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Abstract. This letter reports a novel approach to improve the uniformity of atmospheric-pressure 

dielectric barrier discharges (DBDs) using a dual-frequency (DF) excitation consisting of a low 

frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the 

periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is 

temporally modulated i.e. enhanced and suppressed during each RF cycle. As a result, the 

discharge development is slowed down with a lower amplitude and a longer duration of the LF 

discharge current. Hence, the RF electric field facilitates improved stability and uniformity 

simultaneously allowing a higher input power. 

Atmospheric-pressure diffuse non-thermal plasma has various applications in industry [1–6]. One of the 

common ways to create large area non-thermal plasmas at atmospheric pressure (AP) is the dielectric barrier 

discharge (DBD) [1,2,4]. However, AP-DBD is typically filamentary resulting in a strong spatial non-

uniformity of the plasma, restricting its use for demanding applications such as deposition of high quality 

thin films [1,2]. The less common diffuse modes of AP-DBD can expand application fields in plasma-

assisted surface engineering and therefore are in the focus of scientific and industrial interest [7–13]. Due 

to the periodic re-ignition, the breakdown mechanism of DBDs determines the discharge phenomenology. 

To get a stable homogeneous DBD, during the breakdown the secondary electron emission at the cathode 

(γ emission), related to the negative surface charge of the dielectric [14,15], the trapped ions in the gas [9] 

and the long-lived metastables [16], has to be enhanced compared to the ionization in the gas bulk (α 

ionization) [17]. During the discharge development, the ionization has to be slow enough to avoid a large 

electronic avalanche. This can be achieved by enhancing the multiple step ionization process e.g. Penning 

ionization [18] and by reducing the gas voltage as soon as or before the ionization level becomes high 

enough to localize the electric field [19]. Besides, even though a diffuse discharge is obtained, it could transit 

into a filamentary mode when the power dissipated in the discharge increases beyond a certain limit [20]. 

In this study, we report an approach to improve the plasma uniformity together with a higher input power 

in an industrially relevant cylindrical electrode geometry by applying an extra 13.56 MHz radio frequency 

(RF) voltage on the 200 kHz low frequency (LF) voltage.  



2 

 

      A schematic of the atmospheric-pressure roll-to-roll plasma reactor is presented in figure 1. The 

discharge was ignited between a flat bottom electrode and a curved top electrode with a radius of 60 mm 

and a width of 45 mm. Both the electrodes were covered by 0.1 mm thick polymeric substrates as the 

dielectrics. The electrode temperature was maintained at 30 ℃ by means of an oil circulation system. The 

smallest distance between the two electrodes was 0.5 mm. The gas mixture was injected from the left side 

of the discharge area in figure 1, while the substrates were transported at 40 mm/min in the same direction 

as the gas flow. The flow rate of the gas mixture (Ar/O2/N2) was controlled at 5 slm/1 slm/1 slm (standard 

litre per minute). The DBD was excited by 200 kHz LF (SEREN L3001) and 13.56 MHz RF (SEREN R601) 

power sources which were superimposed and applied to the top electrode through a home-made matching 

circuit. The injected power of both power sources was modulated at 625 Hz with a pulse width of 800 µs 

and a duty cycle of 50%. The discharge voltage and current were measured by a high voltage probe 

(Tektronix P6015A) with 75 MHz bandwidth and a current transformer (Pearson model 4100), respectively. 

The discharge emission from the front view of the discharge area was obtained using a digital camera 

(Olympus OM-D E-M10 Mark II). An intensified charge-coupled device (ICCD) camera (PI 

MAX3), triggered by the applied voltage, was employed to collect the discharge emission from the 

side view of the gas gap with a macro lens (Tamron AF 90 mm). 
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Figure 1. Experimental set-up for the dual-frequency (DF) dielectric barrier discharge together with the 

electrical and optical diagnostic methods. 

 

      Figure 2 shows the voltage and current waveforms within one LF cycle (5 µs) recorded for the fixed 

electrode configuration and gas mixture with increasing amplitude of the RF voltage (URF). In the single LF 

discharge (URF = 0 kV), two current peaks can be clearly identified from the measured current, see figure 

2(a). In the DF discharges (URF > 0 kV), both the current and the voltage include LF and RF signals. By 

doing fast Fourier transform (FFT) of the original waveforms, the LF and RF components of both voltage 

and current can be separated (results not shown here). The amplitude of the LF voltage is relatively constant 

(2.2 ± 0.1 kV) in this study. With URF increasing (0 kV to 0.58 kV), the LF current increases from 0.12 A 

to 0.16 A, while the RF current increases significantly from 0 A to 0.97 A. This is mainly induced by an 

increase of the capacitive component of the RF current due to the solid dielectrics and the gas gap [21]. 

Moreover, by doing FFT filtering, signals above 10 MHz are removed, and the LF component of both 

voltage and current can be extracted, see figure 2(b)-(d). 

      Figure 3 shows the time-integrated images of the discharge emission from the side and front-view of the 

discharge area. From the side-view images, the discharges are relatively uniform with maximal emission 

intensity close to the electrodes. With URF increasing, the discharge area gradually expands, and the intensity 

of the discharge emission increases. From the front-view images and the corresponding intensity profiles, 

the single LF discharge (URF = 0 kV) is non-uniform with numerous filaments appearing in the discharge 

area. With URF increasing, the uniformity of the discharge is gradually improved, while filaments can be 

hardly observed in figure 3(d).  
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Figure 2. Original and fast Fourier transform (FFT) filtered current-voltage waveforms with RF voltage 

amplitude of (a) 0 kV, (b) 0.26 kV, (c) 0.46 kV and (d) 0.58 kV.  
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Figure 3. Side-view ICCD images with 1.6 ms exposure time (left), front-view images with 4 ms exposure 

time (middle) and normalized intensity profile of the front-view images (right) with RF voltage amplitude 

of (a) 0 kV, (b) 0.26 kV, (c) 0.46 kV and (d) 0.58 kV. 

 

      By controlling the delay between the camera gate and the voltage, single shot side-view ICCD emission 

intensities with gate width of 10 ns was obtained at various phases. The emission profiles in the discharge 

area were integrated in the horizontal direction (x direction in the side-view images in figure 3), and the 

phase-resolved discharge emission was obtained by collating and reconstructing the results, as shown in 

figure 4. The flat grounded electrode is situated at z = 0 mm, and the centre of the curved powered electrode 

is situated at z = 0.5 mm where the gap distance is the minimum. The emission intensity is normalized to 

the maximum in figure 4(d). From figure 4, the LF discharge (URF = 0 kV) is in a transient mode occupying 

approximately 40% of the LF cycle (5 µs). With the increasing of URF, both the discharge duration and the 

momentary emission intensity are enhanced.  
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Figure 4. Phase-resolved discharge emission within one LF cycle (5 µs) of the DF discharges with the RF 

voltage amplitude of (a) 0 kV, (b) 0.26 kV, (c) 0.46 kV and (d) 0.58 kV. The dash lines indicate the 

position of the minimal gaseous gap (0.5 mm). The surrounded areas correspond to the detailed emissions 

in figure 5 (a) and (b). 

       

      The detailed phase-resolved emission profiles in the surrounded areas in figure 4 together with the gas 

voltage and the discharge current are illustrated in figure 5(a) and (b), respectively. The estimated values of 

the gas breakdown voltage, the maximal amplitude of the LF discharge current, the input power and the 

normalized discharge emission intensity as a function of URF are presented in figure 6. 

      From figure 5(a), the discharge emission shows a structure with a high luminescence close to the 

instantaneous cathode and a bulk region, which under these conditions is identified as a high-current “glow-

like” mode and is transited from a low-current “Townsend-like” structure (too weak to see here) [22]. In 

this case, for the continuously running discharge, the gas breakdown voltage was estimated at about 0.67 

kV which is much lower than the first breakdown (~ 1.9 kV, result not shown here) in the beginning of each 

pulse train when the “memory effect” is not established [17]. As the discharge further develops, the positive 

space charge, initially accumulated in the anode region due to the difference in the mobility of electrons and 

positive ions, starts to affect the electric field profile. This will lead to the enhancement of the electric field 

and ionization rate in the cathode direction, resulting in the formation of the fast propagating ionization 

wave directed from the anode to the cathode [22]. Thus a transition to the glow-like mode occurs, 

accompanied by a fast jump in the current and the emission intensity by a few orders of magnitude, see 

figure 5(a).  

      Similar to the single LF discharge, the DF discharge (URF > 0 kV) is transient within the LF cycle but is 

also temporally modulated by the RF voltage, see figure 5(b). The ignition starts when the momentary LF 

voltage is about 0 kV, while the total gas voltage (ULF+URF) reaches about 0.65 kV (similar to the single LF 

discharge in figure 5(a)). From figure 6, with URF increasing, the total gas breakdown voltage stays relatively 

stable with a value of 0.7 ± 0.05 kV. Moreover, a clear transition from a “Townsend-like” structure to a 

“glow-like” structure is observed in the initial stage of the DF discharge, see figure 5(b). For the DF 

discharge, due to the difference in mobility, the ions can be regarded as static during the RF period (~ 74 

ns), while the electrons can follow the fast varying RF electric field. The field in the gas gap is enhanced 
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during the positive half cycle and suppressed during the negative half cycle of the RF voltage, leading to a 

temporally synchronous oscillation of the electron acceleration and thus the gas ionization. As a result, the 

ionization propagation within the LF cycle is slowed down, as confirmed by the clear “Townsend-like” to 

“glow-like” transition in figure 5(b) as well as the gradually decreasing amplitude of the LF discharge 

current in figure 6. As previously introduced, with a slower discharge development, a large electronic 

avalanche and thus a filamentary discharge can be avoided [17]. Hence, the RF modulation can be an 

effective approach to improve the stability and uniformity of the discharge, as shown in figure 3. 

Furthermore, from figure 6, increasing URF also allows a higher input power together with a higher discharge 

emission intensity.  
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(b) 

Figure 5. Phase-resolved discharge emission, gas voltage and discharge current in the initial stage of the 

discharges with RF voltage amplitude of (a) 0 kV and (b) 0.58 kV. 
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Figure 6. Variations of the breakdown voltage, the maximal LF current amplitude, the input power and the 

normalized discharge emission intensity as a function of the RF voltage amplitude. 

 

      To further understand the DF discharge mechanism, the FFT of the phase-resolved discharge emission 

in figure 4(d) is studied, see figure 7. Both fundamental and harmonics of fLF, fRF and fRF ± fLF signals can 

be observed. The FFT amplitudes of the fundamental signals (f0LF, f0RF and f0RF ± f0LF) as a function of the 

RF voltage amplitude are shown in figure 8. With URF increasing, both the fundamental components of LF 

and RF are moderately increased. The f0RF ± f0LF components, however, exhibit a more significant increase, 

indicating a stronger response of the discharge to the combined frequencies. 
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Figure 7. Fast Fourier transform of the phase-resolved emission intensity of the DF discharge in figure 

4(d). 
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Figure 8. Variations of the FFT amplitude of fLF, fRF and fRF ± fLF signals as a function of URF. 
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      In summary, atmospheric-pressure dielectric barrier discharges using a 200 kHz/13.56 MHz dual-

frequency (DF) excitation was studied. It is shown that a combination of LF and RF leads to a discharge 

strongly modulated by both frequencies, providing a higher input power and an improved discharge 

uniformity. In the continuously running discharge, the ignition starts when the momentary gas voltage 

reaches the breakdown value (~ 0.7 kV in this study). Due to the periodic oscillation of the RF electric field, 

the discharge is temporally modulated with an enhancement and a suppression during each RF cycle. As a 

result, the gas ionization is slowed down, making RF modulation an effective approach to improve the 

uniformity of the discharge at an increased power input. 
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