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Abstract 

Photo-electrochemical (PEC) water splitting of hematite photoanodes suffers from low 

performance and efficiency. One way to increase the performance is to increase the 

electrochemically active surface area available for the oxygen evolution reaction. In this 

study, we use high ion flux, low energy helium plasma exposure to nanostructure sputtered 

iron thin films. Subsequent annealing in air at 645°C leads to the formation of PEC active 

hematite (α-Fe2O3) phase in these films. The surface area, as derived from electrochemical 

impedance spectroscopy (EIS), was seen to increase 10-40 times with plasma exposure. The 

photocurrent density increased by 2-5 times for the plasma exposed films as compared to the 

unexposed films. However, the less nanostructured film showed a higher photocurrent 

density. These findings were explained by detailed chemical and structural characterization in 

combination with electrochemical characterization and attributed to the presence of 

secondary elements in the film as well as to the presence of secondary iron oxide phases apart 

from hematite. This work demonstrates the complex effect of plasma exposure on both film 

morphology and chemical composition of PEC thin films and provides further understanding 

on how this technique can be used for nanostructuring of other functional films. 
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1. Introduction 

Solar energy has emerged as an excellent alternative energy source to fossil fuels due to its 

abundance, renewability and low environmental impact. However, the intermittent nature of 

solar energy as well as regional and seasonal variations entail the need for an efficient, large-

scale storage solution. One strategy would be to convert the solar energy into chemical fuels, 

known as ‘solar fuels’. A widely researched technique for generation of solar fuels is photo-

electrochemical (PEC) water splitting [1, 2]. In this process, hydrogen (H2) and oxygen (O2) 

are generated from water utilising solar energy as a driving force. 

However, in order to be competitive with other hydrogen generation techniques such as steam 

reforming or electrolysis of water, the efficiency of the water splitting process has to be 

improved. A significant bottleneck is the availability of suitable materials for water splitting. 

An ideal single photo-electrode material should have a band gap which straddles both the 

hydrogen and oxygen redox potentials to provide sufficient energy to drive the PEC water 

splitting reaction. It should demonstrate suitable electronic and catalytic properties to drive 

the water splitting reactions. It would also need to be earth-abundant and stable under harsh 

PEC water splitting conditions. Metal oxide-based materials are promising mainly due their 

stability, however, up to now, no single material has been proven to meet all these conditions. 

An alternative to this single photo-electrode material approach is a tandem configuration 

combining a large band gap n-type material for the oxygen evolution reaction (OER) and a 

narrower band gap p-type material for the hydrogen evolution reaction (HER). This allows 

for using specific materials for the OER and the HER half-reactions [2-6]. 
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Hematite (α-Fe2O3) is a promising material for the OER half-reaction due to an optimum 

bandgap (2-2.2 eV), excellent chemical stability, non-toxicity, abundance and low cost [7-

11]. The bandgap of hematite allows a theoretical solar-to-hydrogen efficiency of 

approximately 12-16% [12]. However, the highest experimentally reported value so far was 

3.1% [13]. This large disparity is related to the poor light absorptivity due to an indirect 

bandgap transition and to a short minority carrier lifetime (~10 ps)  and low mobility (0.2 cm2 

V−1 s−1) [8, 14]. The former requires a relatively thick film (400-500 nm) for complete light 

absorption [15] while the latter requires films with a thickness lower than 50 nm to account 

for the extremely short hole diffusion length of 2-4 nm [16]. Nanostructuring of hematite 

permits the creation of thin films with a large surface area for sufficient light absorption, 

along with low thickness to improve charge collection efficiency. A larger surface area also 

allows for a greater number of sites at which the oxygen evolution reaction can occur. These 

factors lead to improvement in its water-splitting performance. Various nanostructures have 

been developed such as nanowires, nano-corals, dendritic structures and leaflet-type 

structures in order to improve the PEC performance of hematite [17-21]. However, control 

over the morphology of the obtained nanostructure remains a major challenge.  

Low energy helium-ion plasma exposure has been demonstrated to provide controlled growth 

of nanostructures on the surface of bulk iron films by varying plasma exposure time and 

surface temperature [22]. Controlled nanostructure growth via plasma exposure led to a five-

fold improvement in photocurrent density over dense, non-nanostructured bulk tungsten 

trioxide (WO3) [23]. Bieberle et al. showed successfully that iron thin films can be 

nanostructured by high flux, low energy helium plasma [24]. Stable and well-adhering films 

were fabricated on FTO-coated glass.  In this work, structural and chemical characterization 

of such plasma nanostructured thin films by techniques such as SEM, XRD, XPS and Raman 

spectroscopy are related to the photoelectrochemical properties measured by 
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chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy in 

order to elucidate the mechanisms by which plasma exposure effects the water splitting 

performance of these thin films. 

2. Experimental methods 

All films were deposited by DC magnetron sputtering on glass substrates (1 mm thick) with 

F: SnO2 (FTO) conducting layer of approximately 450 nm (Solaronix S. A.). A sputter tool 

from Kurt J. Lesker was used with a base pressure <10-8 mbar and a target-substrate distance 

of 95 mm. All depositions were carried out at room temperature with an Ar pressure of 1 Pa 

and a power of 100 W using a 2” Fe sputter target. The films were sputtered for 881 s to 

obtain a film thickness of 200 nm ± 10 nm. High-ion flux low energy helium plasma 

exposure was carried out in the Pilot PSI set-up at DIFFER [25]. The films were exposed to a 

low energy helium plasma (20 eV) with an ion flux of 1-1.4 × 1023 m-2 s-1 at a surface 

temperature of 650°C. The base pressure was maintained in the range 10-4-10-5 mbar. For the 

short plasma exposed (SE) film, plasma exposure duration was 20 min and for the long 

plasma-exposed (LE) film, the duration was 50 min. Plasma-exposed thin films, along with 

an unexposed film (UE) were annealed in air at a temperature of 645°C for 10 min. A ramp 

rate of 5°C min-1 was applied to reach the desired annealing temperature.  

The morphologies of the thin films were examined by a field emission scanning electron 

microscope (SEM) (Zeiss Sigma) with an in-lens detector and 5 kV accelerating voltage. 

Structural characterization was performed using a Bruker D8 Eco X-ray diffractometer 

(XRD) with a Cu Kα (λ= 1.5406 Å) source and a Lynx-eye detector in a grazing incidence 

configuration at an incident angle of 3° and in the 2θ range from 20° to 80°. A Renishaw 

Invia spectrometer was utilised for Raman analysis using an excitation wavelength of 514 

nm. A Thermo Scientific K-Alpha X-ray photoelectron spectroscopy (XPS) setup equipped 
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with an Al Kα source (hν = 1486.6 eV) was used for the chemical analysis. Binding energy 

was corrected with respect to the C 1s peak at 284.5 eV. Optical absorbance of the films were 

characterized with a Perkin Elmer 1050 UV/Vis/NIR spectrophotometer in the wavelength 

range of 300 nm to 950 nm.  

An in-house three-electrode electrochemical cell fitted with a quartz window was used for 

photoelectrochemical characterization. An aqueous solution of 1M NaOH (pH 13.6) was used 

as the electrolyte. A coiled Pt wire and an Ag/AgCl/Sat. KCl electrode (XR 300, Radiometer 

Analytical) were used as the counter electrode and reference electrode, respectively. The 

geometric area of the working electrode exposed to the electrolyte was 0.785 cm2. The 

potential of the electrode was controlled with a BioLogic SP-150 potentiostat. All potentials 

reported are versus RHE through the relation [2]- 

Φ𝑅𝐻𝐸 =  Φ𝐴𝑔/𝐴𝑔𝐶𝑙 +  Φ𝐴𝑔 𝐴𝑔𝐶𝑙 ⁄ 𝑣𝑠  𝑅𝐻𝐸
𝑜 + 0.059 × 𝑝𝐻           (1) 

With ΦºAg/AgCl vs RHE = 0.197 V versus RHE at 25°C. Illumination was provided by an AM 1.5 

class A solar simulator (LCS 100, Oriel Instruments) using a 100 W Xe lamp with a 

calibrated illumination intensity of 80 mW cm-2 at the sample position. All measurements 

were done at potentials between 0.6 V and 1.6 V versus RHE. Cyclic voltammetry 

measurements were performed at a scan rate of 20 mV s-1. The onset potential was taken as 

the potential at which the first derivative of the photocurrent density with respect to the 

potential (dj/dV) achieved four times the value observed for the first derivative of the dark 

current measurement. This technique was adopted from [14]. Transient photocurrent 

measurements were obtained by chopping the incident light with an externally controlled 

shutter at a rate of 0.5 s-1 while performing linear sweep voltammetry (LSV) at a scan rate of 

10 mV s-1. Light chopping at a rate of 0.033 s-1 was utilised for chronoamperometry 

measurements at fixed potential values of 1.3 V and 1.5 V versus RHE. Electrochemical 
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impedance spectroscopy (EIS) was performed in a frequency range of 0.1 Hz to 100 kHz 

(lowest frequency point for UE was 0.2 Hz). The magnitude of the modulation signal applied 

to the potential was 10 mV. The potential at which the EIS scans were performed was 

increased step-wise between 0.6 V and 1.6 V versus RHE. Equivalent circuit fitting of the 

EIS spectra was performed using the ZView® software. 

3. Results and discussion  

Figures 1 (a)-(c) are the top-view and (d)-(f) are the cross-sectional SEM images of the UE, 

SE and LE films after annealing and PEC measurements. The morphology remains stable 

after PEC measurement when compared to the morphology found for as-annealed films [24].  

For the UE film, a relatively smooth film surface is observed from the top-view image (figure 

1(a)), along with the presence of nanowires and shallow voids which are formed during 

thermal oxidation of iron [26-31]. From the cross-section image (figure 1(d)), the thickness of 

the film is found to be 433 nm ± 20 nm. The variation in film thickness is calculated from 

measurements at arbitrary points across the film cross-section. This is very close to the 

expected thickness of 428 nm for a hematite (α-Fe2O3) thin film starting from a pure Fe layer 

of 200 nm thickness and assuming zero porosity. The calculation of the expected thickness is 

given in the supporting information. The observed thickness suggests that the UE film is very 

dense, with a porosity of less than 1%, as calculated from equation (2), 

Porosity (%) =  100 x (1 −  
Calculated Fe2O3 thickness (from known Fe thickness)

Actual Fe2O3 film thickness (from cross-sec. SEM)
)    (2) 

The cross section image also shows that two morphologies are present in the iron oxide film 

after annealing, with smaller grains observed close to the FTO and large, elongated grains 

extending upwards from this bottom layer. This is attributed to the conversion of the dense 

iron layer (density = 7.26 g cm-3) to a less dense iron oxide layer (density = 5.26 g cm-3) [32]. 
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The bottom layer has similar grain size as the initial iron layer, while the larger, elongated 

grains are formed on top due to the outward diffusion of iron atoms to the surface which 

reacts with the oxygen.  

For the SE film, the top view SEM image (figure 1(b)) reveals a rough surface with small, 

globular clusters as well as pinholes and large cracks in the film. The cross-section SEM 

image (figure 1(e)) shows that the film has a thickness of 676 nm ± 60 nm, which is much 

higher than the expected thickness of 428 nm. This is due to plasma exposure process which 

leads to a highly porous film with a calculated porosity of 37% from equation (2). The high 

porosity occurs as a result of the diffusion and coalescence of helium ions into the iron thin 

film during plasma exposure [22, 23]. The larger variation in film thickness seen for the SE 

film is related to the Gaussian profile of the plasma plume as well as due to physical 

sputtering of the iron during the plasma exposure [24]. The cross-section of the SE film also 

shows two morphologies, with a dense upper layer with larger grains through which the 

helium ions diffuse inwards and create tiny pinholes and ‘tunnels’. The helium coalesces to 

form larger pores in the lower region which consists of smaller grains, thus giving rise to 

larger porosity closer to the interface with the FTO. 

The LE film, with a longer plasma duration has a very different morphology as compared to 

the other two films. From the top-view (figure 1(c)) and cross-section (figure 1(f)) SEM 

images, we can observe a highly porous film with nano-pillar like structure having a feature 

size of 50-200 nm and extending through the entire film thickness. This is due to the fact that 

a longer plasma duration leads to increased coalescence and subsequent ‘bursting’ of helium 

ions bubbles as well as diffusion of metal atoms due to the force of the high ion flux helium 

ions [22, 23]. The LE film has a thickness of 551 nm ± 135 nm. The larger variation in the 

film thickness is due to higher amount of physical sputtering of the iron during the longer 

plasma exposure as compared to the SE film. The porosity cannot be calculated from 
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equation (2), due to the large variation in film thickness of the iron layer during plasma 

exposure as explained above. However, visually it can be seen that the LE film has a porosity 

higher than for the SE film. 

In figure 2(a), the current density is plotted as a function of applied potential under dark and 

illuminated conditions for all thin films. The SE film has a significant dark current which is 

related to the contact of the electrolyte with the underlying FTO due to the cracks in the film 

as observed in figure 1(b). This leads to increase in dark current due to higher conductivity of 

FTO as compared to hematite [14, 33]. The low dark current for the LE film proves that the 

nanostructured film has no cracks and open porosity down to the FTO and that the electrolyte 

is not in direct contact with the FTO.  

The photocurrent density under illumination is comparable to other studies where rather thick 

(200-1000 nm) sputtered iron oxide films were used [34, 35]; higher photocurrent densities 

were only found for much thinner films (40-50 nm). This is due to the small diffusion length 

of the minority charge carriers in hematite which leads to higher bulk recombination in thick 

films. [8, 10, 36]. The onset potential (Vonset) is 0.92 V versus RHE for LE, 1.02 V versus 

RHE for UE and 1.06 V versus RHE for SE (from the technique explained in sec. 2). The 

photocurrent for all thin films has similar values up to an applied potential of approximately 

1.3 V versus RHE. At potentials higher than 1.3 V versus RHE, the photocurrent for the SE 

film rises rapidly. At 1.5 V versus RHE, it is 2 times higher than the LE film and 4.5 times 

higher than the UE film. This is confirmed by chopped light chronoamperometric 

measurements at 1.3 V and 1.5 V versus RHE as shown in figure 2 (b) and (c), respectively.  

A higher photocurrent for the SE thin film is counterintuitive, since the highest photocurrent 

is expected for the thin film with the largest surface area, which is in this case the LE thin 

film. In [23], indeed, the highest photocurrent was measured for the plasma-exposed WO3 
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with the highest degree of nanostructuring. Therefore, the higher photocurrent for the SE thin 

film has a different origin.  

The chopped light measurements as shown in figure 2(b) also provide information about the 

transient behaviour of the photocurrent for the thin films (also see figure S1 in the 

supplementary information). On illumination, anodic (positive) transients are observed which 

illustrates the competition between charge transfer of holes for OER and the recombination of 

holes with electrons. On turning the illumination off, cathodic (negative) transients are 

observed due to recombination of accumulated holes with the electrons from the external 

circuit. This transient then decays to the steady-state dark current [37].  

In this study, all thin films show anodic and cathodic transients at 1.3 V versus RHE (figure 

2(b)), which is related to fast electron-hole surface recombination rate and slow oxidation 

kinetics at lower potentials. However, as the potential is increased to 1.5 V versus RHE, the 

transient peaks become very small for the UE and LE thin films. This can be attributed to the 

utilisation of a high percentage of the holes reaching the surface for OER due to the high 

applied potential. For SE, however, large transient peaks are seen even at a high potential of 

1.5 V versus RHE which suggests that the density of accumulated holes at the interface is 

higher for SE than for the other two films. 

 In order to understand the reason why the less nanostructured SE film shows a higher 

photocurrent than the highly nanostructured LE film at potentials greater than 1.3 V versus 

RHE, the structure and chemical composition of the thin films were characterized in detail by 

XRD, Raman spectroscopy and XPS.  

The XRD and Raman spectra for the thin films are shown in figure 3(a) and (b), respectively. 

From the XRD spectra, the peak positions for the UE thin film correspond to the hematite 

phase (α-Fe2O3) and FTO substrate and are comparable to the literature for sputtered and 
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annealed iron oxide thin films on FTO [34, 36]. For the plasma exposed thin films SE and 

LE, additional peaks are identified (denoted as * in figure 3(a)) and can be attributed to either 

maghemite (γ-Fe2O3) or magnetite (Fe3O4). However, due to similar crystal structure of these 

two phases (cubic inverse spinel), it is difficult to differentiate between these two oxide 

structures from XRD analysis [38].  

Raman spectroscopy was used in order to unambiguously confirm which phases of iron oxide 

are present in the plasma-exposed thin films (figure 3(b)). All thin films show the 

characteristic hematite peaks [34, 36, 39-41]. For UE film, the peaks at 225 cm-1 and 500.4 

cm-1 are assigned to the A1g modes of hematite, while the peaks at 245.1 cm-1, 292.2 cm-1, 

409.1 cm-1 and 610.8 cm-1 are assigned to the Eg modes of hematite. A broad peak at 1314.3 

cm-1 is also seen and is assigned to two-magnon scattering [39].  

For LE film, an extra peak at 658.74 cm-1 is observed in addition to the hematite peaks and is 

assigned to the A1g mode of the magnetite phase [39]. Magnetite (Fe3O4) is expected to be 

present as inclusions at grain boundaries of hematite grains [42] and/or close to the interface 

with substrate [35]. Formation of non-stoichiometric iron oxide (Fe3-xO4) during plasma 

exposure was also found in bulk iron [22]. This influences the final stoichiometry of the films 

after thermal annealing and explains the presence of magnetite in the LE thin film.  

For SE film, broad peaks are seen around 350 cm-1, 500 cm-1, 700 cm-1, 1400 cm-1 and 1550 

cm-1 apart from the peaks corresponding to hematite. These are assigned to the maghemite 

phase [39-41]. The broadness of the maghemite peaks as compared to peaks for the hematite 

phase, is directly related to the crystallinity of the thin films and suggests that SE has very 

small crystallites and/or a low degree of crystallinity [34]. 

XPS analysis was performed for further study of the chemical composition of the films. High 

resolution Fe 2p and O 1s spectra are shown in the supporting information for the thin films 
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(figure S2 (a) and (b), respectively). The Fe 2p spectra displays a peak binding energy of 

~711.2 eV for the Fe 2p3/2 peak, with a corresponding satellite peak at ~719.2 eV for all 

films. The peak positions are similar to those reported in the literature for Fe2O3 and FeOOH 

[42-47]. The O 1s spectra of the films show two features: a peak at ~530.2 eV and another 

peak at ~532.1 eV. The former peak is attributed to hematite lattice oxygen [48] and the latter 

can be attributed to either oxygen vacancies (VO
••) [47] or hydroxyl (OH-) species [42] at the 

surface, related to formation of FeOOH at the surface of these films.  

XPS analysis also revealed that secondary elements were introduced into the plasma exposed 

thin films (table S1 in supporting information). Plasma exposed samples contain a significant 

amount of tin (Sn) at the surface, with the SE thin film showing 1.4-2.6% and LE thin film 

showing 2-5% Sn content at the surface. This is attributed to the diffusion of Sn from the 

FTO into the film during the thermal annealing process [49, 50]. However, Sn is not seen at 

the surface for the UE film. This is due to the fact that SE and LE films are exposed to high 

temperature both during plasma exposure and annealing while the UE thin film was subjected 

to high temperature only during annealing. This additional thermal treatment during plasma 

exposure causes a higher Sn diffusion from the FTO for the plasma exposed films as 

compared to the unexposed film. 

In SE thin film, silicon (Si) is also found in the range of 7-11% depending on the location of 

the XPS measurement. This uneven distribution suggests that the Si is introduced during the 

plasma exposure and is related to the Gaussian nature of the plasma plume. The formation of 

maghemite (γ-Fe2O3) in this film is attributed to the Si content in the film. According to [40, 

51, 52], Si can stabilise the γ-Fe2O3 phase even up to annealing temperatures of 700°C. 

In the LE thin film, Zn is found with a surface concentration of 1.25-2%. Other secondary 

elements found as trace elements at the surface of the two films are listed in table S1. Apart 
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from Sn, which diffuse from the FTO substrate, the presence of all other secondary elements 

are attributed to variation in the environment of the plasma exposure chamber. The effect of 

the secondary oxide phases present in the plasma-exposed film on their optical properties is 

shown in figure S3 in the supporting information.  

Electrochemical impedance spectroscopy (EIS) measurements were performed in order to 

relate the differences in the morphology and chemical composition of the films to the PEC 

activity. The impedance response for UE, SE and LE at an applied potential of 0.8 V versus 

RHE are shown in figure 4 (a). Two main features are seen in the data. At high frequency, a 

distinct semi-circular arc is observed for all three films. The relaxation frequency is between 

400-4500 Hz which is characteristic for processes occurring in the bulk of the semiconductor 

[33, 53]. The low frequency response is different for the different films as well as the applied 

potential. Based on the relaxation frequency of these processes, they are attributed to the 

charge transport and/or diffusion processes occurring at the semiconductor-electrolyte 

interface [8, 33, 54].  

For evaluation and quantification of the different features observed in the EIS spectra, the 

data is fitted to an equivalent circuit model (ECM). For depressed semi-circles, the capacitors 

are replaced by constant phase elements (CPE) in the ECM in order to account for non-

uniform current distribution at the nanostructured electrode surface. The CPE values are 

converted to capacitance values using the formula proposed by Brug et al. [55].  

The ECM model used in this work was proposed by Klahr et al. [53] for a hematite thin film 

and assumes that the OER occurs via surface states present at the hematite-electrolyte 

interface. Various theoretical and experimental studies have shown the existence of these 

surface states in hematite thin films, as summarised in [7], and have been directly observed 

by Zandi et al. using operando ATR-FTIR technique [56]. In our study, some modifications 
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of the Klahr model are required in order to account for the features seen in the EIS spectra of 

plasma-exposed thin films. The modified Klahr model is shown in Figure 4(b) and consists of 

two extra elements, A and B for LE and SE thin films, respectively.  

The elements used in the ECM are described as follows. The series resistance, Rs, includes 

the contributions from FTO, ionic conductivity of the electrolyte and the external contacting. 

The bulk capacitance, CBULK, represents the electrical double layer at the semiconductor-

electrolyte interface. The trapping resistance, RTRAP, accounts for the trapping/de-trapping of 

charge carriers at the surface states.  The charge transfer process through surface states at the 

hematite-electrolyte interface is described by the parallel connection of RCT1 and CCT1. RCT1 is 

the charge transfer resistance for the OER and CCT1 is related to the density of charge carriers 

trapped at the hematite surface states. The general model is used for fitting the EIS spectra for 

the UE thin film.  

The LE thin film shows, in addition, a diffusive behaviour at lower frequencies in the EIS 

spectra due to its open and porous structure. A Warburg element, represented as element A in 

figure 3(b) accounts for this effect [57]. For the SE thin film, a second charge transfer process 

is observed at low frequencies and is modelled by the element B, which is a parallel 

connection of resistance, RCT2, and capacitance, CCT2. The conditions under which the extra 

elements A and B are used in the ECM are specified in figure 4(c).  

The electrical double layer at the semiconductor-electrolyte interface is a close approximation 

of the electrochemically active surface area of the thin film exposed to the electrolyte. As 

explained above, the bulk capacitance (CBULK) in the ECM represents the electrical double 

layer and is, therefore, used to quantify the surface area of the thin films as shown in Figure 

5(a). The surface area of UE is similar to those reported for thick hematite films in the 

literature [34, 58]. The surface area for LE and SE thin films are 40 times and 10 times larger 
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than for UE, respectively, which is in agreement with the increase in nanostructuring and 

porosity of the films with increase in plasma duration, as shown in figure 1.  

Figure 5(b) shows the OER charge transfer resistance values from the hematite surface states 

(RCT1). It is seen that the Rct1 values for the plasma exposed films (SE and LE) are an order of 

magnitude lower than for the unexposed film (UE). The larger surface area, as seen from the 

CBULK values in figure 5(a), and the reduced OER charge transfer resistance from the 

hematite surface states, as seen from the RCT1 values in figure 5(b), can explain the higher 

photocurrent at potentials above 1.2 V versus RHE observed for the plasma exposed films as 

compared to the unexposed film. This is attributed to the higher Sn content in the plasma 

exposed films, which can increase charge transfer efficiency via surface states in hematite 

films [59]. Another possible reason for the lower RCT1 values for SE and LE thin films can be 

the presence of Si and Zn, respectively, which are known to improve the electronic properties 

of hematite [34, 60].  

In order to understand why the less nanostructured SE film has a higher photocurrent than the 

highly nanostructured LE film, we need to consider two things. The first is that the LE thin 

film contains a large amount of magnetite (fig 2(b)) which can act as a bulk recombination 

centre for charge carriers [34, 42] and, thereby, reduces the photocurrent of the LE thin film. 

The second is the occurrence of a secondary charge transfer process in the SE film, apart 

from the charge transfer from the hematite phase.  

Figure 6(a) and (b) shows the fitting data for the two RC circuits corresponding to the two 

separate OER processes occurring in the SE thin film. The first RC circuit corresponds to the 

charge transfer through the hematite surface states represented by RCT1 and CCT1 (orange 

circles). The second RC circuit corresponds to the second charge transfer process represented 

by RCT2 and CCT2 (purple squares).  
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It is observed that both RC circuits behave similarly, with rise in capacitance correlated with 

a concomitant decrease in the charge transfer resistance. This correlation between RCT1 and 

CCT1 was shown to be related to the OER occurring through surface states in hematite thin 

films [53]. Since RCT2 and CCT2 exhibit a similar correlation, it is postulated that the second 

OER process in the SE film also takes place via surface states. It is also observed that CCT2  is 

3-4 orders of magnitude higher than CCT1. This means that the surface state density is much 

higher for the second OER process as compared to the surface state density for the OER 

through hematite phase. This also explains the higher transients seen for SE thin films, since 

the available surface states for hole capture is much higher as compared to the other thin 

films. In addition, the RCT2 values sharply decrease with the increase in applied potential. It 

has a value 100 times larger than the RCT1 values of the hematite phase at low potential values 

(< 1.2 V versus RHE) but drops rapidly and becomes lower than RCT1 above 1.4 V versus 

RHE. The differences in the resistance and capacitance values of the second OER process in 

the SE thin film shows that the chemical nature of the surface states is different for this 

process. 

It is known from literature that maghemite (γ-Fe2O3) has a higher onset potential than 

hematite due to its more resistive nature [61-64] and that the OER through maghemite also 

occurs via surface states [58]. Thus, the second OER process, which becomes active only at 

higher potentials with a sharp decrease in resistance values is attributed to charge transfer 

through surface states in the maghemite phase, which is only present in the SE film. Thus, 

while at lower potentials (<1.3 V versus RHE) the charge transfer occurs only through the 

hematite phase, at higher potential the reduction in charge transfer resistance and the high 

surface state density of the maghemite phase leads to the presence of a parallel OER pathway 

for the SE thin film. This explains the rapid rise in photocurrent for SE above 1.3 V versus 

RHE as compared to LE and UE, as seen in figure 2(a). 
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4. Conclusion  

The effect of high ion flux, low energy helium plasma exposure on the PEC water splitting 

performance of iron-oxide thin films was investigated. It was observed that the degree of 

nanostructuring increased with increase in the plasma duration with more open, porous 

structures obtained. Using electrochemical impedance spectroscopy and equivalent circuit 

fitting, we could quantify the increase in the electrochemically active surface area of the films 

by calculating the bulk capacitance of the films. It was seen that the active surface area of the 

short exposed thin film increased 10 times and of the long exposed thin film increased 40 

times as compared to the unexposed film. The increase in surface area is in line with the 

porosity calculated from the SEM images which is less than 1% for the unexposed film, while 

it is larger than 40% for the short exposed film. The porosity of the long exposed film is 

higher, although it could not be quantified due to sputtering of the iron layer during plasma 

exposure. 

However, the higher degree of nanostructuring of the plasma exposed films did not lead to a 

concomitant increase in photocurrent density compared to the unexposed film with only 2-5 

times increase in photocurrent density observed. This was partly related to the presence of 

defects, such as inclusion of magnetite phase (Fe3O4), which acts as a bulk recombination 

centre. The PEC performance was also found in part to be influenced by secondary elements, 

such as Sn, Si and Zn, which come from the substrate material or from the plasma exposure 

process and improve the charge transfer efficiency and electronic conductivity of the hematite 

phase present in these films. The incorporation of these secondary elements during plasma 

exposure can be reduced by changes in the exposure chamber such as use of a larger 

enclosure and molybdenum-based mounting materials to reduce sputtering of elements from 

the walls or target mounting region, respectively. Another method would be the usage of a 

pre-exposure argon plasma discharge to remove secondary elements close to the mounting 
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region, as well as use of in-situ, real time Optical Emission Spectroscopy to observe presence 

of secondary elements in the plasma. 

Furthermore, it was found that the short exposed film with the lower degree of 

nanostructuring had a higher PEC performance than the highly nanostructured, long exposed 

film. This was explained by the presence of maghemite (γ-Fe2O3) in the film, which acted as 

a second, parallel OER pathway at potentials higher than 1.3 V versus RHE.  

Thus, using various electrochemical techniques, we were able to gain a deep insight into the 

relation between the physico-chemical properties and the obtained PEC performance of the 

plasma-exposed thin films. It was found that the presence of secondary elements and other 

iron oxide phases in the films have a significant effect on the water splitting performance 

next to the degree of nanostructuring. This underlines the complexity of the plasma exposure 

process for thin film nanostructuring and can be used as a guideline to ensure that films with 

a controlled morphology and chemical composition can be fabricated in the future.  
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Figure 1  Top view and cross-section SEM images of (a, d) unexposed film (UE); (b, e) film 

exposed to plasma for 20 min (SE); and (c, f) film exposed to plasma for 50 min (LE). All 

images were taken after annealing (645°C for 10 min) and photoelectrochemical 

measurements in 1M NaOH. 
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Figure 2. (a) Current-voltage J (V) characteristics in 1M NaOH in dark (dashed lines) and 

under illumination with light intensity of 80 mW cm-2 (solid lines) of UE (black) , SE (red) 

and LE (blue) thin films. (b) Chopped light chronoamperometric measurements at a 

potential of (b) 1.3 VRHE and (c) 1.5 VRHE (chopping rate = 0.033 s-1). 

(a) (b) 

(c) 
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Figure 3 (a) XRD spectra and (b) Raman spectra of UE (black), SE (red) and LE (blue) thin 

films. All measurements were taken after annealing at 645°C for 10 min. For XRD spectra ‘α’ 

denotes peaks belonging to α-Fe2O3, ‘*’ denotes peaks belonging to either γ-Fe2O3 or Fe3O4 

and ‘♦’ denotes peaks from FTO substrate; for Raman spectra ‘α’ denotes peaks assigned to α-

Fe2O3, ‘γ’ denotes peaks assigned to γ-Fe2O3 and the namesake is used for the peak assigned 

to Fe3O4. 

(a) (b) 
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Figure 4. (a) Nyquist plots for EIS data measured in 1M NaOH under illumination of 80 mW 

cm-2 at an applied potential of 0.8 VRHE. Inset in figure 4 (a) is a magnified plot of the impedance 

spectra in the high frequency region (represented by a square). The coloured symbols 

correspond to the different thin films: UE (■), SE (•) and LE (▲); (b) Equivalent circuit model 

(ECM) used for fitting of the EIS data; and (c) definition of the extra circuit elements A and B 

and attribution to samples, potential range, and illumination conditions. 

(b) 

(c) 

(a) 
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Figure 5 (a) Bulk capacitance (CBULK) and (b) charge transfer resistance via hematite surface 

states (RCT1) for all films plotted versus applied potential. The coloured symbols correspond to 

the different thin films: UE (■), SE (•) and LE (▲). The y-axis is plotted in logarithmic (base 

10) units. 

 

(b) (a) 
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Figure 6 (a) Resistance and (b) capacitance for the SE thin film related to the 1st charge 

transfer process through hematite surface states (•) and the 2nd charge transfer process (■) 

plotted versus applied potential. The y-axis is plotted in logarithmic (base 10) units. 

 

(a) (b) 


