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Abstract: The paraxial WKB code TORBEAM [E. Poli et al., Comp. Phys. Comm. 136
(2001), 90] is widely used for the description of electron-cyclotron waves in fusion plasmas,
retaining diffraction effects through the solution of a set of ordinary differential equations.
With respect to its original form, the code has undergone significant transformations and
extensions, in terms of both the physical model and the spectrum of applications. The
code has been rewritten in Fortran 90 and transformed into a library, which can be called
from within different (not necessarily Fortran-based) workflows. The models for both ab-
sorption and current drive have been extended, including e.g. fully-relativistic calculation
of the absorption coefficient, momentum conservation in electron-electron collisions and
the contribution of more than one harmonic to current drive. The code can be run also for
reflectometry applications, with relativistic corrections for the electron mass. Formulas
that provide the coupling between the reflected beam and the receiver have been devel-
oped. Accelerated versions of the code are available, with the reduced physics goal of
inferring the location of maximum absorption (including or not the total driven current)
for a given setting of the launcher mirrors. Optionally, plasma volumes within given flux
surfaces and corresponding values of minimum and maximum magnetic field can be pro-
vided externally to speed up the calculation of full driven-current profiles. These can be
employed in real-time control algorithms or for fast data analysis.
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1 Introduction

The paraxial Wentzel-Kramers-Brillouin (pWKB) method for the propagation of high-
frequency waves in plasmas, developed by Pereverzev [1, 2], has been implemented nu-
merically in the beam-tracing code TORBEAM [3] and since then used in a variety of studies
for present [4, 5, 6] and future [7, 8, 9] fusion devices, for both heating and current drive
applications employing waves in the electron cyclotron (EC) frequency range and for the
analysis and interpretation of short-wavelength diagnostic techniques like reflectometry
[10, 11, 12, 13]. Applications of the pWKB method to lower-hybrid wave propagation
have also been reported [14, 15]. TORBEAM has been included in a worldwide benchmark
of EC codes presented in [16].

Fig. 1 shows a typical plot of the poloidal projection of the beam propagation in the
ASDEX Upgrade tokamak.
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Fig. 1. Propagation of an X-mode, 140 GHz elecF%ron cyclotron beam in ASDEX Upgrade as calcu-
lated by TORBEAM, visualized as a projection along the cylindrical angle . The beam, launched at
(R, Z) = (2.38,0) m, is represented through its reference ray (tracing the mazimum of the Gaus-
sian amplitude envelope, red) and the beam width (“peripheral rays”) representing the intersection
of the 1/e level of the amplitude with a vertical plane. The vertical lines show the position of the
second (X-2, blue) and third (X-3, green) cyclotron harmonics.

The pWKB method reduces the computational effort of solving the vector wave equa-
tion in an anisotropic, inhomogeneous and dissipative plasma to the solution of a set of



ordinary differential equations (ODEs) describing (a) the centre of the beam (the so-called
reference ray), (b) the transverse beam structure, expressed by two 3 x 3 symmetric ma-
trices representing the curvature of the beam front and the amplitude profile, assumed
to be localized around the reference ray, and (c) the power carried by the beam (which
is calculated on the reference ray only). The wave-field amplitude profile transverse to
the propagation direction is assumed in the numerical implementation to have a Gaus-
sian shape, although the theory is developed for more generic beams [2]. As a result, the
pWKB technique allows the determination of propagation and absorption of EC waves
in fusion plasmas, retaining diffraction effects not included in standard ray-tracing codes,
at a reduced computational cost even with respect to ray tracing (if more than 3 rays
traced). The only numerical “price” that must be paid is the evaluation of second-order
derivatives of the involved plasma profiles, but this is in general not critical, because the
related overhead is basically limited to the pre-processing of the equilibrium, i.e. the
calculation of the finite-difference derivatives on the grid, as explained in Sec. 3. Due
to its numerical simplicity, the method lends itself in particular to applications requiring
fast execution times, in particular the inclusion in more comprehensive procedures like
transport codes (TORBEAM has been interfaced with the transport solvers ASTRA [17] and
TRANSP [18]), integrated data analysis tools, integrated tokamak modelling [19] (see [20] for
a benchmark of TORBEAM against other European EC codes in the frame of the European
Integrated Tokamak Modelling framework) or as a part of real-time control algorithms to
be executed in parallel to the evolution of experimental plasma discharges [21].

Since the first publication [3], the code has undergone a profound revision. First of all,
it has been rewritten in Fortran 90 (the original programming language was Fortran 77)
and the source split into building blocks, while the modular structure of the original code
has been largely conserved. A brief overview of the TORBEAM workflow is given in Sec. 3.
The code has been transformed into a library, which is called by an external process (not
necessarily in Fortran), also in charge of the input/output operations. Fortran wrappers for
the standalone execution of the programme are available to the user. The main motivation
behind this development was the need for an accelerated version to be used in real-time
applications [21]. Within this framework, different levels of simplification of the physics
scope are now possible, as described in Sec. 6.

The original goal of TORBEAM was the calculation of power density (power per unit
volume) and current density (current through unit surface) profiles allowing for diffrac-
tion effects. This still applies to the code in its present form. With respect to [3], the
determination of the absorption coefficient can be performed now also employing fully
relativistic expressions for the dielectric-tensor elements. The calculation of the current-
drive efficiency has been extended by including the full polarization term in the expression
of the quasilinear diffusion coefficient and the momentum-conserving scheme described in
[22, 23, 24]. A subtle point concerning the implementation of the paraxial WKB method
is the algorithm for the calculation of the profiles. Since the power-absorption equation
is solved along the reference ray only, a scheme has to be devised for distributing the
absorbed power across the involved flux surfaces according to the Gaussian amplitude
profile of the beam. Two such schemes are now available, the first one being faster but
less accurate near the magnetic axis of the plasma, the second being able to cope also with
such cases. A related problem arises when TORBEAM is coupled with a Fokker-Planck code
like RELAX [25], which is designed to accept as an input the wave parameters on individual
rays. An option to extract this information along so-called extended rays, carrying the
information about the energy flow of the diffracting beam, has been implemented [26].
The modifications mentioned above are explained in detail in Secs. 4 and 5.

As stated at the beginning, the code is routinely used as a support in the interpretation
of reflectometry measurements and to design future diagnostics. The most important
modification required by these applications concerns the inclusion of an effective electron
mass, following [27], in the cold-plasma dielectric tensor, as required in reactor-grade
plasmas [27, 28]. Moreover, formulas describing the beam coupling to the receiver in



terms of the beam tracing parameters (solutions of the pWKB equations, see Sec. 2) have
been developed and are available as part of the post-processing tools. These extensions of
the code, already documented in [11], are briefly reviewed in Sec. 7.

In its present form, the code assumes toroidal symmetry, i.e. tokamak geometry,
although the underlying equations are formulated in arbitrary geometry [2].

The main goal of this paper is to give an overview of the current capabilities of the code,
including some selected examples, together with a compact description of the underlying
numerical implementation, intended also as a first guidance for the users of the code. For
more details on the physical model, the reader is referred to the original publications by
Pereverzev [1, 2], and to [29, 30, 31, 32] for some illustrative examples and applications in
critical cases.

2 The paraxial WKB method for the propagation of
high-frequency waves in inhomogeneous anisotropic
media

The beam tracing method is applied to the solution of the vector wave equation
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in the high-frequency (short wavelength) limit
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where € is the dielectric tensor, w/27 is the wave frequency, ¢ is the speed of light, L the
inhomogeneity scale of the medium and kg the vacuum wave vector. A simplified derivation

valid for a Gaussian beam follows from the complex-eikonal ansatz for the electric field
E(r) = A(r)e(r)e*ols®)+ie)] )

where the imaginary part of the phase (eikonal) ¢ > 0 is introduced to describe the profile
of the field amplitude across the beam cross-section. The wave field (3) is localized in a
tubular neighbourhood of size O(1/+/k) around the curve defined by ¢ = 0 (the reference
ray, see below). Physically, this means that the beam width W satisfies
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(X is the vacuum wavelength). The complex phase of the wave field in Eq. (3) can be
Taylor expanded around the reference ray (paraxial expansion) [1, 2]:

(4)
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where ¢, and N, are the components of the position vector {z,} = r and of the vector
refractive index { N, } = Vs, respectively, calculated on the reference ray. Summation over
repeated indices is assumed. The second-order coefficients s, describe the change of the
wave vector along the wave front and are hence related to its curvature. The coefficients
¢ap appear in the real part of the exponential factor of Eq. (3) and are then connected
with the width of the amplitude profile, see Egs. (27-28) of [3].



The quantities go, Ny, sap and ¢qp are found as the solution of the following set of
ordinary differential equations (ODEs), known as beam tracing equations [2]:
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where
H =det[-N*T+NN +€"] =0 (10)

is the dispersion function of geometrical optics. Like in standard ray tracing, the anti-
Hermitian part of the dielectric tensor is ordered much smaller (by 1/x) than the Hermitian
part ", so that H depends only on the Hermitian part of the dielectric tensor and hence
is real. All the derivatives of H on the right-hand sides of Eqs. (7-9) are to be calculated
on the reference ray, which obeys the Hamiltonian (ray tracing) Egs. (7).

Since sqg and ¢,g are symmetric 3 x 3 matrices, the solution of the beam tracing
equations requires the integration of 18 ODEs. According to the paraxial expansion, the
equation for the beam power, which descends from the equation for the terms of order
1/k in the asymptotic expansion of the wave field, has to be evaluated on the reference
ray only. This equation takes the form

ar = —29P, (11)
dr
where v is the absorption coefficient, which is defined in terms of the anti-Hermitian part
of the dielectric tensor. The whole beam structure, retaining diffraction effects, is thus
described through 19 ODEs (to be compared to 7 equations per ray in the case of standard
geometrical optics).

3 Code structure

The TORBEAM code as described in [3] was written as a single Fortran 77 file. In the course
of its “translation” into Fortran 90, the code was split into several “building blocks” (files),
which closely reflect the original structure. This new arrangement of the code is described
in this section.

As already mentioned before, the MAIN part of the code has been transformed into a
subroutine torbeam.f90 which represents the library interface. All the arguments of the
TORBEAM library are either scalars or one-dimensional arrays, to avoid conflicts or need for
re-ordering (row-major vs. column-major). The process calling the library provides as an
input the information about the magnetic equilibrium (eqdata), the electron density and
electron temperature profiles (prdata), the dimensions of the respective grids and a set of
integer (intinbeam) and real (floatinbeam) parameters containing the initial conditions
for the beam, the main machine parameters, the required integration accuracy and a set
of switch parameters for different physics options available in the code, as detailed in the
remainder of this paper.

The output varies depending on the application, which is selected through precompiler
options. In “real-time” runs, only a reduced set of output values is returned (rhoresult),
which includes the coordinates of the point of maximum absorption and, if current drive is
switched on, some additional ray and plasma parameters at that position, the total driven
current and a single-ray estimate of the profile width. The differences between the “real-
time” version and the complete version of the code are reviewed in Sec. 6. For standard
heating and current-drive applications, the information returned to the calling process by



the library is extended to include the beam trajectory on a poloidal (t1data) and toroidal
(t1tdata) projection, the power deposition and current density profiles (t2ndata) and (for
diagnostic purposes) the plasma volume as a function of the radial coordinate volprof. For
reflectometry applications, the output is further extended to include the radial coordinate
of the turning point and the values of the density, the refractive index (perpendicular and
parallel components) and the magnetic field components at the turning point (reflout).
No input-output operation needs to be performed from within the library. A complete
description of the input and output parameters of the TORBEAM library is provided with
the code.
Once called, the top level of the TORBEAM library performs:

1. The call to the initialization routines, i.e. (a) the conversion of the input as provided
by the library arguments into the internal variables of the code and the calculation
of the initial conditions for the 19 beam tracing equations (in.£90), and (b) the
computation of the finite-difference derivatives of the plasma profiles required by
Egs. (7-9), of the plasma-volume profile and of the flux-surface averages needed for
the determination of the driven current (grid6.£90);

2. The main integration loop, which contains the call to the ODE solver LSODE (1sode.£90)

[33]. A step in this loop advances the beam tracing equations from 7 to 7+ dr (this
is the central operation performed by the code). When the density on the refer-
ence ray reaches a preset value, the integration switches from vacuum to plasma
dispersion and the initial conditions? are re-calculated in the plasma according to
[34] (interf.£90). After the integration step, some quantities needed for code
diagnostics and for the determination of the driven current are calculated at the
new (advanced) point through a call to coef.£90. Finally, if the power absorbed
during the integration step exceeds a threshold, the current driven is calculated
(currn.£90);

3. The preparation of the output quantities, mainly the power density and current
density profiles (out.£90). The algorithms for the calculation of the profiles are
described in Sec. 4.

From this level on, the code has the “cascade” structure inherited from the original
version: the ODE integrator 1sode requires the routine where the beam tracing equations
(7-11) are specified (eqs_beam.£90). This routine in turn requires the ODE coefficients,
i.e. the derivatives of H appearing on the right-hand side of the beam tracing equa-
tions Egs. (7-9) and the absorption coefficient (deriv.£90). The derivatives are evaluated
performing a rotation of the reference system to the poloidal plane containing the current
integration point (rot.£90) and evaluating the electron density and magnetic-field deriva-
tives appearing in the plasma frequency and the cyclotron frequency (ocop.£90) and the
values of the perpendicular and parallel wave vector (refr.£90). The numerical evalua-
tion of the derivatives is achieved through polynomial interpolation (interpolB.£90) on
the finite-difference grids stored before the start of the integration in a neighbourhood of
the current position of the central ray.

A comparison with Sec. 3 of [3] shows that the basic workflow of the code has not
changed significantly. For the calculation of the absorption coefficient, the original TORBEAM
model has been extended to include the fully-relativistic version of the routine DAMPBQ [35]
(westerino.f90) and the routine WARMDISP extracted from the quasi-optical GRAY code
[36] (ecdisp.f90), which also accounts for the fully-relativistic elements of the dielec-
tric tensor. For current drive, the original CURBA routine (curba.f90) has been sup-
plemented by the routine CURGAP [37] (TorGA_curgap.£90) and modifications thereof, as

2The mode of propagation is selected through the corresponding initial conditions for the wave
vector, the Hamiltonian function H being provided by Eq.(10) for both modes. Possible cases of
imperfect mode purity at launch can be handled through two separate runs of the code, one for
each cold-plasma mode.



detailed in Sec. 5 (the momentum-conserving Spitzer function described there is contained
in green_func_ext.f£90).

4 Calculation of power-deposition profiles

The evaluation of the absorption coefficient v in Eq. (11) is based on the calculation of
the imaginary part of the wave vector as obtained by solving the hot-plasma dispersion
equation. Originally [3], the solution obtained in the subroutine DAMPBQ was limited to
the weak-relativistic limit of the hot-plasma dielectric-tensor elements (implying that the
relativistic Lorentz factor is expanded to the lowest significant order in the ratio between
the particle speed and the speed of light). As stated in Sec. 1, the present version of
TORBEAM allows for a fully relativistic calculation of the absorption coefficient through the
corresponding extension of DAMPBQ (from TORAY) and through the subroutine WARMDISP
(from GRAY). Both routines also account for absorption due to harmonics higher than the
second. The results of both routines are nearly identical, as shown in Fig. 2, in which the
absorption profiles obtained in the weakly-relativistic approximation (black dash-dotted
curves) are compared with fully-relativistic results (practically indistinguishable blue solid
and red dashed lines).
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Fig. 2. Power deposition profile obtained wigh the subroutine WARMDISP (blue solid), DAMPBQ (red
dashed, virtually indistinguishable from the previous one) and with DAMPBQ in the weakly-relativistic
limit (black dashed-dotted) for a typical ITER case (stabilization of neoclassical tearing modes on
the ¢ = 2 surface).

While WARMDISP returns the perpendicular component of the imaginary part of the
wave refractive index N/, DAMPBQ returns the projection of N onto the real refractive
index N’ [35]. As a consequence, the output of DAMPBQ must be divided by the sine of
the angle between N’ and the confinement magnetic field to be equivalent to the output
of WARMDISP. The absorption coefficient is calculated as given in Eq. (15) of [3], i.e. v =
(w/e)N" -V, with V= 90H/ON (vector parallel to the group velocity).

The spatial distribution of the absorbed power is given as a power-density profile
as a function of radial (flux-surface) label, under the usual assumption of an “ergodic”
redistribution of the absorbed power along the field lines. As mentioned in Sec. 1, within
the paraxial WKB method the calculation of the power density profile is not as immediate
as in the case of ray-based algorithms, in which the power absorption is calculated on each
ray and can be assigned straightforwardly to the respective flux surfaces. In the paraxial
approach employed in TORBEAM, the quantities directly available after the integration of the
beam tracing equations are the power along the reference ray and the Gaussian envelope of



the beam. Two algorithms have been developed to compute the power deposition profile
starting from this information and are described below. Both are run after the main
integration loop has been executed, as described in the previous section.

In the first algorithm, besides the coordinates of the reference ray, the coordinates of
an upper and a lower peripheral “ray” are also stored. These are defined as the curves in
the poloidal plane corresponding to 1/e levels of the electric-field amplitude, determined
from the Gaussian amplitude envelope ¢, (Fig. 1). For each point ¢ on the reference
ray showing non-zero absorption, the points on the peripheral rays with the same major
radius (i.e. same distance from the tokamak symmetry axis) are calculated and the flux
surface passing through these points is determined. The radial distance (in terms of the
coordinate p defined below) between the upper and the lower peripheral rays, divided
by two, is taken as the half-width w; of an “infinitesimal”, Gaussian-shaped absorption
profile of the form (dP/dV); = C; exp[—2(p — p;)?/w?], where p is the normalized radial
coordinate (square root of the normalized flux label) and the factor of two accounts for
the fact that the power density is proportional to the electric field squared. The coefficient
C; is fixed in such a way that

1
c / exp[—2(p — pi)?/w?)dV = C; / exp[—2<p—pi>2/w$1%dp:da, (12)
\% 0

dP; being the power lost by the beam in the i-th integration step and V' the plasma volume.
The underlying assumptions behind this procedure are that across the beam cross-section
the resonance condition is satisfied on a vertical plane and that the absorption-profile
width is dominated by the beam width in the poloidal plane, due to the larger curvature
of the flux surfaces in the poloidal plane as compared to the curvature in the toroidal
plane (the former assumption could be violated in devices for which the toroidal field
is not the dominating component, like reversed-field pinches near field reversal). The
total absorption profile is calculated as the sum over the infinitesimal profiles, dP/dV =

2i(dP/dV);.
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Fig. 3. Power depositign profiles obtained with TORBEAM standard pmced‘;re (blue solid) and
TORBEAM new procedure (red dashed), for (a) an ITER scenario (left, also GRAY profile shown,
black dashed-dotted) and (b) an off-axis ASDEX Upgrade scenario (right, also WKBeam profile
shown, black dashed-dotted).

The procedure described above is fast (a complete run of the code including the deter-
mination of power and current-drive profiles takes ca. 1 s on a single CPU?) and in most
cases accurate, see examples in Fig. 3. Yet, it can fail in distributing correctly the power
among flux surfaces when the maximum absorption is localized on the magnetic axis of
the tokamak. For these cases, a second algorithm has been devised, based on a numerical
integration of the continuity equation for the wave energy density, which in steady-state

3The performance of the code is discussed in detail in Sec. 6



can be written as
V- (IEPV) = —29|E]%, (13)

in the region around the beam in which absorption takes place. As shown in Appendix A,
from the previous equation one can derive

d3r, (14)

P(p) = @/ e 20 ’1dP
T Jo) V(D) Wi (r)Wa(T) | Py dr

where Q(p) is the three-dimensional domain enclosed by the flux surface labelled by p, ¢
has been defined in Eq. (6), Wi, Wy are the principal widths of the elliptic beam cross-
section (taken at 1/e-level of the electric field amplitude) and Py is the injected power.
The integration domain of Eq.(14) is discretized in a region covering at least four times the
transverse beam extension. In this way, basically the whole power carried by the Gaussian
beam is taken into account in the discretization. The grid is non-orthogonal, with one
axis aligned with the averaged (in the absorption region) beam velocity, the second axis
perpendicular to the previous one in the horizontal direction and the third axis in the
vertical direction. The physical reason for this choice is again that the resonance region
is approximated by a vertical line across the beam extension. Each point on the grid is
assigned to a corresponding point on a p-grid and the integral in Eq.(14) is substituted by a
discrete sum. This new procedure has been compared with the “standard” implementation
described before and checked against the quasi-optical code GRAY for an ITER scenario
(Fig. 3a) and against the wave-kinetic solver WKBeam code [38] for an off-axis ASDEX
Upgrade scenario (Fig. 3b). The agreement of the different profiles is very good.
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Fig. 4. Power deposition profiles obtained with TORBEAM standard procedure (blue solid), TORBEAM
new procedure (red dashed) and WKBeam (black dashed-dotted) for an on-axis ASDEX Upgrade
scenario.

As a demonstration of the difference between both methods described above for a case
with on-axis deposition, Fig. 4 shows a comparison for an ASDEX Upgrade experimental
case. Again, the ray-based code WKBeam is used as a benchmark. It can be seen that
the standard procedure fails in locating the maximum of the deposition profile on axis.
Considering the numerical uncertainties related to the evaluation of the plasma volume
and its derivative with respect to p so close to the magnetic axis, the agreement between
the new procedure implemented in TORBEAM and the WKBeam profile is remarkably good.



Depending on the injection geometry and on the length of the absorption path, the new
method requires ca. one to five seconds for the determination of the absorption profile.

As a further option, TORBEAM can produce the data required on input by the Fokker-
Planck code RELAX [25] and thus allows the study of the effects due to the quasi-linear
relaxation of the distribution function on the absorption profile. The wave input is pro-
vided to RELAX in terms of information (position, parallel refractive index, power fraction
and cyclotron frequency) calculated on individual rays, which in the frame of geometrical
optics represent the wave energy flow. To provide an analogous information in the frame of
the pWKB approach, extended rays describing the energy flow of a diffracting beam can be
derived [26, 39]. As known from standard geometric optics [40], the action function (phase)
(integral of ds = IN - dr along the rays) solves the Hamilton-Jacobi equation H(r,Vs) = 0
and the velocity field V defined above (tangent to the rays of geometric optics) determines
the wave energy transport through Eq.(13) on each ray. When the complex-eikonal ansatz
(3) is introduced, assuming A\/W < 1, the relevant Hamilton-Jacobi equation becomes
[41, 36]

H(r,Vs) — 199 99 o (r,Vs) =0. (15)

21000 42y

Fig. 5. Visualization of the extended rays calculated for a typical ASDEX Upgrade case.

As far as the energy flux is concerned, it can be shown [39] that Eq. (13) still holds in
the complex-eikonal case, but the function s is now a solution of the modified Hamilton-
Jacobi equation (15). In the frame of the paraxial approach implemented in TORBEAM, Vs
can be immediately calculated taking the gradient of s given by Eq.(5) and the equations

dr O0H

= 6—N(r, Vs) (16)

can be advanced together with the beam-tracing equations employing the second-order
Heun'’s method, see [26] for details. Also the power content of the extended rays is com-
puted, solving Eq. (11) on each of them. Fig. 5 shows the trajectory of the extended rays
for the ASDEX Upgrade case of Fig. 3b. For the calculation of 9 x 9 extended rays, with
the integration step halved with respect to the standard calculation, the execution time is
still well below 10 s.
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5 Modelling of electron-cyclotron current drive

The calculation of the current-drive efficiency in TORBEAM is based on routines implement-
ing the adjoint method [42]. In addition to CURBA, which was already present in the original
version of the code [3], the routine CURGAP has been added. This routine includes the exact
polarization-dependent radio-frequency quasi-linear diffusion operator [43] in evaluating
the current drive efficiency (this feature is not described in the original publication [37],
where also the small gyroradius expansion is explicitly used, while the routine allows for
the complete Bessel-function terms). Both CURBA and CURGAP employ the high-speed limit
for the determination of the Spitzer function calculated in the frame of the adjoint method
(see below). In TORBEAM, the Spitzer function can now be determined, as an extension of
CURGAP, including the momentum-conserving scheme described in [22, 23, 24], which takes
the transfer of momentum to the bulk electrons and their contribution to the parallel
electron flow into account. Results including this effect in TORBEAM were reported for the
first time in the frame of a study of the EC current-drive efficiency in DEMO-sized ma-
chines [8]. Meanwhile, this extended version of CURGAP has been extensively used in ITER
calculations [9, 44] and is now also the standard option for applications in the ASDEX
Upgrade tokamak [45]. A further extension of CURGAP to include consistently the contri-
bution of more than one cyclotron harmonic to the current drive has been implemented
and is described in the second part of this section.
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Fig. 6. Left: Current drive profile obtained considering the contribution of second and third
harmonic consistently (blue solid line) and assuming that all the power drives a current on the
lowest accessible harmonic (red dashed). Right: Comparison of the current driven per unit length
along the central ray in TORBEAM and GRAY (s being the arclength along the ray).

Following the notation of [37], the adjoint method requires the determination of the
response function y, through which the driven current density can be calculated as

=e{ [ @usutin). an)

where angular brackets denote flux-surface average and S,¢ is the radio-frequency-induced
quasilinear diffusion operator [46, 43]. The response function is written factorizing its
dependence on particle energy and pitch angle, x = sgn(u)F(u)H(A), with u = yv/c =
p/mc the normalized momentum (v = v/1 + w2 is here the relativistic Lorentz factor) and
A = (Byaz/B)(u% /u?). The energy-dependent part is referred to as the Spitzer function.
In CURGAP, it is in general given by Eq.(33) of [37]. If momentum conservation is included,
this expression is replaced by the relativistic adaptation of the Spitzer function obtained
in the Appendix of [47]. Being based on a fifth-degree polynomial in u, whose coefficients
can be determined in a straightforward way, the momentum-conserving formulation of
the Spitzer function is computationally very efficient. Due to this reason, this option is
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also adopted in the “real-time” version of the code when current drive is required, see
Sec. 6. To quote an example of the contribution of the various effects mentioned above
to the final result, for an ITER standard-H-mode scenario with EC current driven on the
g = 3/2 surface, TORBEAM returns a total driven current Iop = —7.90 kA/MW employing
CURBA, Icp = —8.30 kKA/MW with CURGAP (full polarization term) and Icp = —8.94
kA/MW if momentum conservation is included. Here, the minus sign indicates that the
current is driven in clockwise direction if the tokamak is viewed from above.

As mentioned above, a further important improvement has been introduced in the cal-
culation of the current drive efficiency in order to account consistently for the contribution
of each cyclotron harmonic. The current drive efficiency 7, defined as the ratio between the
current and power densities, can be written in terms of the quantities introduced before

" o U0 Sihn)
<fd3’l} & Sl"f(fM)>7

where & = mc?(y — 1) is the particle energy. The quasilinear flux S,¢ contains a sum
over the cyclotron harmonics, see e.g. Egs. (14-15) of [36]. If more than one harmonic
contributes to the wave-particle interaction, both integrals appearing in Eq. (18) become
actually a sum of integrals, one for each harmonic. However, since the lowest harmonic
present in the plasma usually dominates the absorption, often in practical implementations
(as in the original TORBEAM code) only the lowest harmonic is considered in the calculation
of the current drive efficiency (18). On the other hand, in particular for large values of the
parallel wave vector, the lowest harmonic may exhibit a rather modest absorption when
it becomes accessible in low-field-side launch scenarios, as the corresponding resonance
curve lies on the tail of the electron distribution function. Hence, only few electrons are
available for absorption. Since high-energy electrons have a low collisionality, however, the
numerator of Eq. (18) weights them more strongly than the denominator, and the current
drive efficiency evaluated on the lowest harmonic resonance curve only can be fairly large.
Thus, attributing all the driven current to the lowest harmonic, while the power absorption
is still governed by the successive harmonic, would result in an unrealistically large driven
current. This is illustrated rather strikingly by a half-field scenario for ITER (Fig. 6,
left), where a spurious peak (red dashed curve) appears in the current density profile
when all the power absorbed by the plasma (mainly by third X-mode harmonic) is used
to calculate the driven current with 7 determined retaining only the contribution of the
second harmonic as soon as it becomes accessible. Incorporating also the contribution from
the third harmonic in both the numerator and the denominator of Eq. (18) eliminates this
unphysical effect (blue solid line) and the current drive becomes nearly identical to that
calculated by the GRAY code, in which this effect is included (Fig. 6, right). The associated
computational effort remains modest, as the contribution of the current-drive routine to
the total running time is usually relatively small, see e.g. Table 2.

(18)

6 Real-time applications

Future fusion reactors, and more so fusion power plants, need to be equipped with a series
of control systems able to react in real time to given plasma signals. Such systems are
being tested in present experiments. EC waves are foreseen as actuators in a number
of applications, including control, mitigation and suppression of MHD instabilities, in
particular sawtooth oscillations and NTMs. In these applications, real-time ray tracing
is an option to obtain information on the mirror settings needed in order to reach the
rational surface around which the instability develops [21]. Fast execution of a wave-
heating module is also required in real-time simulations of the plasma profiles, or for
numerical optimization of tokamak scenarios, as performed by the RAPTOR code [48, 49].
More in general, the possibility of accelerating the code execution is highly desirable in
all applications requiring a repeated evaluation of the beam trajectory in loops of some
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sort, as is for instance the case in transport codes. The execution time of the code
has been monitored through accurate time profiling to locate the most critical (time-
consuming) operations. The numbers quoted below have been obtained running TORBEAM
for the medium-size tokamaks ASDEX Upgrade and TCV on Solaris SunOS 5.11 and
Linux SLES 11 64-bit machines, which are presently the standard platforms available at
the Max-Planck-Institut fiir Plasmaphysik. The exact execution time is of course machine-
dependent, but the relative speed-up is less sensitive to the details of the architecture.
Performance improvement can be achieved from running the code on dedicated processors
when executing the control algorithms.

As mentioned previously, the typical run time of the code in its complete version
(including the calculation of power and current density profiles) is of the order of one
second. For implementation in present real-time workflows for NTM control, an execution
time of around 10 ms should be targeted (see discussion in [21]). In its complete version
with standard settings, most of the CPU time is spent by TORBEAM in the calculation of
the output profiles. For a highly resolved case (5000 points in p), more than 90% of the
time is spent in the output routine. This number drops to around 55% for 500-points
profiles. The most time-demanding operation at this level is the iterated interpolation of
the plasma-volume profile, cf. Eq.(12). For those applications not relying explicitly on the
exact form of the absorption profile, the call to the output routine OUTPROF in out.f90
can be skipped altogether. By this, the execution time drops below 100 ms, which is,
however, still insufficient for the targeted real-time applications. Once the calculation of
the absorption profile has been dropped, the remaining most time-consuming operation
(about 30 ms), namely the calculation of the plasma volume as a function of the radial
coordinate p, becomes unnecessary and can be skipped as well. A further speed-up is
obtained by reducing the number of equations to be integrated to seven, i.e. dropping
Eq. (8,9) and solving only for Egs. (7,11). This step, which turns TORBEAM into a ray-
tracing code computing a single ray, makes also the preparation of second-derivatives
finite-difference arrays unnecessary. Finally, the position of maximum absorption returned
by the code is computed as the position reached at the last integration step for which
the power decrement dP is larger than at the previous step. The code can be stopped
either at that position or (if the current drive is also computed) when dP falls below
a preset threshold. The steps described above bring the execution time in the required
ballpark of 10-20 ms (the calculation of the total driven current employing the momentum-
conserving scheme described in Sec. 5 requires an additional CPU effort below 2-3 ms). An
additional reduction of the execution time has been achieved by avoiding the determination
of the plasma coefficients in coef.f90 (Sec. 3) after each integration step but rather
extrapolating them from the previous values for a pre-set number of time steps, after
which the actual coefficients are computed again. The corresponding speed-up is a few
(£ 5) ms. Finally, the dimensions of the grids on which the magnetic equilibrium and the
kinetic profiles are defined have been limited to 150 points.

Table 1 shows a sample of the TORBEAM profiling obtained for the off-axis-heating case
on ASDEX Upgrade already considered in the profile benchmark shown in Fig. 3b (run
on a single Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processor).

torbeam  was called 1 times, total 8.1 ms
grid was called 1 times, total 1.4 ms
intpsi was called 674 times, total 0.3 ms
dervac was called 7 times, total 0.0 ms
Isode was called 580 times, total 3.4 ms
coef was called 213 times, total 2.0 ms
intpb was called 572 times, total 0.2 ms

intdab was called 572 times, total 2.6 ms
intpop was called 554 times, total 0.0 ms
deriv was called 359 times, total 3.1 ms
intpte was called 859 times, total 0.1 ms
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Table 1. Time profiling for a run of the “real-time” version of TORBEAM (ASDEX Upgrade pa-
rameters, no current drive). The total time needed for this run was 8.1 ms (first line). It can
be seen that most of the time required for advancing the beam (lsode, 3.4 ms) is actually spent
in the calculation of the coefficients of the beam tracing equations (deriv, 3.1 ms), rather than
in the integrator itself. The seven steps meeded from the antenna to the plasma (dervac) do
not give a measurable contribution (< 0.05 ms). The routines beginning with “int...”" perform
interpolation of various plasma quantities.

In this run, 17% of the time was spent in the preliminary calculations (preparation of
finite-difference arrays, GRID), 42% in the integration loop (LSODE), which includes as the
main part the calculation of the right-hand side of the beam tracing equations (DERIV),
25% in the calculation of the coefficients needed after the integration step (COEF). These
three steps account hence for ca. 84% of the execution time. It is interesting to notice that
20% to 25% of the time needed for the calculation of the coefficients of the beam tracing
equations in DERIV is employed for the determination of the absorption coefficient v (in
real-time applications, the weakly-relativistic version of DAMPBQ is used, which turns out
to have the shortest execution time). The remaining 75%-80% of the CPU time spent in
DERIV is primarily employed in the interpolation of the plasma profiles, in particular the
magnetic field components (INTDAB). An example for the implementation of the real-time
version of TORBEAM in an actual control scheme is described in [21]. A second example is
the recent inclusion of TORBEAM in the real-time control system SCD of the TCV tokamak
[50]. Since this system is entirely programmed in Simulink®, it was necessary to include
TORBEAM in a Simulink S-function block. This was achieved by writing an S-function
wrapper that calls the Fortran library. Various separate instances of TORBEAM are run (one
for each EC launcher) on different processors on a dedicated node of the control system.
The execution times for a TCV equilibrium with grid size of 28 x 65 in the poloidal plane
and radial grid of 21 points for density and temperature profiles are of the order < 5 ms
for typical cases.

torbeam was called 1 times, total 75.3 ms
grid was called 1 times, total 2.7 ms
intpsi was called 1957 times, total 1.9 ms
dervac was called 11 times, total 0.0 ms
Isode was called 308 times, total 20.6 ms
coef was called 308 times, total 4.4 ms
intpb was called 1307 times, total 0.8 ms
intdab was called 1308 times, total 13.9 ms
intpop was called 1307 times, total 0.9 ms
deriv was called 999 times, total 19.2 ms
intpte was called 1237 times, total 0.0 ms
intpdvrtprof was called 135280 times, total 16.7 ms
currn was called 10 times, total 1.0 ms
intpdv was called 5 times, total 0.0 ms
outprof was called 1 times, total 40.5 ms

Table 2. Time profiling for the accelerated version of TORBEAM including deposition profiles (total
CPU time 75.8 ms).

A different accelerated version of TORBEAM has been developed to speed up applica-
tions in which the code is used in integrated data analysis of kinetic profiles and equi-
librium reconstruction [51, 52]. In this case, an equilibrium reconstruction code solving
the Grad-Shafranov equation (GSE) is coupled with the current diffusion equation solving
the temporal evolution of the current profile between the time points the GSE is solved.
The neoclassical current diffusion depends on the kinetic profiles as well as on the driven
current from neutral beams and microwaves. In these applications, the calling process is
supposed to provide the code some of the geometric quantities usually calculated inter-
nally, so that again the calculation of the plasma volumes in GRID can be omitted. Also
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the maximum and minimum values of the magnetic field on a given flux surface are now
linearly interpolated on a user-supplied grid and not internally. Moreover, the calculation
of the profiles is performed on a radial grid of 500 points, which corresponds to a radial
resolution of Ap = 2 x 1073, so that also the time needed to compute the deposition
profiles remains below ca. 50 ms. The targeted execution time of this version for a typical
ASDEX Upgrade should remain below 100 ms. An example of the time profiling for an
ASDEX Upgrade application is shown in Table 2.

7 Reflectometry applications

The reflectometry diagnostic is based on the injection of waves in the EC frequency range
under cutoff condition, with the aim of extracting information about the plasma properties
from the measurement of the reflected beam [53]. The integration of ray tracing (and even
more beam tracing) equations becomes challenging close to turning points, in particular for
injection nearly perpendicular to the cutoff layer, as in this case all the three components
of the group velocity are very small at the turning point. Nevertheless, the advancement
of the equations is usually still possible, provided the input profiles (electron density in
particular) are smooth enough?, and delivers important information for the analysis of
the measurement [54, 55]. For a discussion of the applicability of the pWKB method to
reflectometry see also [31]. From the point of view of the numerical implementation, apart
from the additional output parameters mentioned in Sec. 3, the main extension introduced
in the code for reflectometry studies is the renormalization of the electron mass needed
to account for relativistic effects for propagation close to the cutoff [27]. This is obtained
by rescaling the electron mass appearing in both the plasma frequency and the cyclotron
frequency according to (see [27])

ST )1/2 . (19)

meﬁzm(l+ 5
me

This introduces a dependence of the plasma frequency and the cyclotron frequency, which
appear in the Hamiltonian function H and its derivatives on the right-hand side of Egs. (7-
9), on the electron temperature. Consequently, first and second-order derivatives of the
temperature profile need to be calculated, which are otherwise absent since the propagation
of the beam is computed in usual heating and current drive applications according to the
cold-plasma dispersion relation. These corrections were added for a design study of the
ITER low-field-side reflectometer [11]. A typical example of beam propagation and cutoff
profiles is shown in Fig. 7.

4To further facilitate the numerical integration, in reflectometry runs the integration step in
TORBEAM is reduced with increasing density. Tools to extend and smooth density and temperature
profiles are provided with the code.
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Fig. 7. Left: Propagation of a reflectometry beam (injected from the low-field side with a frequency
of 84.9 GHz, O-mode), showing also the “classical” (cold plasma) and relativistic corrected position
of the cutoff. The reference ray is the red central line. Right: Profiles of cyclotron frequency (f-c),
plasma frequency (f-p) and cutoff frequencies for X and O-mode. The injection frequency is
represented by the solid horizontal red line, while the vertical dotted line shows the position of the
turning point.

In addition to the quantities at the turning point returned by the code in reflectometry
applications, see Sec. 3, the information about the beam parameters provided by the
pWKB method allows one to determine also the coupling between the beam and the
receiver antenna, which can be useful in assessing the measured signal and guide the
design of future reflectometers, as described in [11]. The coupling efficiency T, is given
[56, 57] by the squared modulus of the integral (taken on the antenna plane) of the product
of the beam field, given in terms of Egs. (3,5,6) and the antenna radiation pattern, which
simply follows from the vacuum solution for Gaussian beams, Eqgs.(1,13,14) of [11]. Taking
the centre of the antenna opening to be at (z¢,0,0) and integrating over the plane zy =
const., the result is given in terms of the beam tracing variables introduced in Sec. 2 as
follows (Eq. (15) of [11]):

16

Ty = == !
WO W1W2 det[a + X

7% exp(Pasads) exp(Re[(o + X);5babs]), (20)

with 045 = 2605/W¢ (Wy being the radius of the antenna pattern and d,5 the Kronecker
8), Xap = Pap + isap and by, = Yapqp — iN,, where now the indices o and 3 run only
over the (y,z) plane. A routine that calculates T, as part of the post-processing and
visualization is also supplied with the code.
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AUG #28877 : X-mode, 72 GHz

z (m)

Fig. 8. Full-wave |E|* contours overlaid with TORBEAM envelope (red) and central ray (black) for
an X-mode, 72 GHz, Doppler reflectometer simulation of AUG shot 28877. Launch antenna is in
lower right-hand corner. Fluz surfaces (ppoi) in blue. N? (turning point) layer in black.

To conclude this section, it is remarked that TORBEAM is applied routinely also to
Doppler reflectometry, which is a special application where the reflectometer probing beam
is incident obliquely to the cutoff layer (see Fig. 8) and is used to measure the turbulence
propagation velocity uy, = 2fp/k; from the Doppler frequency shift fp in the backscat-
tered signal [10]. Here, the ray and beam-tracing equations appear to give rather robust
estimations of both the ray-turning point, i.e. the region of maximum backscatter) and
the component beam wavenumbers % and k), which are required to convert the Doppler
shift to a velocity. The beam envelope behaviour may also provide relevant information
on the spatial and wavenumber resolution [58, 55].

8 Conclusions

The paraxial WKB method is a powerful tool to calculate the propagation of a high-
frequency beam in anisotropic inhomogeneous media, retaining diffraction effects with low
computational costs. Its numerical implementation in the code TORBEAM allows fast deter-
mination of power absorption and current density profiles in tokamaks, and is useful also
in diagnostics applications like reflectometry. With respect to the original publication [3],
significant advances have been made, which are reviewed in this paper. The functionalities
of the code have been extended, in particular to include accelerated versions suitable for
real-time usage in control loops running in parallel with an actual plasma discharge or for
integrated data analysis. From the point of view of the physics model, the calculation of
absorption and current drive includes now state-of-the-art capabilities like the fully rela-
tivistic treatment of the dielectric tensor in the calculation of the absorption coefficient and
momentum conservation in the calculation of current drive. The possibility of accounting
for the separate contribution of different harmonics in the calculation of the driven cur-
rent has been introduced. A theory-based algorithm for the calculation of the absorption
profile, applicable also for on-axis deposition, has been implemented and tested. This is
important, for instance, for advanced tokamak scenarios relying on counter-current drive
on axis. The application of the code to reflectometry studies has been discussed.

Further improvements and extensions of TORBEAM can be considered. From the point
of view of the underlying physical model, for instance, although the cold-plasma ap-
proximation should be sufficient in most of the cases of interest, including warm-plasma
dielectric-tensor elements in the calculation of the Hamiltonian function H would enable
the “anomalous” dispersion near the EC resonance [59] to be accounted for. From the
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numerical point of view, further steps to streamline the calculation and achieve even faster
performances in the accelerated versions could be undertaken. Very desirable, although
more speculative, since the corresponding theory has not been developed to date, would
be the possibility to account for the beam distortion due to asymmetric absorption or the
inclusion of scattering effects (as retained e.g. in the WKBeam code [38]) within the pWKB
method.

The code revisions are managed through an svn repository. This paper describes re-
vision 606. The code is distributed by the main author upon request, after a software
agreement with the author’s home institution (Max-Planck-Institut fir Plasmaphysik), ex-
cluding the commercial exploitation of the code, has been signed.
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A Power deposition of paraxial beams

Here we sketch the derivation of Eq.(14). The starting point is the steady-state continuity
equation for the wave energy density U [46]

V- (Uv,) = 23T, (21)

where v, is the group velocity and 7 is related to the absorption coefficient v introduced
in Eq.(11), see Eq.(31) below. The energy density is related to the electric-field amplitude
through [46]

w |8UJ11| 2
U = F 22
167 | ‘ (22)
Since
¢ OH/ON c

VoS T OH 0w wioH Y (23)

one has Uv, = c|E|*V /167 (for d,H < 0). Considering a region (1) of the plasma
inside the flux surface labelled by v, with boundary 99(%), the deposited power is the
energy that crosses 9€2(1)) per unit time,

P(y) = —/ Uv,-dS = —/ V-(Uvq)d3r:2/ FUd?r, (24)
o) Q) ‘ Q%)

where the second step follows from Gauss’s theorem and the third one from Eq. (21).
To proceed further, we write the electric-field solution, Eq.(3), introducing the relative
amplitude a(T)
E = Aga(7)e(r)etko(s()+io(r)) (25)

defined such that a(0) = 1. Hence
|E[* = |Aof*|a(7)|?e™*?. (26)

In the pWKB method, ¢ is a non-negative definite quadratic form, see Eq. (6), describing
the elliptic cross section of the wave beam with principal widths W3 and W5. The 1/e half-
width of the wave intensity (o |E|?) is hence given by wy o = Wj 2/v/2. As a consequence,
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the integral of |E|? across a constant-7 surface is
[ 1848 = 7l AP la(r) s (r)war). 7)
The power crossing this surface is hence
P(r) = %IV(T)IIAo\Qla(T)Ile(T)W(T) (28)

Using the previous equations, the relation between Eq.(21) and Eq.(11) can be estab-
lished. Integration of Eq.(21) inside a “flux tube” following the beam from the antenna
plane to the position labelled by 7 yields (with d®r = |V (7)|d7dS)

Agl? [T
P(r)— Py = —2/&Ud3r = —%/ 310, H| | V|]a|*wiwedr’. (29)
0

Deriving the previous expression and substituting Eq. (28), one finds

aP

O.H| .
wlo.H] .,

= —_9 30
= 5 p(r) (30)
from which Eq. (11) is recovered with
wl|o,H|_. 'V _
V= w10 H] lv =—7. (31)
c Vg

Finally, with 4 obtained from Eq. (30) and U from Eq. (22), and using Eq. (26) and
Eq. (28), Eq. (24) can be straightforwardly cast into the form (14) given in the main text
of this paper.
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