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Abstract

The extensive studies of MHD instabilities in thermonucleagnetic confinement ex-
periments, in particular of the tokamak as the most promisandidate for a future energy
producing machine, have led to an ‘intuitive’ descriptiosised on the energy principle
that is very misleading for most astrophysical plasmas. ‘rteitive’ picture almost di-
rectly singles out the dominant stabilizing field line bemgenergy of the Alfvén waves
and, consequently, concentrates on expansion schemesitiiaize that contribution. This
happens when the wave vectqy of the perturbations, on average, is perpendicular to the
magnetic fieldB. Hence, all macroscopic instabilities of tokamaks (kink$grchanges,
ballooning modes, ELMs, neoclassical tearing modes, ate.rharacterized by satisfying
the conditionky L B, or nearly so. In contrast, some of the major macroscopialiis
ties of astrophysical plasmas (the Parker instability ssednhagneto-rotational instability)
occur when precisely the opposite condition is satisfied} B. How do those instabilities
escape from the dominance of the stabilizing Alfvén wave@ @ihswer to that question
involves, foremost, the recognition that MHD spectral tiyeaf waves and instabilities of
laboratory plasmas could be developed to such great deytl giose plasmas are assumed
to be instaticequilibrium. This assumption is invalid for astrophysipi#smas where rota-
tional and gravitational accelerations produce equdiltniat are at bestationary,and the
associated spectral theory is widely, and incorrectlyielet! to be non-self adjoint. These
complications are addressed, and cured, in the theotlyeoEpectral Welrecently devel-
oped by the author. Using this method, an extensive survastdbilities of astrophysical
plasmas demonstrates how the Alfvén wave is pushed intgriifisiance under these con-
ditions to give rise to a host of instabilities that do notwrcin laboratory plasmas.

1. Misleading ‘intuition’

Magnetohydrodynamic (MHD) instabilities have been a camistvorry in magnetic fusion
research. Theory has focused on the analysis of the midtiMHD modes, frequently ex-
ploiting large-scale numerics, whereas experiment has beecessful in ever expanding the
duration of stable confinement from the microseconds in 8694 to the present time scale of
minutes. Major disruptions remain a source of concern, atibus scenarios have been devised
to control their effects. At any rate, the extensive bodyesiults on MHD modes has been im-
pressive enough to become exemplary for a reliable sciemtifierprise. Presentations of this
activity are often preceded by a so-called ‘intuitive prefwof the MHD instabilities by means
of the energy principle [1], where trial functions are sitbgtd in the energy function&V/[¢&]
to find out whetheiV > 0 for all £ (stable) en not (unstable). This approach provides basic
insight in the dynamics of simple kink modes as well as thadate dynamics of ballooning
modes in complex magnetic geometries. Except for the olsimitations of the MHD model,



generally recognized and addressed by the developmentpandtmn of hybrid MHD-particle
codes, two less obvious limitations are usually not takeseai®usly as they should:

(a) The equilibrium itself becomes very different from adakak equilibrium if gravity and
rotation come into play, as is the case for all astrophygtagdmas. Tokamaks have a domi-
nant magnetic field that is approximately force-free, st tiva equilibria may be considered as
low-3, magnetehydrodynamic:

jxB=0p ~B<1. (1)

Many astrophysical plasmas have dominant gravitatiora@lacationsg = —[1®) and rotations
that are approximately Kepplerian, whereas the magnelitiiérequently a small (but crucial)
correction, so that the equilibria should be consideredgtsf, hydromagnetic:

pv-Ov+pOd+0p=jxB ~B L« 1. (2)

(b) For static equilibria described by Eq. (1), expansiothefenergy principle in powers of the
inverse aspect ratio nearly directly leads to the dominandee Alfén mode contribution,

Wz%/(ko-B)2|€n|ZdV>>O. (3)

(See, e. g., the first term of Eq. 17.40 in the derivation ofghectral variational principle
for static toroidal plasmas in Ref. [2], p. 318.) Hence, ahdities must have wave vectokg
perpendicular, or nearly perpendicular, to the magnetld f&ein order for the higher order
curvature effects, of e.g. ballooning modes, to have a atmcontribute. This line of reason-
ing, and the extensive body of intuition based on it, is ndtdveéor instabilities operating in
stationary equilibria described by Eq. (2). It is even indevit conflict with one of the basic
astrophysical instabilities, where rotation does not @agle, viz. the Parker instability, oper-
ating in static equilibria where Eq. (1) is just extendedhitie gravitational ternp[J®. That
instability requires the wave vector to be parallel, or heparallel, to the magnetic field and
thus appears to escape the dominance of the Alfvén modes.

We will analyze how these facts completely change the thebgastrophysical instabilities
compared to their laboratory counterparts, and illustthie with the Parker, the Rayleigh—
Taylor, and the magneto-rotational instability (MRI).

2. The Parker instability (gravity)

The Parker instability [3] has been introduced to explai@ thndency of the interstellar
plasma in spiral arms to form clouds. It was thought to beatesl to the magnetic Rayleigh—
Taylor instability”. That instability is, in turn, relatetb the interchange instability operating
in magnetically confined plasmas in magnetic fusion deviedgere the gravitational driving
term of the density gradieng’g, is replaced by the negative pressure gradiphtThus, the
gravitational interchange instability criterion, vidta of p'g-+ p?g?/(yp) < 3B2¢'2, whereg’
is the magnetic shear, turns out to be completely analogo&siydam’s criterion in cylindri-
cal geometry (or Mercier’s criterion in toroidal geometfgy local instabilities in tokamaks.
The analogous analysis is based on the mentioned assumpti@r= 0 to kill the enormous
stabilizing field line bending energy (3) of the Alfvén waves



Now consider Fig. 1 (from Ref. [2]), which shows the complefeectrum of a gravitat-
ing magnetized plasma slab fOx < 1) of thicknessa, exponential density and pressure,
p = poe” 9 andp = ppe— 9%, and sheared magnetic field= Boe—%ax[sin()\ X)&y+CogAX)€&y].
[The parameters arex = pog/ (Po+ %B%), B =2po/B3, A, fixed ata = 20,8 =0.5,A =0.3,
andk3 = kZ + kZ = 10.] The squared wave frequenay, or instability growth rate (itv* < 0),
is plotted versus the directiah of the wave vectokg. Ford ~ %n(or ko- B ~ 0), the familiar
degeneracy of Alfvén and slow mode frequencies is obtaitoepkther with the clustering of
infinitely many interchange modes. Their growth rates ararfiyd though compared to those
of the Parker instabilities that occur f8r~ 0 (wherekg is approximately paralleB). This, at
once, resolves the apparent contradiction with stand&aihtak stability theory: The Parker in-
stabilities are part of the slow mageto-acoustic sub-spettwith eigenfunction polarizations
orthogonal to those of the Alfvén waves. This is the way tteestphysical instabilities escape
the Alfvén wave dominance that reigns in the tokamak regime.
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Figure 1:Spectrum of Alfvén and slow magneto-acoustic modes of #&afiag plasma as a function of
the angled between horizontal wave vector and magnetic field. The Parkéquasi-Parker instabilities
connect smoothly to the interchange and quasi-interchangtabilities (related to similar modes in

tokamaks). Modes with vertical mode numbees 1 2,... approach the continudw? } and {wé}.

3. The Spectral Web

The systematic theory of the spectrum of MHD waves and inlgtab of magnetized plasmas
has mainly been developed for static equilibria, where tieggy principle has been the standard
stability paradigm for over half a century. However, mostgohas in magnetic fusion devices
have substantial flows, and in astrophysics the paradigmlgimakes no sense because there
are no static plasmas in the Universe. The required modditdbr stationary equilibria has
been known since the appearance of the seminal paper bydfriand Rotenberg [4] in 1960,
but, unfortunately, further development of spectral tigedong this line has been hampered by



the general misunderstanding that this theory necessawbjves non-self-adjoint operators.
A new approach, exploiting what will be called tlispectral Wepis based on the opposite
observation, viz. that the Frieman—Rotenberg spectradtému

G(&)—2pwUé& +pw’E =0, 4)

is a non-linear eigenvalue problem involvihgo self-adjoint operatorsyiz. the generalized
force operatoiG and the Doppler—Coriolis operatbr = —ivg - 0. With these operators two
real quadratic forms may be associated, viz. the solutiena@es of the potential enerily
and of the Doppler—Coriolis shift of the perturbations. For complex = o +iv, where the
imaginairy partv corresponds to the growth rates of instabilities, the real gorresponds to
the solution averages of the Doppler—Coriolis shift= Re(w) = V.

The usual proof of self-adjointness of the force operatanaslified by exploiting, for ar-
bitrary values ofw, the left solutioné £ of Eq. (4) that satisfies the BCs on axis and the right
solutioné" that satisfies the BCs at the wall. The two solutions are fbtesome surface S

inside the plasma. At that surface, the surface enétgy, is constructed,

Weom = / & N(E)]ds, (5)

where the normal componeét is made continuous and the jurfid (¢)]] of the total pressure
perturbation does not vanish, in general. Tbisnplementary energsepresents the amount
of energy to be injected or extracted3iio obtain exponential time behavior éxgwt). Self-
adjointness implies th&om vanishes, which is the case for eigenvalues. Instead, imétkeod
of the Spectral Web, the real and imaginary partd/gj are contour plotted to obtain two sets
of curves in the comples-plane on which one of the two vanishes:

ImWeom(w)] =0 =- solution path ReWeom(w)] =0 = conjugate path  (6)

The eigenvalues are located at the intersections of theseuvwes. Thus, for the first time,

the general eigenvalue problem of stationary equilibriadlved by an intuitive method that
not only provides the complex eigenvalues of the instaédjtbut also connects them with
physically meaningful curves. The method is applied to tigabilities of a straight cylinder,

for which the reduction of the Frieman—Rotenberg equadigns(well documented [5, 6]. The

Spectral Web method is not restricted to cylindrical pratdehough since reduction to ordinary
differential equations in the normal direction f& and1 also obtains for toroidal problems
where the tangential dependences are taken care of by atepaduction. The earlier papers
on the subject of constructing the eigenvalues of statiorquilibria [7] are now superseded
by the present form of the method of the Spectral Web [8].

Note that the functiong exploited in the Solution Web method are not smooth triacfun
tions, as in the energy principle, but full solutions of tletual physical problem posed by the
Frieman—Rotenberg equation (4). Those solutions are na@igenfunctions though since they
exhibit a jump at the surface S. The method relies on the Fattthe numerical solution of
ordinary or partial differential equations is presenthagght-forward, but this does not apply to
the solution of eigenvalue problems. That part is addrebgdtle construction of the two sets
of curves in the compler-plane by means of contour plotting. Their constructiortiaight-
forward as well and, moreover, it can be implemented nurallyimn a trivially parallel manner



since all computations for the different valuescfcan be done simultaneously. The solution
path and the conjugate path may be considered as the lociispo the complexw-plane
where the physical problem of a driven system is solved:tatoin in-phase for the solution
path and excitation out-of-phase for the conjugate patheM/lthe two curves intersect, the
actual eigenvalue problem is solved since driving does equire any energy then: the jump
vanishes antVeom = 0.

4. The Rayleigh—Taylor instability (rotation)

Fig. 2 shows the Spectral Web, consisting of the solutioh fiatred) and the conjugate path
(in blue), with the eigenvalues (black dots) at the intetises, for the Rayleigh—Taylor instabil-
ities of a rotating plasma cylinder with a longitudinal magjo field B, (a rotatingf-pinch). The
equilibrium is fixed by choosing a constant angular velo€ity:= vg /r and the following pro-
files: p(r) = pocostT2f(x), p(r) = pocoshr2f(x), B,(r) = Bw (3 + (1— &)tanhf(x)), where
f(x) = a?(x?—x3) with x=r /a. [The parameters for this case axg=0,a = 2,6 = 0.1667.]
The Spectral Web shown is for the compressible 1,k =0 modes, so thaty-B = kB, =0 for
these modes, but the point is that the magnetic field doeswert at all here: These are purely
hydrodynamic modes with a clustering point at the hydrodyiedlow continuumQg = mvg /r.
This continuum is degenerate (indicated by the big red dttermain frame of Fig 2).
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Figure 2:Spectral Web for the m 1, k = 0 hydrodynamic Rayleigh—Taylor instabilities of a rotating
plasma cylinder. The side frame shows the cluster sequemad the flow continuum (red dot in the

main frame), with a zoom of the=n53,...56 eigenvalues in the bottom frame.

The most striking feature of the Spectral Web of the hydrediyic Rayleigh—Taylor insta-
bilities is the fact that the solution path is not a singleveyias one might have expected, but it
is split into a separate open curve with the most globall mode on it and a closed loop with



then = 2 mode and all the rest of infinitely many clustering modes [Etter have a Doppler
shifted frequency = g — mQ which tends to zero, whereas the most global modes havea larg
Coriolis shift, opposite to the Doppler shift, such that teenbined Doppler—Coriolis shift, and
henceo, may become small. Another striking feature is thatrtke2 mode has a larger growth
rate than then = 1 mode. Such behavior never occurs for static equilibria.

Hence, the Spectral Web method addresses the problem dfwctivgy the complex eigen-
values of a stationary equilibrium (usually, and erronéguesssumed to be intrinsically non-
selfadjoint) by contour plotting the complementary enéfgym, in the complexw-plane. This
generates two sets of curves in theplane,the solution pathwhereWeonm is real, andhe con-
jugate path whereW;om is imaginary. The eigenvalues are found at the intersestidrthose
pathsW.om = 0. The crucial difference with the spectral theory of statesmas, relevant for
tokamaks, is the occurrence of two operators, viz. the gdimed force operato& and the
gradient operato = —iv - [J, which are both self-adjointThe later operator generates the
Doppler—Caoriolis shift of the eigenvalues away from the ginary axis (where they reside for
static equilibria): a big effect in Fig. 2 for the= 1 modes.
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Figure 3:Spectral Web of the magneto-rotational instabilities (E)Ror a thin accretion disk with mode
numbers n= 0, k= 70. The solution path is red, conjugate path is blue, eigeremlat the intersections
are indicated by black dots @ 1-29 for the instabilities and r= 30,30',31, 31’ for the stable modes).

5. The Magneto-Rotational instability (gravity and rotation)

Fig. 3 illustrates yet another class of astrophysical bilitees that require completely dif-
ferent analysis than the one used for tokamaks. It showsioeete spectrum of magneto-
rotational instabilities (MRIS) [9] of a thin annulary (< r < ry) accretion disk for a self-similar
equilibrium [10] p ~ r=%/2, vg ~ r=Y2,  /p ~ B, ~ Bg ~ r=5/4. [The physical variables are



normalized by setting; = p; = GM, = 1 at the inner radius, the parameters are then given
by d=rp/r1, €= /P, B = 2p1/B?, u = Bg1/By, for this case fixed ab = 2.0, £ = 0.1,

B =100,u = 1.] The nonlinear turbulent phase of the MRIs is assumedduige the source

of anomalous dissipation needed to account for the lossgpflanmomentum of accretion disks
about black holes and other compact objects [11].

The equations for the MHD spectrum of the MRIs of a thin cytiodl accretion disk were
derived by Keppenst al.[12]. The spectrum shown in Fig. 3 was computed by the new adeth
of the Spectral Web. It shows the solution path (the red csligétly deviating from the imag-
inary axis) and the conjugate paths (the blue ‘pancakesthfmaxi-symmetric modes(= 0).
This implies that the Doppler shift vanishes,= w, but the small Coriolis shift moves the
eigenvalues off the imaginary axis. Becanse: O in this case, the combined Doppler—Coriolis
shift of the eigenvalues off the imaginary axis is a smakketff For non-axisymmetric modes,
the solution path is far away though from the imaginary axis.

Clearly, the magneto-rotational instabilities violategttokamak paradignkg - B =~ 0, since
they occur far away from the backward and forward Alfvén o (situated along the real
axis outside the frame, at < —0.5 ando > 0.5). where that condition would be satisfied.

6. Conclusions

In conclusion: The global instabilities of both laborat@myd astrophysical plasmas can be
described by the ideal MHD equations because thegeate-independerjl3]. However, the
major gravitational and rotational effects on astrophgisptasma equilibria completely upset
the standard tokamak paradigm for static equilibria, deedrby Eq. 1, to look for instabili-
ties withkg - B ~ 0 to eliminate the dominant stabilizing Alfvén wave contitibn. Instead, a
completely different spectral theory is required for thegisihary equilibria, described by Eq. 2.
The new method of th8pectral Welp8] provides an intuitive and efficient tool to construct the
complete spectrum of waves and instabilities in the complaxe.
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