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Abstract. Electron Cyclotron Emission Imaging (ECEI) provides measurements of

electron temperature (Te) and its fluctuations (δTe). However, when measuring at the

plasma edge, in the steep gradient region, radiation transport effects must be taken

into account. It is shown that due to these effects, the Scrape-Off Layer (SOL) region

is not accessible to the ECEI measurements in steady state conditions and that the

signal is dominated by the shine-through emission. Transient effects, such as filaments,

can change the radiation transport locally, but cannot be distinguished from the shine-

through. Local density measurements are essential for the correct interpretation of the

electron cyclotron emission, since the density fluctuations influence the temperature

measurements at the plasma edge. As an example, a low frequency 8kHz mode,

which causes 10 % to 15 % fluctuations in the signal level of the ECEI, is analysed.

The same mode has been measured with the Lithium Beam Emission Spectroscopy

(Li-BES) density diagnostic, and is very well correlated in time with high frequency

magnetic fluctuations. With radiation transport modelling of the electron cyclotron

radiation in the ECEI geometry, it is shown that the density contributes significantly

to the radiation temperature (Trad) and the experimental observations have shown the

amplitude modulation in both density and temperature measurements. The poloidal

velocity of the low frequency mode measured by the ECEI is 3km/s. The calculated

velocity of the high frequency mode measured with the magnetic pick-up coils is about

25 km/s. Velocities are compared with the E×B background flow velocity and possible

explanations for the origin of the low frequency mode are discussed.
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1. Introduction

H-mode plasmas[1] are the foreseen scenario for the ITER operation[2]. This type of

scenario is characterized by steep gradients and the pedestal build-up at the edge of

the plasma. Edge Localized Modes (ELMs)[3, 4] lead to periodic relaxations of the

gradients including sudden losses of heat and particles into the unconfined region in ∼
1-2 ms time scale. These periodic bursts can cause intolerable heat loads on divertor

target plates and the erosion of plasma facing components. In order to maintain the

high confinement of heat and particles, but with no impurity accumulation and without

large uncontrollable ELMs, ELMs need to be mitigated. For such a full control the

dynamics of ELMs and ELM associated phenomena should be better understood.

The Electron Cyclotron Emission Imaging (ECEI) diagnostic, with multiple lines

of sight (LOS), where each LOS behaves like a conventional 1D radiometer, measures

the radiation temperature and its fluctuations on µs time scales and is specially suitable

for 2D or quasi-3D visualisation of MHD phenomena. It can thus help provide more

insight into the behaviour of the relative temperature fluctuations associated with the

ELM cycle. To date, ECEI has been installed on many tokamaks including: ASDEX

Upgrade[5], KSTAR[6], EAST[7], DIII-D[8] and HL-2A[9].

In the case of optically thick plasmas, where optical thickness is proportional to the

product of electron density and temperature, the intensity of the cyclotron radiation

equals the level of black body emission. In this case, under the condition that the

electrons are in a local thermodynamic equilibrium, radiation temperature is equal to the

electron temperature. However, when measuring at the plasma edge, where the density

and temperatures are relatively low, the electron cyclotron emission no longer equals the

black body radiation and the density contribution cannot be neglected. In this case the

radiation transport equation is solved in order to obtain the radiation temperatures. It is

important to note here that the geometry under which the light is collected plays a very

important role. Under perpendicular observation of the plasma, where the line of sight

is perpendicular to the magnetic field line, there is no significant parallel contribution of

the cyclotron emission and the Doppler broadening can be neglected. In this case, the

radial resolution of the system is set by the the band-pass filtering of the intermediate

frequency (IF) signal around the central frequency in the second down-conversion process

(the IF bandwidth). If, however, the observation angle is slightly oblique, as is the case

with the present ECEI system on ASDEX Upgrade, this Doppler broadening must be

taken into account. In this case the radial resolution of the system is set by both,

IF broadening and Doppler broadening. Another important point is related to hot H-

mode plasmas where the relativistically down-shifted emission contributes significantly

to the low field side emission. This effect shifts the peak of the resonance towards

the higher magnetic field[10]. When all the mentioned effects are taken into account,

measurement positions in the case of oblique diagnostics can significantly differ from

the cold resonances as shown in[11].

In this work, we examine a particular H-mode discharge during the phase between
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two subsequent ELM crashes, where the large amplitude density fluctuation alongside

the temperature fluctuations are measured. The main question to answer in this work

is if and how much of the fluctuating signal measured with ECEI, which is considered a

temperature diagnostic, is affected by the variation of the density at the plasma edge.

The paper is organized as follows. The ECEI diagnostic is described in more detail

in Section 2. Section 3 explains the forward model that is now routinely used for the

ECE Imaging at ASDEX Upgrade. Measurements of the temperature fluctuations and

the mode analysis by the ECEI is presented in Section 4. Section 5 treats the spatial

localization of the mode. Forward modelling of the electron cyclotron radiation with

density fluctuations in the steep gradient region is described in Section 6. In Section 7

we compare measured mode velocities with the E ×B velocity. A summary is given in

Section 8.

2. ECEI at ASDEX Upgrade

The ECEI diagnostic at ASDEX Upgrade is well suited for measurements of relative

temperature fluctuations with two separate arrays looking at two toroidally separated

locations inside the plasma under slightly different toroidal angles[12]. Its poloidal

extension covers the regions above, across, and below the midplane. The geometry

of the ECEI system, configured for the shot #33616, is shown in figure 1. Figure

1(a) shows the q=6 flux surface in toroidal geometry as the grey transparent surface.

The q = 6 magnetic field line is shown as a white solid line on top of the q = 6 flux

surface. The two red regions are showing the two ECEI systems and its toroidal location.

Toroidal separation of two ECEI systems is about ∆φ of 10o. Zoomed, the position of

the ECEI arrays relative to 1D ECE radiometer is shown in figure 1(b) in Cartesian

coordinates. The toroidal separation of 10o from figure 1(a) translates into 40 cm in

Cartesian coordinates. The black circle (•) corresponds to the location of the ECEI

channel used for the comparison with the magnetic measurements. Figure 1(c) shows

the poloidal cross section of ASDEX Upgrade indicating the measurement positions

for the different edge diagnostics used in this work: ECE Imaging, Li Beam Emission

Diagnostic (Li-BES)[13], channels of the 1D ECE radiometer[14] and magnetic pick-up

coils (note that the R is defined adR =
√
x2 + y2 ). The ECE and ECEI are temperature

diagnostics, the Li-BES is an edge density profile diagnostic, and the magnetic pick-up

coil measure magnetic fluctuations. The ECEI, ECE and Li-BES are positioned in the

same sector of ASDEX Upgrade, measuring at very close toroidal locations. The ECEI

has a toroidal observation angle. When focused at the edge, array 1 has a launching

toroidal angle of 7 degrees and array 2 has an angle of 5.7 degrees with respect to the the

1D ECE. As a consequence of the toroidal observation angle, the Doppler broadening

of the emission lines is increased, and therefore contributes to the radial resolution of

the diagnostic. In this work we use the data from the array 2 with the IF bandwidth of

390 MHz.

Emission of optically thick Maxwellian plasmas, when observed perpendicularly to
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Figure 1: a) q = 6 flux surface plotted as a gray shaded area for the shot # 33616 at t 7.2

s. Magnetic field line for this equilibrium is plotted as white solid line. The red surfaces,

intersecting the q = 6 flux tube correspond to two ECEI imaging systems. b) Absolute

measurement positions of two toroidally separated ECEI arrays in Cartesian coordinates

are shown as red crosses (X); edge channels of conventional ECE radiometer are shown

as green dots. The ECEI channel of the ECEI 2 array that is used for comparison with

the magnetic measurements is marked as black circle (•). c) Poloidal cross section of

ASDEX Upgrade indicating the measurement positions of: the Lithium beam diagnostic,

ECE Imaging, standard ECE radiometer and magnetic pick-up coil (B31-14).

the magnetic field, originates from a radially thin layer as is the case in the standard

ECE diagnostic on ASDEX Upgrade. Therefore, for perpendicular propagation, the

radial resolution of the system can be well approximated by the IF bandwidth of the

system. ECE Imaging has a contribution of Doppler broadened emission on top of

the IF broadening. When observing high density H-mode plasmas under the oblique

angle, the LOS can be approximated by a straight line for lower density cases, or curved

due to the high density gradient. Refraction of the beams causes an ambiguity in the

measurement positions. This is of special importance for the channels at the top and

the bottom of the ECEI arrays, since they encounter the strong gradients under the

largest angle. Also, due to the high temperature of the plasmas, relativistic effects

cannot be neglected. Because of the relativistic mass increase of the resonant electrons,

the frequency will be downshifted. When combined with the low optical depth at

the plasma edge, these effects make the interpretation and the origin of the electron

cyclotron radiation complicated and an extended Electron Cyclotron Forward Model

(ECFM), including the radiation transport effects, needs to be used as a standard tool

for determining the origin of the emitted radiation [11].
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3. Forward modelling of the radiation detected by the ECEI

In order to get an idea of the diagnostic constraints and characteristics, we describe the

forward modelling of the electron cyclotron radiation for an H-mode discharge where

we calculate the expected radiation temperatures for a given equilibrium and electron

density and temperature profiles. It is important to note that the IF bandwidth is

included in this modelling, the beam is approximated with a single ray and possible

influence by the O-mode emission is neglected.

For given Te and ne profiles, ray tracing, that accounts for refraction effects, is

performed for each channel and then the radiation transport equation is solved along

the line of sight until it reaches back to the antenna. The input electron density and

temperature profiles are shown in figure 2(a). Ray tracing, with an example of 111.6

GHz channels for all 20 lines of sight, is shown in figure 2(b) alongside the CLISTE

equilibrium reconstruction[15]. The separatrix position is shown as a thick solid black

line, whilst rays are shown as red dashed lines.

The characteristics of the emitted radiation as calculated by the ECFM of a single

ECEI (111.6 kHz) channel at the midplane are given in figure 3. We distinguish two

positions describing a single channel. The cold resonance position is only dependent

on the magnetic field. It is shown as a black dashed line. When radiation transport

effects are taken into account the emission position changes thus corresponding to a

warm resonance position. The warm resonance is given by the peak of the birth-place

distribution function Dω, depicted as a blue solid line. Red dashed line corresponds to

the peak of Dω for this channel. Its resolution is determined by the width of the Dω and

would correspond to the radial extent of the plasma mostly contributing to the emitted

radiation.
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Figure 2: a) Te and ne profiles used to forward model the radiation transport. b) Ray

tracing representing the lines of sight for 20 ECEI poloidally distributed channels.

The radiation transport equation is solved for every channel of one ECEI array.

The two dimensional distribution of the cold and the warm resonances is shown in
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figure 4(a). It is observed that the inner most channels are Doppler shifted towards

the larger major radius R, therefore lower toroidal magnetic field, whilst the outer most

channels (with the cold resonances outside the separatrix) are measuring the signal

from the region inside the separatrix. This emission corresponds to the relativistically

down shifted radiation. Expected radiation temperatures for ECEI channel mapped

onto cold and warm resonance positions are shown in figure 4(b) and 4(c), respectively.

It is observed that the measured surface area of the ECEI window, when mapped on

the warm resonances, is smaller than when mapped onto a cold resonances, due to

the shifts mentioned above. In the SOL region only shine-through emission from the

pedestal region can be observed in the steady state conditions.
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Figure 3: Origin of the observed emission (warm resonance) defined by the emitted

intensity Dω for the 111.6 GHz ECEI channel, at the midplane. Corresponding input

Te profile is shown as a black solid line. Warm resonance position is shown as black

dashed line and corresponds to a peak of Dω. The cold resonance is labelled as red

dashed line and depends only on the magnetic field strength. The radial width of the

plasma contributing to the measured signal is determined by the width (FWHM) of the

Dω.

The above analysis shows the effect of steady state plasma conditions on the ECEI

measurements. From this, one can conclude that measurements in the SOL region are

not feasible with the ECEI diagnostics during steady state, and all the signal measured

by channels in the SOL comes from the pedestal top. However, the presence of transient

events, such as filaments, affects the location of the emitted radiation locally, as shown

in figure 5.

In order to examine the effect of filaments, we use the electron temperature and

density distributions, instead of profiles. As the most realistic scenario we chose the

distributions from a non-linear JOREK simulation [16] during an ELM crash. It is a

simulation with two fluid effects as described in [17], with a single temperature assuming

that T = Te = Ti. However, the JOREK distributions are scaled down uniformly for



7

R (m)

z 
(m

) 

a)

2.05 2.1 2.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

R (m)

 

 

2.1 2.15

R (m)

 

 

2.1 2.15

100

200

300

400

500

600

b) c) Trad (eV)

Figure 4: Shot # 33616 at 7.5 s. a) Calculated cold resonances are labelled as red

crosses (X) and the warm resonances as black circles (•). The radiation temperature

mapped onto positions of the cold resonances (b) and the warm resonances (c). The

separatrix position is marked by a black dashed line.

about 20 % in order to match with the core electron density and the temperature values

at the midplane of the shot # 33195 at time t = 2.5872 s. In this ’hybrid’ simulation

the steady state equilibrium for shot # 33195 together with the electron density and

the temperature distributions are used as an input for the forward model.

As shown in figure 5(a) ne perturbation abruptly is crossing the separatrix, whilst

Te shown in figure 5(b) is smooth due to fast parallel heat losses on open field lines.

Modelled cold and warm resonances for these input distributions are shown in

figure 5(c) and 5(d), respectively. In figure 5(c) cold and warm resonances are plotted

over the input electron density distribution. As seen, the positions of the outermost

measurements match with the positions of the filaments. These outermost warm

resonances of the LOSs at the midplane are in the SOL region. This shows that

the presence of perturbation influences the measurement position locally shifting them

towards the cold resonances. In figure 5(d), resonant positions are shown together

with calculated radiation temperature. A shine-through radiation of about 300 eV

is observed in the SOL region. This shine-through originates from the filamentary

structures crossing the separatrix. Although, as shown, it is possible to probe the SOL

in non steady state conditions, both Te and a shine-through is expected in this region.

Thus, it is impossible to correctly interpret the measured signal without the knowledge

of the local density fluctuations.
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Figure 5: 2D JOREK profiles of a) Electron density; b) electron temperature. These

profiles are matched to the values of the density and the temperature for the shot #

33195 at time t = 2.5872 s and used as an input for electron cyclotron forward model

(ECFM). c) Warm resonance positions as calculated with the ECFM are marked as

black circles (•) and the cold resonances labeled as white crosses (X) are mapped onto

two dimensional distribution of the input density profile that is color codded. d) Warm

resonance positions as calculated with the ECFM (•) and the cold resonances (X) are

mapped onto a radiation temperatures obtained with the forward model for the input

electron density and temperature profiles shown in a) and b), respectively.
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4. Observations of the modes between ELM crashes

Less violent transient events related to an ELM are inter-ELM modes. They play a

crucial role in understanding an ELM cycle and may also be responsible for transport

across the pedestal. So far, extensive research on this topic has been reported

characterising the dynamics of the temperature fluctuations during the inter-ELM

period[18, 19] with ECEI. Magnetic signature also reveal high frequency fluctuations

with well defined mode numbers. They are located in the steep gradient region[20]

corresponding to the location of the minimum of the edge radial electric field[21].

Evidence of the quasi-coherent mode during an inter-ELM period have been reported

in[22].

In order to obtain an ECEI signal capturing ELM and inter-ELM associated

phenomena, measurements are conducted during H-mode plasmas, where steep

density and temperature profiles are formed (pedestal). However, to obtain reliable

measurements, the cut-off density limit is avoided by focusing on moderate pedestal top

density discharges. At the same time the auxiliary heating power is adjusted to obtain

ELM frequencies below 100 Hz, so that the inter-ELM dynamics of the temperature

fluctuations can be measured.

From the analysis of the previous section, using the typical H-mode profiles shown

in figure 2(a), we conclude that radiation temperature equals the electron temperature

Tr = Te and the ECEI system delivers the information on the electron temperature

Te and its fluctuations inside the separatrix. In this work we will use the the relative

change of the electron temperature δTe/〈Te〉 with respect to the mean value. Here, δTe

is defined as the Te − 〈Te〉, and 〈Te〉 is the time average. An example of the temporal

evolution of δTr/〈Tr〉 together with the divertor current as ELM indicator in the time

period of 60 ms of the discharge # 33616 is given in figure 6(a) and 6(b). Spectrograms

of the ECEI signal and the signal measured with the magnetic pick-up coil B31-14, are

shown in 6(c) and 6(d), respectively. The discharge was performed at a plasma current

Ip = 800 kA, toroidal magnetic field Bt = -2.52 T (negative sign means the opposite

to Ip), core line averaged density ne = 7× 1019 m−3 and with upper triangularity δu =

0.128 and the pedestal top collisionality ν∗ped ≈ 1.05.

Figure 6(a) shows the temporal evolution of the divertor shunt current that consists

of combined contributions of thermoelectric and Pfirsch-Schlüter current[23]. The bursts

in the divertor current are correlated with the drop in δ Tr/〈Tr〉measured with the ECEI

channel, shown in 6(b). Recovery of the temperature fluctuations after an ELM crash

happens in two steps: fast increase followed by the steady state phase. At the onset

of the steady phase, a low frequency (∼ 8kHz) narrow band mode sets in, see figure

6(c). The duration of the mode is about 10 ms and vanishes just at the onset of an

ELM crash. This low frequency mode correlates well in time with the high frequency

modes appearing in the magnetic measurements shown in figure 6(d). Both low and

the high frequency modes occur after the recovery of the maximum pressure gradient

as shown in figure 6(e). In figure 6(e) we shot the temporal evolution of the pressure
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Figure 6: Shot # 33616. Temporal evolution of the: a) Divertor current. b) Relative

change of the radiation temperature (δ Tr/〈Tr〉) measured by the single ECEI channel

in the steep gradient region. Power spectral density comparison between: c) ECEI

channel; d) magnetic pick-up coil; e) pressure gradient at two nearby radial locations

in the steep gradient region. The position of both ECEI channel and the magnetic coil

are indicated in figure 1.

gradient at the two nearby location in the region of steepest gradients. Correlation of

the clamping of the pressure gradient and the onset of the high frequency magnetic

fluctuations has been studied in [21]. The toroidal mode numbers of the high f modes,

determined from the magnetics are -8, -9, -10 showing that there are multiple modes

present in this frequency region. The negative sign corresponds to the rotation of the

mode in the electron diamagnetic direction.

A closer look at the inter-ELM mode is taken in figure 7. The measurement

positions of the edge ECEI channels are shown in figure 7(a). All channels distributed

along the flux surface, marked as red crosses see the ∼ 8kHz mode that modulates the

relative temperature level up to 10 % - 15 %.

The temporal evolution of δ Tr/〈Tr〉 measured by the single ECEI channel at the

vertical position z = 0.1 m, corresponding to the magnetic midplane, is shown in figure

7(b). A spectrogram of the midplane measurement, presented in figure 7(c), shows the

strong mode in the ∼ 8 kHz range. The observed mode slightly changes in frequency

during its lifetime. The duration of the mode is ∼ 10 ms and δ Tr/〈Tr〉 during its

lifetime is about 10 %.

Poloidally resolved measurements δ Tr/〈Tr〉 expressed in percentage along the flux



11

7.556 7.558 7.56 7.562 7.564 7.566 7.568 7.57 7.572
−0.2

0

0.2

f 
(k

H
z)

 

 

7.556 7.558 7.56 7.562 7.564 7.566 7.568 7.57

5

10

15

−20

0

20

t (s)

z 
(m

)

 

 

7.556 7.558 7.56 7.562 7.564 7.566 7.568 7.57

−0.1

0

0.1

0.2

−10

0

10

lo
g

 (
p

o
w

e
r)

 (
a

.u
)

(a)

(b)

(c)

# 33616

<Tr>

δ 
Tr

/<
Tr

>

 %

2.05 2.1 2.15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

R (m)

z 
(m

)

(d)

δ 
T

r/<
T

r>

Figure 7: Localization and the temporal evolution of δ Tr/〈Tr〉 seen in the ECEI

observation window. a) Warm resonant channels (•) of array 2, that measure the

modulation of the radiation temperature, are distributed along the flux surface at ρpol ∼
0.985. (b) Relative temperature change of a single channel 10 cm above the midplane.

c) Time resolved spectrogram of the channel as in (b) showing the presence of the

strong mode in the 7 - 8 kHz range. d) Temporal evolution of δ Tr/〈Tr〉 in percentage

measured by the channels distributed along the flux surface with positions shown in

(a) as black bullets. This representation visualize the propagation of δ Tr/〈Tr〉 in the

poloidal direction, from the bottom to the top channels, along the flux surface. Three

channel at the midplane (z=0) are set to zero.

surface are shown in figure 7(d) in a form of vertically distributed time traces. This

kind of visualisation helps to follow the propagation direction of the mode. From here

it can be seen that the mode propagates from the bottom to the top, corresponding to

the electron diamagnetic direction.

Such poloidally resolved measurements enable the determination of the poloidal

velocity of the observed mode. Figure 8(a) is a zoom into the phase of constant frequency

of the mode. Three channel at the midplane (z=0) are set to zero. The quality of data

for those channels was too poor due to electronics, therefore they are omitted for better

graphical representation.

In order to determine the velocity of the mode in the vertical plane we use the cross

correlation between a reference channel and all the other poloidally distributed channels

along the flux surface as shown in figure 8(b). The velocity measured this way, shows

no variations along the flux surface, and follows the straight line as indicated by the

black arrow. The calculated velocity of the mode is ∼ 3 km/s moving in the electron

diamagnetic direction. Cross correlation between three vertical positions indicates the

structure with three maxima fitting in the ECEI observation window. The local poloidal

wavelength of this mode, as measured on the low field side, therefore is λpol ∼ 15 cm.
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Figure 8: a) Vertically resolved δ Tr/〈Tr〉 along the flux surface during the 8 kHz mode

duration. b) Cross-correlation of the reference channel taken at the vertical position z

= -0.1 m with all other poloidal channels. The black arrow approximates the direction

of the mode propagation in space and time.

5. Spatial localization

To complement the analysis of the modes observed with the ECEI, data is compared with

other edge diagnostics shown in figure 1(a). The Li-BES diagnostic that resolves the

profiles of the electron density and its fluctuations at the plasma edge also observed the

mode activity. It is also measured by the conventional 1D ECE radiometer. Comparison

between conventional ECE, ECE Imaging and Li-BES measurements at the edge is

shown in figure 9 in the form of spectrograms. All spectrograms show activity in

the ∼ 8kHz range indicating the mode is present in both density and temperature

measurements.
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The amplitude of the density fluctuations is estimated from the Li-BES forward

model [13] in the following fashion: In order to obtain the information on the relative

change δn/n of the electron density, this quantity is varied in order to match measured

fluctuations in the collected light δI/I of 10 %. The deviation is assumed to be Gaussian

in space, of the width that matches the radial resolution of the Li-BES system (5 mm).

The location of the perturbation (center of the Gaussian) matches the channel where

the mode is detected. The variation in the density is calculated to be between 20 % - 40

%. The background electron density at the position of the mode is between (4−5)×1019

m−3.

The Li-BES and 1D ECE radial resolution of 5 mm allows for more accurate

localisation of the mode than the one from the ECEI. The 1D ECE channel at the

same location as the Li-BES channel measures the mode activity, therefore the position

of the measurement corresponds to the position of its respective channels at ρpol = 0.983.

At the separatrix position at ρpol = 1, the mode is not observed, whilst at the location

ρpol = 0.97 and inwards, ECE and ECEI do not observe the mode. Li-BES diagnostic

is not sensitive in this region.

This information is further used in the forward model of the electron cyclotron

emission in order to qualitatively investigate the influence of the density on the signal

measured by the ECEI in the steep gradient region where the mode is measured.

6. Forward model of the EC radiation with density fluctuations

Following the result of the analysis of the Li-BES data, the variation in the density level

is taken to be between 20% and 40%. Those limits are used for the electron cyclotron

forward model in order to study the radiation temperature response to the changes in

the density.
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a). b) Radiation temperatures without input temperature variation. c) with input
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In order to model the response of the radiation temperature to the density change,

the same steps are applied as explained in Section 3. This study requires the input

profiles with inserted density perturbation that mimics the one measured by the Li-

BES diagnostic. The shape of the perturbation is the same as the one used in the

Li-BES forward model.

Modelling accounts for three different scenarios assuming that we have the cases

where the temperature and the density are in phase but of different amplitudes. For

this reason, the δT/T of to 0, 0.1, 0.15 is added on top of the background Tee profile.

For each case we varied the density profile as shown in figure 10.

Figure 10 (a) shows the input density profiles used for the modelling. The density

variation is between 20 - 40 % and is color-coded.

Variations in the radiation temperatures cannot be distinguished between the three

cases for δTe/Te of 0, 0.1, 0.15 shown in figure 10(a), 10(b), 10(c), respectively. The

variation in the density (δne/ne) for each case induces the change of the radiation

temperature ∆Tr. At the location of the mode (ρpol = 0.983) we can see that 20 %

of the density perturbation is captured in the radiation temperatures inducing 3 %

change in the radiation temperature. Change in the Tr increases with the amplitude of

the density variation. It is important to note that in the forward model we omitted the

possible O-mode contribution and that the complex ECEI beams are approximated with

a single array. This already simplifies the complexity of the ECEI geometry, therefore

the modelled and measured amplitudes cannot be directly compared.

7. Mode velocities and comparison to the vE×B velocity

The mode velocity in the ECEI reference frame is vmode = vE×B + vph, where vE×B

is governed by the radial electric field Er, and vph is the intrinsic phase velocity of the

mode. The Er profile for this discharge is estimated using the neoclassical approximation

for the poloidal flow of impurities[24], using experimental profiles of ne and Ti. The ne

and reconstructed Er profiles are shown in figure 11(a). The position of the highest

perturbation in the signal, detected with different diagnostics, is within the color coded

areas and those areas represent the radial extent of the plasma contributing to this

measurement. Grey corresponds to the radial resolution of the ECEI and red to the

Li-BES and ECE, respectively. It can be seen that the ECEI averages the signal over a

much wider range of plasma radius. If we assume that he location of the mode is where

the perturbation in the diagnostic measurements peaks, the radial resolution of the Li-

BES and ECE then enable localization of the mode to a precision of 5 mm as explained

in the Section 5. The background vE×B velocity is calculated as vE×B(r) =
~E(r)× ~B(r)
B(r)2

and is shown in figure 11 (b). The evaluated vE×B at the position of the perturbation

peak is about 25 km/s and matches with the minimum of the Er. This is, however, not

in agreement with the velocity obtained from the poloidaly distributed ECEI channels,

which is measured to be 3 km/s.

The high frequency modes (see figure 6(d)) are observed at the same time as the



15

0.94 0.95 0.96 0.97 0.98 0.99 1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

19

n
e (

m
−

3  )

0.94 0.95 0.96 0.97 0.98 0.99 1

−25

−20

−15

−10

−5

0

5

v
E

x
B (

k
m

/s
)

ρ pol

E
C

E
 &

 

L
i-

B
E

S

E
C

E
I

ρ pola) b)

vExB ~ 25 km/s

v ECEI ~ 3 km/s

# 33616 at 7.5 s

E
r 

(k
V

/m
)

high f 

modes

ECEI ~ 3 km/s

high 

modes

ECEI ~ 3 km/s

high 

modes

− -50

− -40

− -30

− -20

− -10

−  0

Figure 11: Shot # 33616 at t= 7.5 s. a) Density profile of the steep gradient edge region

shown as a black solid line; radial electric field Er estimated from the poloidal flow of

impurities is presented as a dashed gray line. Radial resolution of the edge diagnostics

used in this work is color coded: red corresponding to the Li-BES and 1D ECE channel;

grey corresponding to the ECEI channel. b) E × B velocity calculated using the Er.

The vertical dashed line shows the position of the mode in case the velocity of the mode
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low frequency modes on the magnetic pick-up coils measuring at the low field side. As

shown in [21] the high frequency modes measured by the pick-up coils are located in

the minimum of the Er. From the measured frequency of the high frequency modes,

if the mode is located on the rational surface q = m
n

, one can determine its poloidal

velocity as the vmode = 2 · π · r f
q·n , where r is the radial location of the mode and f its

frequency. Using the following parameters of q = 5, f = 240 kHz, n = 8 and r = 0.6 m,

the calculated mode velocity is ∼ 22 km/s and is comparable with the E × B velocity

within the measurement uncertainties. The propagation direction of both low and the

high frequency modes is in the electron diamagnetic direction and their velocities differ

by almost a factor of 10.

However, the maximum of the perturbation does not necessarily have to coincide

with the position of the mode. The mode located at the pedestal top could cause the

displacement in the region of the steepest gradients where the diagnostics are most

sensitive. If the mode is located at the pedestal top, the velocity of the mode would

match the vE×B velocity within the measurements uncertainty. This would correspond

to a ρpol of about 0.964, marked as the vertical dashed black line shown in figure 11(b).

The background density at this position is 5.5 × 1019m−3. Thus low sensitivity of the

diagnostics at the pedestal top could cause the ambiguity in the measurement position.

This effect will be further investigated.
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8. Summary and Discussion

In summary, it is shown that SOL measurements with the ECEI are not feasible in steady

state due to the shine-through emission in this region. The radiation temperature in

the SOL region, which is a region of low optical depth, is down-shifted emission from

the electrons in the tail of the Maxwellian originating in the pedestal region.

However, the presence of ELM filaments in the SOL region can change the optical

depth locally, due to the locally higher density and temperature, therefore both, shine-

through as well as the local emission can be observed simultaneously. In this case

it is difficult to distinguish between the two contributions without the local density

measurements.

In the H-mode discharge examined in this work, a strong 8 kHz mode has been

observed with different edge diagnostics between ELMs. The mode is highly correlated

with the high frequency (∼ 200 kHz) inter-ELM modes detected on the magnetic pick-

up coils since the both branches set in the phase of the clamped pressure gradient

before an ELM crash. Another interesting feature is that the high frequency modes

are localized at the position where the diagnostics measure low frequency amplitude

modulation of 8 kHz. This position matches with the minimum of the radial electric

field and the propagation direction of both low and the high frequency modes is in the

electron diamagnetic direction, in agreement with the sign of the Er. The magnetic

pick-up coils measure multiple modes with well defined toroidal mode numbers whilst

the ECEI/ECE/Li-BES measures a single mode at low frequency. The low frequency

mode is also seen on the magnetics, but of very low amplitude and its mode numbers

remained undetermined.

The cross-correlation analysis from the ECEI measurements has shown the poloidal

structure of the low frequency mode with the local poloidal wavelength λp = 15 cm. The

poloidal mode velocity as calculated from the signals of the ECEI channels distributed

along the flux surface is 3 km/s, rotating in the electron diamagnetic direction. With

the high spatial resolution of the Li-BES and 1D ECE diagnostics, the peak of the

perturbation in the signal amplitude is measured with higher accuracy than the one

of the ECEI diagnostic. The same perturbation in between ELMs is observed in the

density measurements with the Li-BES diagnostic. Since measurements of the Li-BES

are sensitive to the changes in the density it is concluded that ne fluctuations contribute

to the ECEI measurements. To account for this we used forward model of the electron

cyclotron emission by adding a Gaussian perturbation in the pedestal region to mimic

the possible density fluctuations in that region. This study has shows that the density

fluctuation level can influence the measurements of ECEI and contribute to the measured

radiation temperature Tr. Thus, knowledge about the local density values is necessary

for correct interpretation of the measured signal.

Taking into account the measurement facts and the ambiguities in measurements

due to the diagnostics sensitivity, only the hypotheses can be proposed as possible

explanation for the appearance of the low frequency mode and those will be further
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investigated.

One hypothesis supports the idea of a non linear interaction between two or more

high frequency modes that as a result give the low frequency mode. This resulting

mode is non linearly amplified in the low field side region where it is measured by the

ECEI. Experimental findings that support this theory have already been reported on

different machines. Significant modification of the mode structure due to the non-linear

coupling has been reported on TCV [25] and similar amplitude modulation has been

observed in KSTAR [26] and explained by a superposition of two modes with different

poloidal velocities. In the case studied in this manuscript, the result of the multiple

mode interaction would be the wave with a measured group velocity of 3 km/s.

Another hypothesis is that the measured mode coexist together with the high

frequency modes, at the same position, but very weak in amplitude compared to the

high frequency modes. In this case, the E × B velocity of 25 km/s and the measured

mode velocity of 3 km/s would result in a mode with a large phase velocity vph = 22

km/s, in the ion diamagnetic direction.

The third possibility is that the mode is located where the measured velocity of

the mode matches the E × B velocity. In this case the position of the mode is at the

pedestal top and mode has no resolvable intrinsic phase velocity (vph = 0). The mode

has well defined structure rotating in the electron diamagnetic direction in agreement

with the E×B at that location. The nature of the mode could be assigned to the density

fluctuation at the pedestal top that influences the steepest gradient region, where the

diagnostics is most sensitive.

To distinguish between the possible explanations on the origin of the mode in near

future work we will examine the poloidal velocities of the low frequency modes with a

variation of plasma parameters which are known to change the frequency of the high

frequency modes, i.e. edge safety factor q and the ion pressure gradient ∇pi. Also,

we will compare the dynamics of the fluctuations measured by the ECEI with newest

non-linear JOREK simulation comprising an inter-ELM period. Further investigation

on the sensitivity of the measurements in the pedestal top region will be conducted.

Possible effect of the low frequency mode on transport will also be assessed in the future

analysis.

The ECEI diagnostic, with its excellent poloidal resolution, is a useful tool for

characterizing fluctuations at the edge by means of their poloidal size and velocity. The

signal, however, can be dominated by the changes in the density profile and does not

necessarily reflect the amplitude of the Te fluctuations.
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confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak.

Phys. Rev. Lett., 49:1408–1412, Nov 1982.

[2] Y R Martin, T Takizuka, and the ITPA CDBM H-mode Threshold Database Working Group.

Power requirement for accessing the h-mode in ITER. Journal of Physics: Conference Series,

123(1):012033, 2008.

[3] H. Zohm. Edge localized modes (ELMs). Plasma Physics and Controlled Fusion, 38(2):105, 1996.

[4] A. W. Leonard. Edge-localized-modes in tokamaks. Physics of Plasmas, 21(9):090501, 2014.

[5] I. G. J. Classen, J. E. Boom, W. Suttrop, E. Schmid, B. Tobias, C. W. Domier, N. C. Luhmann
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