin film transistors and solar cells.  However, due to their 

particular chemical nature, exposure to environmental moisture and oxygen,[1–9] can result in 

oxidation and crystallisation of the main components.[4]  Therefore, a suitable flexible thin 

film encapsulation barrier is required in order to extend device lifetime and ensure their 

commercial viability.   

Aside from excellent moisture barrier performance and flexibility, these encapsulation foils 

must fulfil a specific set of requirements.  They should be thermal and scratch resistant, 

smooth, durable and both simple and inexpensive to manufacture.[5]  Thus far, these barrier 

coatings have typically consisted of single or multilayer stacks of silicon nitride (Si3N4), 

alumina (Al2O3), silica (SiO2) or titania (TiO2) layers deposited onto a flexible plastic 

substrate via various deposition methods.[2,4–24] 

One such method is atmospheric pressure-plasma enhanced chemical vapour deposition (AP-

PECVD).  This pioneering technology can be easily integrated into many existing 

manufacturing systems to facilitate the mass production of encapsulation thin films.  Contrary 

to traditional vacuum deposition methods, the entire AP-PECVD process is potentially very 

cost effective, as films can be generated at high throughput without the need for any large 

footprint vacuum equipment.[9]  The in-line processing is hence very versatile and relatively 

straightforward. 

To date, roll-to-roll AP-PECVD has been successfully used to produce ultra-smooth,[25] 100 

nm single layer silica-like thin films on a polyethylene 2,6 naphthalate (PEN) substrate that 

demonstrated a good effective water vapour barrier performance of 1.8×10-3 g m-2 day-1 (at 

40 °C, 90% relative humidity (RH)).[11]  It was found that an increased substrate temperature 
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and decreased precursor mass flow,[11] in combination with an enhanced duty cycle or power 

density,[26] had a profound positive effect on the chemical composition of the silica layers and 

therefore upon the permeation properties of the films.  AP-PECVD has therefore shown 

particular promise as a technique in the field of protective layer synthesis for flexible solar 

cells, which have a water vapour transmission rate (WVTR) requirement of 10-3 g m-2 day-

1.[9,27,28]  However, this technology is also intended for the production of permeation barriers 

for flexible organic light emitting diodes (OLEDs), which have a significantly more 

demanding WVTR requirement of 1×10-6 g m-2 day-1 (at 25 °C, 40% RH),[5,6,10] to ensure the 

device lifetime of 10000 h is met.[5] 

Previous studies have shown that single layer barrier performance is often limited by 

defects,[2,4,9,11,26,29] as the means by which the films are deposited can make the inorganic 

layers highly susceptible to cracking or pinhole formation.[9,11,26]  And contrary to theoretical 

assumptions, increasing the thickness of the single layer barriers does little to improve their 

performance.  Thick inorganic layers on polymer substrates have been found to be more 

prone to cracking and delamination than their thinner counterparts.[30]   

To circumvent these issues, organic-inorganic multilayer barriers,[4,6–10,17,18,29] have been 

reported as a successful substitute to prevent the formation,[1,4,6,9] and propagation of 

pinholes.[9]  Typical WVTR values for these encapsulation barriers are within the region of 

10-5 g m-2 day-1 (at 30 °C, 90% RH), therefore almost achieving the OLED protection 

requirement.  They commonly consist of organic polymeric-Al2O3 composite layers 

deposited using techniques such as sputtering, atomic layer deposition (ALD) and molecular 

layer deposition (MLD) processes.[4,7,8]  However, the generation of these encapsulation 

barriers can be highly expensive, due to the alternate vacuum deposition processes usually 

required for their synthesis.[9] 
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The encapsulation potential of hybrid inorganic layered architectures comprising an inorganic 

dyad, or nano-laminates with different chemical compositions and densities, was recently 

evaluated.[12,16,31–34]  Notable barrier performances were demonstrated, highlighting the 

synergistic effects of the inorganic layered architecture.  The majority of these particular 

hybrid structured layers were, however, produced both at low pressure and using low 

deposition rate processes.  Conversely, Starostin et al.[16] showed that a combination of roll-

to-roll AP-PECVD and stationary plasma assisted ALD could be used to deposit a multilayer 

silica-alumina moisture permeation barrier on a polymeric substrate that exhibited excellent 

intrinsic (10-5 – 10-6 g m-2 day-1 (at 20 °C, 50% RH)) and good effective (10-3 g m-2 day-1 (at 

40 °C, 90% RH)) WVTR performance.  The promising result was attributed to two 

phenomena.  First, the enhancement of the polymeric substrate through the use of the 

mechanically stabilising AP-PECVD silica ‘buffer layer’.  And second, the ‘capping’ of the 

nano-pores in the silica buffer layer by the thin ALD alumina ‘barrier layer’. 

Therefore the objective of the presented work is to attempt to synthesise high performance 

bilayer silica-like encapsulation films comprising a thin, dense ‘barrier layer’ and 

comparatively thicker, less dense ‘buffer layer’ using roll-to-roll AP-PECVD.  By using the 

same material in the multilayer film architecture, and by having roll-to-roll AP-PECVD as 

the only deposition method, renders this investigation highly industrially and commercially 

relevant to the eventual large scale production of encapsulation barriers for flexible OLEDs.  

Furthermore, the influence of reactant gas concentrations and the input energy per precursor 

molecule during the deposition of the barrier layer will be explored.  It is likely that these 

parameters will influence the chemical composition, porosity and hence encapsulating 

function of the film. The energy consumption per deposited barrier area for single and bilayer 

films will be evaluated, in addition to the significance of the buffer layer with respect to the 

encapsulation performance of the overall films. 
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Experimental Section  

Encapsulation film synthesis 

A glow-like AP dielectric barrier discharge (DBD) in a roll-to-roll set-up open to ambient air 

was used to deposit 90 ± 6 nm silica-like bilayer films comprising a 30 ± 4 nm barrier layer 

and 60 ± 6 nm buffer layer (see Figure 1) by PECVD.  In addition to the bilayer 

encapsulation films, 30 ± 5 nm single layer barrier films were synthesised so that the 

significance of the 60 nm buffer layer with regard to the bilayer encapsulation performance 

could be evaluated.  

 

Figure 1.  Elementary representation of the silica-like bilayer and single layer films 

deposited by means of atmospheric pressure-plasma enhanced chemical vapour deposition 

using a roll-to-roll type dielectric barrier discharge. 

 

A schematic representation of the AP-PECVD reactor is shown in a recent publication by 

Starostin et al.[11]  The DBD was ignited between two cylindrical rotary drum electrodes each 

with a radius of 120 mm and separated by a 0.5 mm gaseous gap.  The electrodes were 

connected to a matching network, power supply, a voltage probe (Passive High Voltage 

Probe P6015A, Tektronix) and current probe (Pearson current monitor model 4100, Pearson 

Electronics, Inc.).  The electrodes were heated to 80 ± 1 °C by means of spiral oil-filled tubes 

located on the inner surface of the metal electrode casing. 

Thermally stabilised optical grade polyethylene 2,6 naphthalate (PEN) foil (Teonex Q65FA, 

Teijin DuPont Films) with a width and thickness of 180 mm and 100 μm respectively, was 

positioned over each drum electrode, acting as both the dielectric layer in the DBD system 
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and the substrate upon which the silica layers were deposited (see Figure 1).  The PEN 

polymeric web was connected to independent roll-to-roll foil transport and tension control 

systems.  The foil transport speed was fixed at 400 mm min-1 to ensure a 60 nm deposition 

during the buffer layer synthesis, and varied from 200 – 16 mm min-1 for the bilayer barrier 

synthesis (200 – 32 mm min-1 for the single layer barrier) to guarantee a 30 nm deposition.  

An infrared camera (FLIR A320, FLIR Systems Co Ltd.) was used to monitor the 

temperature of the substrate during the deposition process. 

The plasma was created using a high frequency generator (L3001, Seren Industrial Power 

Systems), tuned within the range 180 – 200 kHz in order to optimise forward power 

matching.  The PECVD reactor was operated in the pulsed mode, with pulse lengths of 800 

μs and a 90% duty cycle.  The voltage amplitude measured between the two drum electrodes 

was 2 – 3 kV.  The reflected power was generally in the range 2 – 5% of the forward signal, 

and the power dissipated in the discharge was 600 W.  This corresponded to a specific power 

density of approximately 0.2 W mm-2, assuming an effective plasma discharge width of 150 

mm, and a 20 mm expansion along the gas flow.  The peak current density averaged over 

treated surface area was estimated to reach up to 1.7 mA mm-2.  The I – V waveforms of the 

discharge during deposition can be seen in a publication from Starostin et al.[11]  In order to 

monitor the uniformity of the plasma throughout the deposition process, a sensitive array 

camera (Eclipse EC-11-05h40, DALSA) with a 13 μs frame integration time was utilised. 

The reactant gases in each case were oxygen (technical grade) and tetraethyl orthosilicate 

(Si(OC2H5)4, TEOS) (≥99.0%, Sigma-Aldrich).  The precursor gas, TEOS, was injected via a 

controlled evaporation mixer unit (CEM-Technology, Bronkhorst HIGH-TECH B.V.), where 

the vapours were combined with 1 slm argon (technical grade).  The carrier gas in all cases 

was nitrogen (technical grade), with a flow of 15 slm for buffer layer syntheses and 20 slm 

for barrier layer synthesis.  All four gases were combined in the gas injector before being 
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released into the plasma.  The reactant gas flows for buffer layers were kept constant at 

8.2×10-3 slm TEOS and 1.8 slm oxygen.  However, in order to vary the input energy per 

TEOS molecule for the barrier layers and therefore the layer densities, the TEOS and oxygen 

gas flows were adjusted with a fixed ratio of 4.5×10-3 in the range of 1.8×10-3 – 0.1×10-3 slm 

and 0.4 – 0.025 slm respectively for the bilayer barriers (and 1.8×10-3 – 0.2×10-3 slm TEOS; 

0.4 – 0.05 slm oxygen for the single layer barriers).  This resulted in the deposition of bilayer 

barriers with input energies ranging from 6 – 80 keV/TEOS molecule (and input energies 

ranging from 6 – 35 keV/TEOS molecule for single layer barriers).  Equation 1 below,[11] 

related to the Yasuda composite power parameter,[35] was used to calculate the input energy 

per TEOS molecule for the barrier layers, 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑃𝑃𝑑𝑑
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝜌𝜌

⋅ 𝑀𝑀
𝑁𝑁𝐴𝐴

       (1) 

 

where 𝑃𝑃𝑑𝑑 is the power density in the discharge, 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 is the deposition rate of SiO2 layers 

simultaneously upon two substrate webs,[11] (also expressed as 𝑑𝑑ℎ
𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑

, where ℎ and 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 are 

film thickness and deposition time respectively), 𝜌𝜌 is the density of amorphous SiO2 (2.2 g 

cm-3), 𝑀𝑀 is the molar mass of SiO2 and 𝑁𝑁𝐴𝐴 is Avogadro’s Number.  Contrary to the Yasuda 

composite power parameter that was originally used to determine input energies for plasma 

polymerisation,[35] Equation 1 is based not upon the flow rate and molecular weight of the 

precursor molecule, but upon factors directly related to the deposited amorphous silica 

layer.[11]  For the studied conditions, the reactor was operating in the complete precursor 

depletion mode. 

To investigate the effect of reactant gas concentrations on the resulting properties of the 

bilayer barriers, a second set of films were produced with the same buffer layer, but barrier 
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layers with TEOS to oxygen gas flow ratios of 1.5×10-3:1 (TEOS vapour flows ranging from 

1.8×10-3 – 0.1×10-3 slm; oxygen gas flows ranging from 1.2 – 0.075 slm).  Despite the 

increased oxygen flow rate, the input energy per TEOS molecule for these films remained 

within the range 6 – 80 keV, due to the identical TEOS vapour flows.  It should be noted that 

because of system limitations, for films deposited with barrier layer oxygen gas flows below 

0.075 slm, air was used as the reactant gas in place of oxygen. 

Spectroscopic ellipsometry (SE) was performed using a variable angle spectroscopic 

ellipsometer (M-2000D, J.A. Woollam Co. Inc.) in the wavelength range of 400 – 1000 nm in 

order to determine the thickness of the buffer layers, the combined buffer-barrier bilayers and 

the single layer barriers post-deposition.  The Cauchy dispersion function was used to model 

the PEN substrate and the silica-like thin films as two separate entities.  The optical model 

did not take into account the substrate anisotropy; however sample orientation was consistent 

for each measurement. 

 

Compositional and performance analysis 

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) absorption spectroscopy 

was performed using un-polarised light (Frontier FT-IR/FIR Spectrometer, PerkinElmer; 

Frontier UATR Ge/Ge, PerkinElmer) to investigate the silica-like network structure of the 

barrier layers, with particular focus upon the Si-OH, SiO-H and HO-H spectral peaks.  This 

set-up utilised a Ge crystal with a 45o face angle and one internal reflection.  Spectra were 

obtained at a fixed angle of 45o, which resulted in a penetration depth range of 165 – 1016 

nm for the selected wavenumber range of 4000 – 650 cm-1.  To minimise the effect of 

background noise, 16 scans were acquired for every measurement.  The absorbance spectrum 

of the substrate was subtracted from each sample spectrum and all spectra were interpreted 

assuming that an increase in peak absorption intensity equated to an increase in the presence 
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of the corresponding functional group.  Deconvolution of all spectral peaks was carried out 

(Peak Analyzer – Fit Peaks (Pro), OriginPro 9.1) in order to determine the position, full width 

at half maximum (FWHM) and intensity of each elementary contribution.  For the purpose of 

this analysis, a separate set of samples were investigated as the nature of the original silica-

like bilayer films, namely the combination of the extremely thin barrier layers and the 

dominant PEN FTIR absorption peaks, meant the quality of the subtracted barrier layer silica-

like FTIR absorption spectrum was particularly poor.  Therefore, a set of ~200 nm equivalent 

barrier layer-type films that had been deposited onto a polyethylene terephthalate (PET) 

substrate pre-coated with a 1 μm thick layer of polyvinylidene chloride (PVDC) were 

analysed instead.  The FTIR absorption spectrum of PVDC was neutral enough not to impede 

the absorption spectrum of the silica-like barrier layers, thereby ensuring ‘clean’ spectra 

could be obtained. 

In order to determine the stoichiometry of the buffer and barrier layers, X-ray photoelectron 

spectroscopy (XPS) was performed (AMICUS / ESCA 3400, Kratos Analytical Ltd).  The 

measurement was carried out using a Mg Kα X-ray source with a photon energy of 1254.6 

eV, in combination with 25 cycles of 30 second monatomic argon ion beam etching with an 

ion energy of 0.5 kV.  The resulting spectra were processed using CasaXPS software. 

Atomic force microscopy (AFM) (Park NX10, Park Systems) was performed to investigate 

the surface morphology of the PEN substrate, the buffer layer and the bilayer barriers.  The 

measurement was implemented in non-contact mode, using a tip with a radius of 

approximately 8 nm.  Images of 512×512 pixels obtained with a scanning area of 2×2 μm2, 

were then processed using Gwyddion software in order to obtain root mean square (RMS) 

roughness values and cross-sectional height profiles of the layers.[36]  The RMS roughness of 

the pristine PEN substrate was 1.75 ± 0.04 nm. 
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The effective WVTR of both bilayer samples comprising barrier, buffer and substrate layers, 

and single layer samples comprising barrier and substrate layers were determined using a 

Deltaperm (Technolox Ltd.), with set conditions of 40 °C, 90% RH.  This measurement 

therefore took into account the overall permeation of the films; including contributions from 

macro-defects, and the intrinsic microstructure (nano-defects and gas transport through the 

amorphous silica-like lattice itself).[37]  The Deltaperm is a direct pressure device that fulfils 

both the ASTM D 1434-82 (2003) standard for permeation measurements and ISO 15106-

5:2015, and has a WVTR limit of 2×10-4 g m-2 day-1.  Sample areas of 50 cm2 were 

investigated, with each measurement lasting for 100 – 150 hrs in order to ensure the 

permeation rate had stabilised.  The chamber pressure downstream of the sample was 

recorded each minute, and the WVTR calculated from the output (x-variable coefficient and 

x-variable standard error) from a linear regression of the final 200 downstream pressure data 

points.  The WVTR of the pristine PEN substrate was 1.7 g m-2 day-1.  From the Deltaperm 

measurements, data concerning the lag-time (the time taken for the WVTR to reach a steady-

state) was also obtained for bilayer samples deposited at a reduced oxygen flow rate.  The 

lag-time was calculated from the x-axis intercept of an extrapolated line from the steady-state 

region of the curve, for a plot of downstream pressure expressed as a function of time (see 

Figure 2).  The lag-time of the pristine PEN substrate was approximately six hours.   

In turn from the lag-time results, the apparent diffusion coefficient 𝐷𝐷, of the encapsulation 

layer was calculated for each sample using Equation 2, 

 

𝐷𝐷 = ℎ2

6𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙
           (2) 

 

where ℎ is the thickness of the encapsulation layer and 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is the lag-time.[38]  In this specific 

case, as the combination of the buffer layer and barrier layer contributed to the overall 
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apparent diffusion coefficient of the bilayer films, an encapsulation layer thickness ℎ of 90 

nm was used, rather than assuming the 30 nm barrier layer was the sole contributing factor. 

 

Figure 2.  Conceptual plot of cumulative permeation data (downstream pressure vs time), 

defining lag-time and steady-state regimes for a single-layer system.[38]  

 

Results and Discussion 

The ATR-FTIR spectroscopic analysis of the barrier layers is shown in Figure 3 and 4.  It is 

understood that the degree of porosity in a silica-like thin film is directly correlated to the 

presence of hydroxyl groups (-OH) in the network structure.[39–43]  The presence of this 

functional group disrupts the continuous -Si-O-Si-O- network and in turn increases the 

porosity of the thin film.  Figure 3a and 3b show the hydroxyl (O-H) stretching region (4000 

– 3000 cm-1) and silanol (Si-OH) stretching region (930 cm-1) respectively.  Three individual 

hydroxyl stretching components are widely acknowledged to combine to form the large peak 

observed between 4000 and 3000 cm-1.  An isolated silanol (iSiO-H) stretch is thought to 

occur at 3650 cm-1,[44–46] the hydroxyl stretch of silanol groups (nSiO-H) involved in 

hydrogen bonding (neighbouring silanol groups) is said to appear at 3450 cm-1,[45–47] and 

finally the hydroxyl stretch due to water molecules (HO-H) trapped within the silica network 
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is understood to arise at 3250 cm-1.[43,45,47]  The spectra depicted in Figure 3a were therefore 

deconvoluted and the specific peak centres, FWHM and absorbance of each individual 

hydroxyl stretch portrayed in Figure 4 as a function of the input energy per TEOS molecule 

during the barrier deposition process, together with equivalent data from the spectra in Figure 

3b for the Si-OH stretch. 

 

Figure 3.  ATR-FTIR absorption spectra showing: (a) the hydroxyl (O-H, 4000 – 3000 cm-1) 

stretching region and (b) the silanol (Si-OH, 930 cm-1) stretching region of 200 nm silica-like 

thin films deposited with input E/TEOS from 6.1 – 72.2 keV onto a modified PET substrate 

using AP-PECVD under conditions replicating those of the barrier layer synthesis: (solid 

lines) barrier layers deposited at a reduced oxygen flow rate; (dashed lines) barrier layers 

deposited at an increased oxygen flow rate. 

 

Subtle variations in the specific peak centre are known to indicate fluctuations in the strength 

and length of bonds present in the assigned functional group, as is outlined in Equation 3 

(Hooke’s Law) below, 

 

𝜈̅𝜈 = 1
2𝜋𝜋𝜋𝜋 �

𝑘𝑘
𝜇𝜇
           (3) 
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where 𝜈̅𝜈 is the fundamental vibrational frequency, 𝑐𝑐 is the speed of light, 𝑘𝑘 is the force 

constant (the proportionality constant relating to the force required to extend a bond) and 𝜇𝜇 is 

the reduced mass (Equation 4), 

 

𝜇𝜇 = 𝑚𝑚1𝑚𝑚2
(𝑚𝑚1+𝑚𝑚2)           (4) 

 

where 𝑚𝑚1 and 𝑚𝑚2 are the component masses for the chemical bond under consideration.[48]  

Therefore, any increase in the frequency of a peak can potentially be attributed either to an 

increase in the strength of the chemical bond in question, or a decrease in the reduced mass of 

the two atoms associated with said chemical bond. 

The peak FWHM is acknowledged to be indicative of the degree of variation in bonding 

arrangements surrounding a particular functional group.[49–52]  For instance, interactions such 

as hydrogen bonding can influence the chemical environment of certain functional groups. 

The absorbance, or peak intensity 𝐴𝐴, as defined in Equation 5 (the Beer-Lambert Law) 

below, can provide information relating to the concentration of species present, 

 

𝐴𝐴 = 𝜀𝜀𝜀𝜀𝜀𝜀           (5) 

 

where 𝐴𝐴 denotes the measured absorbance, 𝜀𝜀 is the molar attenuation coefficient (or molar 

absorptivity), 𝑙𝑙 is the path length of light and 𝑐𝑐 is the concentration of species present.  

Fundamentally, the equation states that an increase in peak absorbance correlates directly 

with an increase in concentration of species associated with the alleged peak. 
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Figure 4.  Deconvolution of the ATR-FTIR absorption spectra shown in Figure 3 illustrating 

the specific peak centre (black; square), FWHM (red; circle) and absorbance (blue; triangle) 

as a function of increasing input energy per TEOS molecule for the synthesis of the barrier 

layer for: (a) isolated SiO-H stretch; (b) neighbouring SiO-H stretch; (c) HO-H stretch and 

(d) Si-OH stretch. (Solid lines) barrier layers deposited at a reduced oxygen flow rate; 

(dashed lines) barrier layers deposited at an increased oxygen flow rate. 

 

The data in Figure 3 and 4 clearly illustrate that the absorbance of all hydroxyl groups in the 

barrier layers decrease with increasing input energy per TEOS molecule during the deposition 

process, to levels where the presence of any hydroxyl group is virtually undetectable.  A 

reduction in the concentration of network disrupting silanol groups, and likewise the 

concentration of water trapped within the pores, would suggest that the intrinsic 

microstructure of the silica network gradually increases in density as a function of increasing 
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deposition input energy.  The FWHM of each hydroxyl peak is simultaneously seen to 

decrease with decreasing film porosity due to a decline in the number of different chemical 

environments or bonding arrangements.  As a consequence of a decreased number of pores, 

there are less neighbouring silanol groups and less water molecules present for hydrogen 

bonding interactions to occur.  Thus the FWHM of each peak is decreased.  Unsurprisingly, 

this decline in FWHM is therefore most noticeable for the nSiO-H stretch.   The deviation in 

the FWHM trend seen for the trapped water (HO-H) stretch is likely to be due to the error 

involved in the deconvolution of an essentially non-existent peak.  Finally, the specific peak 

centre is observed to increase in wavenumber in all cases with increasing film density, most 

likely due to an increase in the force constant 𝑘𝑘, of the O-H and Si-OH bonds, since the 

reduced mass of the vibrating atoms 𝜇𝜇, remains unchanged.  This is an outcome of a decrease 

in the degree of hydrogen bonding interactions in the network, meaning that the strength of 

the O-H (and Si-OH bonds to some extent) increase, resulting in a slight rise in vibrational 

frequency.  Therefore it is likely that by increasing the input energy per TEOS molecule 

during the synthesis of the barrier layer, a gradual improvement should be observed with 

regard to the bilayer and single layer encapsulation barrier performance; a phenomenon that 

was observed at lower input energies by Starostin et al.[11] 

From the ATR-FTIR analysis it is also apparent at these particular deposition input energies, 

that the oxygen flow rate during the barrier layer deposition has a minimal effect upon the 

concentration of hydroxyl groups present in the silica-like network structure of the barrier 

layers.  Therefore, it is unlikely that the oxygen flow rate should influence the encapsulation 

barrier performance of the bilayer films. 

Figure 5 shows the O:Si ratios of the barrier and buffer layers obtained from XPS analysis of 

the bilayer films deposited under different conditions.  It is fairly evident that increasing the 

input energy per TEOS molecule during the deposition process leads to a barrier layer with 
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an O:Si ratio closer to the desired SiO2 stoichiometry.  The oxygen flow rate during the 

deposition process, however, appears to have little or no influence at these specific input 

energies, on the O:Si ratio of the resulting barrier film.  Both these findings complement the 

ATR-FTIR results, signifying that by increasing the input energy per TEOS molecule during 

the deposition of the barrier layer, a denser and therefore superior encapsulation film should 

result; while varying the oxygen flow rate appears to have no influence upon the chemical 

composition of the film and hence a negligible effect should be observed with respect to 

encapsulation performance. 

The percentage elemental composition of the barrier layers is presented in Table 1.  It is 

therefore possible that the silica-like barrier layers are not completely pure, with small 

percentages of carbon and nitrogen also present in the network. 

 

Figure 5.  O:Si ratio obtained from XPS analysis with respect to increasing input energy per 

TEOS molecule for the synthesis of the bilayer barrier during the deposition process. 

 

Table 1.  XPS compositional analysis for bilayer barriers deposited at different input 

energies per TEOS molecule and oxygen flow rates. 
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Energy per TEOS 

molecule / keV 

Reduced O2 flow rate during deposition Increased O2 flow rate during deposition 

Si [%] O [%] C [%] N [%] Si [%] O [%] C [%] N [%] 

6 31.3 64.8 3.3 0.6 31.1 66.0 2.1 0.7 

10 31.6 65.2 2.9 0.6 31.6 65.0 2.7 0.8 

20 31.0 64.2 3.5 1.3 31.1 64.5 3.5 1.0 

36 31.8 65.0 2.3 0.9 32.0 64.5 2.4 1.1 

72 31.5 64.0 3.2 1.3 31.8 65.2 1.7 1.3 

 

AFM micrographs presented in Figure 6 illustrate the typical surface morphologies of the 

bilayer barriers, the buffer and the PEN substrate layers.  From these images, it is reasonably 

clear that the morphology of the buffer and subsequent barrier layers follow that of the PEN 

substrate; a phenomenon that was also observed by Premkumar et al.[25,53]  The buffer layer 

does however appear to show a greater number of small, high features.  This could be the 

result of incomplete precursor breakdown due to the increased precursor flow rate required 

for the deposition of this layer and thus reduced plasma residence time.  Further investigation 

is required however, in order to fully verify this. 

Topographic analysis displayed in Figure 7 reveals that the bilayer barriers are extremely 

smooth, with RMS roughness values for all bilayer films less than 1.5 nm.  This RMS 

roughness value is considerably less than the PEN substrate, which has an RMS roughness of 

1.75 ± 0.04 nm.  The use of the buffer layer is potentially responsible for the exceptionally 

smooth bilayer barriers, as it appears to smoothen the PEN substrate profile in preparation for 

the bilayer barrier deposition.  This buffer layer-induced substrate smoothening is also known 

to be an important factor with regard to reducing the gas permeation rate of the final 

films.[16,54] 

Neither the input energy per precursor molecule, nor the oxygen flow rate during the 

deposition process appears to have any obvious effect upon the RMS roughness of the bilayer 
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barriers.  This again is likely to be a consequence of the buffer layer in the bilayer 

architecture.  Height profiles of the layers also shown in Figure 7, highlight that the local 

roughness is potentially also decreased for the bilayer barrier films compared to the PEN 

substrate, as the variation in height between neighbouring peaks is seen to reduce. 

 

Figure 6.  AFM micrographs illustrating the surface morphology of: (a) the bilayer barrier 

deposited with a reduced oxygen flow rate at 37.2 keV/TEOS molecule; (b) the bilayer 

barrier deposited with an increased oxygen flow rate at 34.3 keV/TEOS molecule; (c) the 

buffer layer; (d) the PEN substrate. 
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Figure 7.  Topographic data obtained from AFM micrographs (Figure 6): (a) RMS 

roughness plotted as a function of increasing input energy per TEOS molecule for the 

synthesis of the barrier layers during the deposition process; (b) typical height profiles for: 

(i) the bilayer barrier deposited with a reduced oxygen flow rate at 37.2 keV/TEOS molecule; 

(ii) the bilayer barrier deposited with an increased oxygen flow rate at 34.3 keV/TEOS 

molecule; (iii) the buffer layer; (iv) the PEN substrate. 
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The effective WVTR values (at 40 °C, 90% RH) with respect to increasing input energy per 

TEOS molecule during the deposition of the silica-like barrier layer for four different film 

types are shown below in Figure 8.  As previously stated, this measurement accounted for 

permeation through the overall film; including contributions from macro-defects, and the 

intrinsic microstructure (nano-defects and gas transport through the amorphous silica-like 

lattice itself).[37]  By using the bilayer approach, it is therefore possible to surpass the 100 nm 

single layer barrier limit,[11] and produce films that exhibit a WVTR as low as 6.9×10-4 g m-2 

day-1.  Despite this value not quite being low enough to meet the WVTR requirement for 

flexible OLEDs,[5,6,10] it is however the lowest WVTR obtained to date for a silica-like film 

deposited upon a polymer substrate by AP-PECVD. 

As can be expected, the thickness of the barrier layer has an impact upon the WVTR for films 

deposited at 6 keV/TEOS molecule, with the 100 nm barrier exhibiting superior moisture 

barrier properties.[11]  This input energy is still relatively low and therefore the intrinsic 

microstructure of these barrier layers is comparatively less dense, meaning that the barrier 

thickness has greater influence upon WVTR performance.  Nevertheless, increasing the input 

energy per TEOS molecule for the barrier layer synthesis by a mere 4 keV/TEOS molecule 

shows a stark improvement in WVTR performance for the bilayer films, to rates equivalent to 

that of the best 100 nm barrier.[11]  The bilayer architecture therefore has the potential to be 

significantly more successful than the single layer technique, especially at higher input 

energies.  This assumption is confirmed by the poor performance of the 30 nm single layer 

films, which not only show an increase in WVTR with increasing input energy per TEOS 

molecule during the deposition process, but to the extent whereby the reduction in 

performance is almost three orders of magnitude at the highest comparable input energy.  The 

presence of a buffer layer is therefore vital with regard to achieving the remarkable WVTR 

performance of the bilayer films, especially at higher input energies.  The precise function of 
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the buffer layer is unknown at present, however it is speculated that the layer could provide a 

means of mechanical stabilisation to the PEN substrate in preparation for the barrier layer 

deposition, as highlighted by the AFM topographic analysis and in the recent publication by 

Starostin et al.[16] 

An additional particularly remarkable advantage of the bilayer films over the single layer 

films is the apparent 50% reduction in energy consumption per barrier area required for their 

deposition, if films of equivalent encapsulation performance and thickness are compared.  

This is primarily due to the increased throughput necessary for the synthesis of the 30 nm 

barrier layer, and is a positive consequence with regard to commercialisation of the 

encapsulation barrier production process using roll-to-roll AP-PECVD. 

Figure 8 also illustrates, however, that the trend observed for the bilayers deviates somewhat 

from the expected gradual decrease in WVTR with increasing input energy per TEOS 

molecule, predicted by the ATR-FTIR and XPS results.  Values are seen to plateau and 

increase for samples deposited with input energies greater than 20 keV/TEOS molecule for 

the barrier layer. 
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Figure 8.  Water vapour transmission rate (at 40 °C, 90% relative humidity) with respect to 

increasing input energy per TEOS molecule for synthesis of the barrier layer: (black; closed 

square) values obtained for a 90 nm bilayer film deposited with a reduced O2 flow rate; (red; 

closed circle) values obtained for 90 nm bilayer film deposited with an increased O2 flow 

rate; (black; open square) a 30 nm single layer barrier deposited with a reduced O2 flow 

rate; (black; closed triangle) a 100 nm single layer barrier deposited with a reduced O2 flow 

rate.[11] 

 

This deviation can potentially be attributed to the presence of macro-defects in the film, as 

the intrinsic microstructure of the barrier layers is known from ATR-FTIR and XPS analysis 

to densify with increasing input energy per TEOS molecule during the deposition.  These 

macro-defects can occur as a result of the harsh processing conditions (sustained plasma and 

heat exposure) required to achieve very high input energies.  Inconsistencies in the quality of 

the PEN substrate can also potentially contribute to the variations observed.  In addition, 

Figure 8 also shows that increasing the oxygen flow rate during the deposition process can 

reduce the WVTR for samples with barrier layers deposited from 6 – 20 keV/TEOS 

molecule.  While this may indicate that moisture barrier performance is improved by 

depositing barrier layers at an increased oxygen flow rate, it is likely that the phenomenon 

observed is a consequence of varying substrate quality, or gas phase processes resulting in 

oligomer and particle formation, which thus incorporate into the silica layer causing defects.  

For the input energies investigated, ATR-FTIR and XPS analysis revealed no obvious 

indication that the oxygen flow rate had any influence on the density of the intrinsic 

microstructure of the silica-like barrier layers. 

Figure 9 that illustrates the lag-time and apparent diffusion coefficient of the bilayer thin 

films as a function of input energy per TEOS molecule, complements the WVTR data with 
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regard to the macro-defect theory.  An initial increase in the lag-time, followed by a plateau 

and notable decrease for films deposited at energies greater than 20 keV/TEOS molecule for 

the barrier layer can be observed.  Since the apparent diffusion coefficient is seen to initially 

decrease with increasing keV/TEOS molecule, but increase again for films deposited from 25 

– 80 keV/TEOS molecule, it is likely that below 20 keV/TEOS molecule, the intrinsic 

microstructure of the barrier layer dominates the WVTR and lag-time performance, while 

macro-defects such as pinholes dominate the performance of the barrier layers deposited 

above 20 keV/TEOS molecule.  It is also evident from Figure 9 that the bilayer films with 

moisture barrier properties governed by their intrinsic silica-like microstructure, exhibit an 

apparent diffusion coefficient close to that of bulk SiO2 glass at 40 °C (approximately 9.0×10-

21 m2s-1).[38]  Had the films deposited at higher energies not been subject to the effect of 

macro-defects, it is likely that the apparent diffusion coefficient of these films would decrease 

even further, towards that of bulk SiO2 glass, as indicated by the ATR-FTIR and XPS 

findings. 

 

Figure 9.  Lag-time (at 40 °C, 90% relative humidity) and corresponding apparent diffusion 

coefficient with respect to increasing input energy per TEOS molecule for synthesis of the 
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barrier layer: (black; closed square) lag-time values obtained for a 90 nm bilayer film 

deposited with a reduced O2 flow rate; (black; open square) apparent diffusion coefficient 

values obtained for a 90 nm bilayer film deposited with a reduced O2 flow rate. 

 

Conclusion 

High performance 90 nm silica-like bilayer encapsulation films comprising a 30 nm dense 

barrier layer and a comparatively less dense 60 nm buffer layer were deposited onto a 

polyethylene 2,6 naphthalate substrate using a glow-like AP DBD in a roll-to-roll setup by 

PECVD.  TEOS was used as the precursor gas, together with a mixture of nitrogen, oxygen 

and argon.  Effective WVTR measurements confirmed that rates as low as 6.9×10-4 g m-2 day-

1 (at 40 °C, 90% RH) were achievable using the bilayer film structure.  The presence of a 

buffer layer within the bilayer architecture, while itself exhibiting a very poor WVTR, was 

found to critically enhance the encapsulation performance of the 30 nm barrier layers.  A 

remarkable 50% reduction in energy consumption per barrier area required for the deposition 

of bilayer films compared to single layer silica-like films of equivalent encapsulation 

performance and thickness was also demonstrated.  All bilayer films generated, irrespective 

of barrier layer deposition conditions, were extremely smooth with RMS roughness values 

less than 1.5 nm in all cases.  This was attributed to possible buffer layer-induced substrate 

smoothening prior to the bilayer barrier deposition.   

It was discovered by complementary lag-time measurements and diffusion coefficient 

calculations that moisture barrier performance was limited for bilayer films with barrier 

layers deposited at input energies greater than 20 keV/precursor molecule.  Macro-defects in 

the film possibly resulting from the extreme processing conditions required to achieve the 

increased input energies per precursor molecule, were proposed as a reason for the limited 

performance.  This was supported by ATR-FTIR and XPS analysis, which showed a gradual 
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decrease in the silanol content and a steady decline in the O:Si ratio towards 2:1, suggesting 

that the intrinsic microstructure of the barrier layers actually densified with increasing input 

energy per precursor molecule and thus intensified processing conditions.  The presented 

findings therefore show that bilayer silica-like encapsulation films deposited under 

atmospheric conditions have a strong potential for further performance improvement, 

provided the macro-defect related limitations are addressed. 
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Graphical Abstract 
 
Flexible bilayer silica-like thin films deposited using roll-to-roll AP-PECVD onto a 
polymeric substrate are presented as a remarkable alternative to single layer encapsulation 
films.  They demonstrate both a notable effective water vapour transmission rate of 6.9×10-4 
g m-2 day-1 (at 40 °C, 90% relative humidity) and a 50% reduction in deposition energy 
consumption per barrier area.   
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Atmospheric pressure roll-to-roll plasma enhanced CVD of high quality silica-like 
bilayer encapsulation films 
 

 
 


