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Abstract

The extensive studies of MHD instabilities in thermonuclear magnetic confinement ex-
periments, in particular of the tokamak as the most promising candidate for a future energy
producing machine, have led to an ‘intuitive’ description based on the energy principle
that is very misleading for most astrophysical plasmas. The‘intuitive’ picture almost di-
rectly singles out the dominant stabilizing field line bending energy of the Alfvén waves
and, consequently, concentrates on expansion schemes thatminimize that contribution. This
happens when the wave vectork0 of the perturbations, on average, is perpendicular to the
magnetic fieldB. Hence, all macroscopic instabilities of tokamaks (kinks,interchanges,
ballooning modes, ELMs, neoclassical tearing modes, etc.)are characterized by satisfying
the conditionk0 ⊥ B, or nearly so. In contrast, some of the major macroscopic instabili-
ties of astrophysical plasmas (the Parker instability and the magneto-rotational instability)
occur when precisely the opposite condition is satisfied:k0 ‖ B. How do those instabilities
escape from the dominance of the stabilizing Alfvén wave? The answer to that question
involves, foremost, the recognition that MHD spectral theory of waves and instabilities of
laboratory plasmas could be developed to such great depth since those plasmas are assumed
to be instaticequilibrium. This assumption is invalid for astrophysicalplasmas where rota-
tional and gravitational accelerations produce equilibria that are at beststationary,and the
associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These
complications are addressed, and cured, in the theory ofthe Spectral Web,recently devel-
oped by the author. Using this method, an extensive survey ofinstabilities of astrophysical
plasmas demonstrates how the Alfvén wave is pushed into insignificance under these con-
ditions to give rise to a host of instabilities that do not occur in laboratory plasmas.

1. Misleading ‘intuition’
Magnetohydrodynamic (MHD) instabilities have been a constant worry in magnetic fusion

research. Theory has focused on the analysis of the multifarious MHD modes, frequently ex-
ploiting large-scale numerics, whereas experiment has been successful in ever expanding the
duration of stable confinement from the microseconds in the 1960s to the present time scale of
minutes. Major disruptions remain a source of concern, but various scenarios have been devised
to control their effects. At any rate, the extensive body of results on MHD modes has been im-
pressive enough to become exemplary for a reliable scientific enterprise. Presentations of this
activity are often preceded by a so-called ‘intuitive picture’ of the MHD instabilities by means
of the energy principle [1], where trial functions are substituted in the energy functionalW[ξ ]

to find out whetherW > 0 for all ξ (stable) en not (unstable). This approach provides basic
insight in the dynamics of simple kink modes as well as the intricate dynamics of ballooning
modes in complex magnetic geometries. Except for the obvious limitations of the MHD model,



generally recognized and addressed by the development and operation of hybrid MHD-particle
codes, two less obvious limitations are usually not taken asseriously as they should:
(a) The equilibrium itself becomes very different from a tokamak equilibrium if gravity and
rotation come into play, as is the case for all astrophysicalplasmas. Tokamaks have a domi-
nant magnetic field that is approximately force-free, so that the equilibria may be considered as
low-β , magneto-hydrodynamic:

j ×B = ∇p ∼ β ≪ 1. (1)

Many astrophysical plasmas have dominant gravitational accelerations (g=−∇Φ) and rotations
that are approximately Kepplerian, whereas the magnetic field is frequently a small (but crucial)
correction, so that the equilibria should be considered as high-β , hydro-magnetic:

ρv ·∇v+ρ∇Φ+∇p = j ×B ∼ β−1 ≪ 1. (2)

(b) For static equilibria described by Eq. (1), expansion ofthe energy principle in powers of the
inverse aspect ratio nearly directly leads to the dominanceof the Alfén mode contribution,

W ≈ 1
2

∫
(k0 ·B)2 |ξn|2dV ≫ 0. (3)

(See, e. g., the first term of Eq. 17.40 in the derivation of thespectral variational principle
for static toroidal plasmas in Ref. [2], p. 318.) Hence, instabilities must have wave vectorsk0

perpendicular, or nearly perpendicular, to the magnetic field B in order for the higher order
curvature effects, of e.g. ballooning modes, to have a chance to contribute. This line of reason-
ing, and the extensive body of intuition based on it, is not valid for instabilities operating in
stationary equilibria described by Eq. (2). It is even in evident conflict with one of the basic
astrophysical instabilities, where rotation does not playa role, viz. the Parker instability, oper-
ating in static equilibria where Eq. (1) is just extended with the gravitational termρ∇Φ. That
instability requires the wave vector to be parallel, or nearly parallel, to the magnetic field and
thus appears to escape the dominance of the Alfvén modes.

We will analyze how these facts completely change the theoryof astrophysical instabilities
compared to their laboratory counterparts, and illustratethis with the Parker, the Rayleigh–
Taylor, and the magneto-rotational instability (MRI).

2. The Parker instability (gravity)
The Parker instability [3] has been introduced to explain the tendency of the interstellar

plasma in spiral arms to form clouds. It was thought to be “related to the magnetic Rayleigh–
Taylor instability”. That instability is, in turn, relatedto the interchange instability operating
in magnetically confined plasmas in magnetic fusion devices, where the gravitational driving
term of the density gradient,ρ ′g, is replaced by the negative pressure gradient,p′. Thus, the
gravitational interchange instability criterion, violation of ρ ′g+ρ2g2/(γ p)≤ 1

4B2ϕ ′2, whereϕ ′

is the magnetic shear, turns out to be completely analogous to Suydam’s criterion in cylindri-
cal geometry (or Mercier’s criterion in toroidal geometry)for local instabilities in tokamaks.
The analogous analysis is based on the mentioned assumptionk0 ·B ≈ 0 to kill the enormous
stabilizing field line bending energy (3) of the Alfvén waves.



Now consider Fig. 1 (from Ref. [2]), which shows the completespectrum of a gravitat-
ing magnetized plasma slab (0≤ x ≤ 1) of thicknessa, exponential density and pressure,
ρ = ρ0e−αx andp= p0e−αx , and sheared magnetic fieldB = B0e−

1
2αx[sin(λx)ey+cos(λx)ez] .

[The parameters are:α ≡ ρ0g/(p0+ 1
2B2

0), β ≡ 2p0/B2
0, λ , fixed atα = 20,β = 0.5, λ = 0.3,

andk2
0 ≡ k2

y +k2
z = 10.] The squared wave frequencyω2, or instability growth rate (ifω2 < 0),

is plotted versus the directionϑ of the wave vectork0. Forϑ ≈ 1
2π (or k0 ·B ≈ 0), the familiar

degeneracy of Alfvén and slow mode frequencies is obtained,together with the clustering of
infinitely many interchange modes. Their growth rates are dwarfed though compared to those
of the Parker instabilities that occur forϑ ≈ 0 (wherek0 is approximately parallelB). This, at
once, resolves the apparent contradiction with standard tokamak stability theory: The Parker in-
stabilities are part of the slow mageto-acoustic sub-spectrum, with eigenfunction polarizations
orthogonal to those of the Alfvén waves. This is the way theseastrophysical instabilities escape
the Alfvén wave dominance that reigns in the tokamak regime.

Figure 1:Spectrum of Alfvén and slow magneto-acoustic modes of a gravitating plasma as a function of

the angleϑ between horizontal wave vector and magnetic field. The Parker and quasi-Parker instabilities

connect smoothly to the interchange and quasi-interchangeinstabilities (related to similar modes in

tokamaks). Modes with vertical mode numbers n= 1,2, . . . approach the continua{ω2
A} and{ω2

S}.

3. The Spectral Web
The systematic theory of the spectrum of MHD waves and instabilities of magnetized plasmas

has mainly been developed for static equilibria, where the energy principle has been the standard
stability paradigm for over half a century. However, most plasmas in magnetic fusion devices
have substantial flows, and in astrophysics the paradigm simply makes no sense because there
are no static plasmas in the Universe. The required modification for stationary equilibria has
been known since the appearance of the seminal paper by Frieman and Rotenberg [4] in 1960,
but, unfortunately, further development of spectral theory along this line has been hampered by



the general misunderstanding that this theory necessarilyinvolves non-self-adjoint operators.
A new approach, exploiting what will be called theSpectral Web, is based on the opposite
observation, viz. that the Frieman–Rotenberg spectral equation,

G(ξ )−2ρωUξ +ρω2ξ = 0, (4)

is a non-linear eigenvalue problem involvingtwo self-adjoint operators,viz. the generalized
force operatorG and the Doppler–Coriolis operatorU ≡ −iv0 ·∇. With these operators two
real quadratic forms may be associated, viz. the solution averages of the potential energyW
and of the Doppler–Coriolis shiftV of the perturbations. For complexω = σ + iν, where the
imaginairy partν corresponds to the growth rates of instabilities, the real part corresponds to
the solution averages of the Doppler–Coriolis shift:σ ≡ Re(ω) = V.

The usual proof of self-adjointness of the force operator ismodified by exploiting, for ar-
bitrary values ofω, the left solutionξ ℓ of Eq. (4) that satisfies the BCs on axis and the right
solutionξ r that satisfies the BCs at the wall. The two solutions are joined at some surface S
inside the plasma. At that surface, the surface energyWcom is constructed,

Wcom = −1
2

∫
ξ ∗

n [[Π(ξ)]]dS, (5)

where the normal componentξn is made continuous and the jump[[Π(ξ)]] of the total pressure
perturbation does not vanish, in general. Thiscomplementary energyrepresents the amount
of energy to be injected or extracted atS to obtain exponential time behavior exp(−iωt). Self-
adjointness implies thatWcom vanishes, which is the case for eigenvalues. Instead, in themethod
of the Spectral Web, the real and imaginary parts ofWcom are contour plotted to obtain two sets
of curves in the complexω-plane on which one of the two vanishes:

Im[Wcom(ω)] = 0 ⇒ solution path, Re[Wcom(ω)] = 0 ⇒ conjugate path. (6)

The eigenvalues are located at the intersections of these two curves. Thus, for the first time,
the general eigenvalue problem of stationary equilibria issolved by an intuitive method that
not only provides the complex eigenvalues of the instabilities, but also connects them with
physically meaningful curves. The method is applied to the instabilities of a straight cylinder,
for which the reduction of the Frieman–Rotenberg equation (4) is well documented [5, 6]. The
Spectral Web method is not restricted to cylindrical problems though since reduction to ordinary
differential equations in the normal direction forξn andΠ also obtains for toroidal problems
where the tangential dependences are taken care of by a separate reduction. The earlier papers
on the subject of constructing the eigenvalues of stationary equilibria [7] are now superseded
by the present form of the method of the Spectral Web [8].

Note that the functionsξ exploited in the Solution Web method are not smooth trial func-
tions, as in the energy principle, but full solutions of the actual physical problem posed by the
Frieman–Rotenberg equation (4). Those solutions are not yet eigenfunctions though since they
exhibit a jump at the surface S. The method relies on the fact that the numerical solution of
ordinary or partial differential equations is presently straight-forward, but this does not apply to
the solution of eigenvalue problems. That part is addressedby the construction of the two sets
of curves in the complexω-plane by means of contour plotting. Their construction is straight-
forward as well and, moreover, it can be implemented numerically in a trivially parallel manner



since all computations for the different values ofω can be done simultaneously. The solution
path and the conjugate path may be considered as the loci of points in the complexω-plane
where the physical problem of a driven system is solved: excitation in-phase for the solution
path and excitation out-of-phase for the conjugate path. Where the two curves intersect, the
actual eigenvalue problem is solved since driving does not require any energy then: the jump
vanishes andWcom = 0.

4. The Rayleigh–Taylor instability (rotation)
Fig. 2 shows the Spectral Web, consisting of the solution path (in red) and the conjugate path

(in blue), with the eigenvalues (black dots) at the intersections, for the Rayleigh–Taylor instabil-
ities of a rotating plasma cylinder with a longitudinal magnetic fieldBz (a rotatingθ -pinch). The
equilibrium is fixed by choosing a constant angular velocityΩ ≡ vθ /r and the following pro-
files: ρ(r) = ρ0cosh−2 f (x) , p(r) = p0cosh−2 f (x) , Bz(r) = B∞

(
δ +(1−δ ) tanhf (x)

)
, where

f (x)≡ α2(x2−x2
0) with x≡ r/a. [The parameters for this case are:x0 = 0, α = 2, δ = 0.1667.]

The Spectral Web shown is for the compressiblem= 1,k= 0 modes, so thatk0 ·B = kBz = 0 for
these modes, but the point is that the magnetic field does not enter at all here: These are purely
hydrodynamic modes with a clustering point at the hydrodynamic flow continuumΩ0 = mvθ /r.
This continuum is degenerate (indicated by the big red dot inthe main frame of Fig 2).

Figure 2:Spectral Web for the m= 1, k = 0 hydrodynamic Rayleigh–Taylor instabilities of a rotating

plasma cylinder. The side frame shows the cluster sequence toward the flow continuum (red dot in the

main frame), with a zoom of the n= 53, . . .56eigenvalues in the bottom frame.

The most striking feature of the Spectral Web of the hydrodynamic Rayleigh–Taylor insta-
bilities is the fact that the solution path is not a single curve, as one might have expected, but it
is split into a separate open curve with the most globaln = 1 mode on it and a closed loop with



then = 2 mode and all the rest of infinitely many clustering modes. The latter have a Doppler
shifted frequencỹσ ≡ σ −mΩ which tends to zero, whereas the most global modes have a large
Coriolis shift, opposite to the Doppler shift, such that thecombined Doppler–Coriolis shift, and
henceσ , may become small. Another striking feature is that then= 2 mode has a larger growth
rate than then = 1 mode. Such behavior never occurs for static equilibria.

Hence, the Spectral Web method addresses the problem of constructing the complex eigen-
values of a stationary equilibrium (usually, and erroneously, assumed to be intrinsically non-
selfadjoint) by contour plotting the complementary energyWcom in the complexω-plane. This
generates two sets of curves in theω-plane,the solution path, whereWcom is real, andthe con-
jugate path, whereWcom is imaginary. The eigenvalues are found at the intersections of those
paths:Wcom = 0. The crucial difference with the spectral theory of staticplasmas, relevant for
tokamaks, is the occurrence of two operators, viz. the generalized force operatorG and the
gradient operatorU ≡ −iv ·∇, which are both self-adjoint. The later operator generates the
Doppler–Coriolis shift of the eigenvalues away from the imaginary axis (where they reside for
static equilibria): a big effect in Fig. 2 for them= 1 modes.

Figure 3:Spectral Web of the magneto-rotational instabilities (MRIs) for a thin accretion disk with mode

numbers m= 0, k= 70. The solution path is red, conjugate path is blue, eigenvalues at the intersections

are indicated by black dots (n= 1–29 for the instabilities and n= 30,30′,31,31′ for the stable modes).

5. The Magneto-Rotational instability (gravity and rotati on)
Fig. 3 illustrates yet another class of astrophysical instabilities that require completely dif-

ferent analysis than the one used for tokamaks. It shows the discrete spectrum of magneto-
rotational instabilities (MRIs) [9] of a thin annular (r1 ≤ r ≤ r2) accretion disk for a self-similar
equilibrium [10] ρ ∼ r−3/2, vθ ∼ r−1/2,

√
p ∼ Bz ∼ Bθ ∼ r−5/4. [The physical variables are



normalized by settingr1 = ρ1 = GM⋆ = 1 at the inner radius, the parameters are then given
by δ ≡ r2/r1, ε ≡ √

p1, β ≡ 2p1/B2
1, µ ≡ Bθ1/Bz1, for this case fixed atδ = 2.0, ε = 0.1,

β = 100,µ = 1.] The nonlinear turbulent phase of the MRIs is assumed to provide the source
of anomalous dissipation needed to account for the loss of angular momentum of accretion disks
about black holes and other compact objects [11].

The equations for the MHD spectrum of the MRIs of a thin cylindrical accretion disk were
derived by Keppenset al.[12]. The spectrum shown in Fig. 3 was computed by the new method
of the Spectral Web. It shows the solution path (the red curveslightly deviating from the imag-
inary axis) and the conjugate paths (the blue ‘pancakes’) for the axi-symmetric modes (m= 0).
This implies that the Doppler shift vanishes,ω̃ ≡ ω, but the small Coriolis shift moves the
eigenvalues off the imaginary axis. Becausem= 0 in this case, the combined Doppler–Coriolis
shift of the eigenvalues off the imaginary axis is a small effect. For non-axisymmetric modes,
the solution path is far away though from the imaginary axis.

Clearly, the magneto-rotational instabilities violate ‘the tokamak paradigm’k0 ·B ≈ 0, since
they occur far away from the backward and forward Alfvén continua (situated along the real
axis outside the frame, atσ ≤−0.5 andσ ≥ 0.5). where that condition would be satisfied.

6. Conclusions
In conclusion: The global instabilities of both laboratoryand astrophysical plasmas can be

described by the ideal MHD equations because they arescale-independent[13]. However, the
major gravitational and rotational effects on astrophysical plasma equilibria completely upset
the standard tokamak paradigm for static equilibria, described by Eq. 1, to look for instabili-
ties withk0 ·B ≈ 0 to eliminate the dominant stabilizing Alfvén wave contribution. Instead, a
completely different spectral theory is required for the stationary equilibria, described by Eq. 2.
The new method of theSpectral Web[8] provides an intuitive and efficient tool to construct the
complete spectrum of waves and instabilities in the complexplane.
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