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Abstract
The new method of the Spectral Web to calculate the spectrum of waves and instabilities of

plasma equilibria with sizeable flows, developed in the preceding Paper I,1 is applied to a collection

of classical magnetohydrodynamic (MHD) instabilities operating in cylindrical plasmas with shear

flow or rotation. After a review of the basic concepts of the complementary energy giving the

solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical

model is presented and the spectral equations are derived. The first example concerns the internal

kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic

shear flow profile. The old stability diagram and the associated growth rate calculations for static

equilibria are replaced by a new intricate stability diagram and associated complex growth rates

for the stationary model. The power of the Spectral Web method is demonstrated by showing that

the two associated paths in the complex ω-plane nearly automatically guide to the new class of

Global Alfvén Instabilities (GAIs) of the force-free configuration, that would have been very hard

to predict by other methods. The second example concerns the Rayleigh–Taylor instability of a

rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that

are remedied. The most global n = 1 instability and a cluster sequence of more local but much

more unstable n = 2, 3, . . .∞ modes are located on separate solution paths in the hydrodynamic

(HD) version of the instability, whereas they merge in the MHD version. The Spectral Web

offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén

and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in

the complex plane by physically meaningful curves towards the continua. The third example

concerns the magneto-rotational instability (MRI) thought to be operating in accretion disks about

black holes. The sequence n = 1, 2, . . . of unstable MRIs is located on one continuous solution

path, but also on infinitely many separate loops (‘pancakes’) of the conjugate path with just one

MRI on each of them. For narrow accretion disks, those sequences are connected with the slow

magneto-sonic continuum, which is far away though from the marginal stability transition. In this

case, the Spectral Web method is the first to effectively incorporate the MRIs into the general

MHD spectral theory of equilibria with background flows. Together, the three examples provide

compelling evidence of the computational power of the Spectral Web Method.

PACS numbers: 52.30.Cv, 52.30.-q, 52.35.Bj, 47.65.-d
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I. INTRODUCTION

In the preceding paper,1 henceforth referred to as Paper I, a new method was introduced
to obtain the ideal magnetohydrodynamic (MHD) spectrum of waves and instabilities of
stationary equilibria. This involves the construction of what was called the Spectral Web,

consisting of a dual set of curves in the complex ω-plane, the solution path and the conjugate

path, with the eigenvalues on the intersections. In this paper, the Spectral Web method will
be applied to the computation of the MHD spectra for the standard ‘diffuse linear pinch’,2

i.e. a cylindrical plasma of infinite length or of finite length (a so called periodic cylinder,
frequently exploited to model toroidal tokamak plasmas). We will show how the Spectral
Web for stationary, in particular rotating, plasmas drastically changes our perspective on the
classical instabilities of internal and external MHD modes of laboratory and astrophysical
plasmas. The method is extended to external kink modes and resistive wall modes in a
forthcoming paper. The present paper is restricted to cylindrical geometry, but the Spectral
Web method is equally valid for toroidal plasmas, as was shown in Paper I.

Recall that the appropriate starting point for the study of MHD waves and instabilities
of stationary equilibria is the spectral differential equation of Frieman and Rotenberg3 for
normal modes exp(−iωt) of the plasma displacement vector field ξ:

G(ξ) − 2ρωUξ + ρω2ξ = 0 . (1)

Here, G(ξ) ≡ F(ξ)+∇·
(
ξρv ·∇v)−ρ(v ·∇)2ξ is the force operator for stationary equilibria,

generalizing the well-known expression F(ξ) for static equilibria,4 and U ≡ −iv · ∇ is the
gradient operator projected onto the equilibrium velocity. Applying closed-system boundary
conditions (BCs) on ξ, Eq. (1) becomes a quadratic eigenvalue problem in terms of the two
operators G and U , which are both self-adjoint. Hence, the two associated quadratic forms

W ≡ −1
2

∫
ξ∗ ·G(ξ) dV , and V ≡ 1

2

∫
ρξ∗ · Uξ dV , (2)

are real for solutions satisfying those BCs. Introducing the normalization I ≡ 1
2

∫
ρ|ξ|2 dV ,

a quadratic equation for the complex eigenvalue ω ≡ σ + iν is obtained:

ω2 − 2V ω − W = 0 , V ≡ V/I , W ≡ W/I , (3)

where V and W are the solution averages of the Doppler–Coriolis shift and of the potential
energy of the perturbations, respectively. For instabilities with real frequency σ and growth
rate ν, the solutions of this quadratic equation may be written as

σ = V , ν = ±
(
− W − V

2)1/2
. (4)

However, these expressions cannot be evaluated a priori . In the standard approach, they
can only be computed a posteriori, i.e. by substituting the final solution of the spectral
equation (1) consisting of the eigenvalue–eigenfunction pair {ω, ξ(r; ω)}.

In Ref. 5, a new method of solving the quadratic eigenvalue problem (1) + BCs was devel-
oped based on the fact that the operator U is actually self-adjoint irrespective of whether ξ

satisfies the BCs or not. Hence, V is real throughout the complex ω-plane for any solution
of Eq. (1), not necessarily an eigenfunction. In particular, one may compute the value of
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V for arbitrary ω by ‘shooting’ from the magnetic axis with solutions of Eq. (1) that only
satisfy the BC there. For a given value ν = ν0, the resulting nonlinear algebraic equation,

σ − V
[
ξ(r; σ + iν0)

]
= 0 (solution path) , (5)

is solved by straightforward iteration on the zeros, giving one or more solutions σ = σ0(ν0).
The collection of all these points {σ0(ν0) + iν0} of the ω-plane, where the Doppler–Coriolis
shift of the real part of the frequency vanishes, was called the solution path. The actual
eigenvalues were obtained by a second iteration, along the solution path, to also satisfy the
remaining, outer, BC. Thus, the solution path may be considered as the counterpart for
stationary equilibria of the imaginary axis (σ = 0), on which the eigenvalues are constrained
to lie for static equilibria.

In Paper I, the solution path method was significantly improved by computing the Spec-
tral Web. This involves considering the effect of the open boundary on the quadratic form W ,
which then becomes complex:

W = Wsym + Wcom . (6)

Here, Wsym is the usual symmetric (real) volume integral of the plasma potential energy,
whereas Wcom is the complex surface integral representing the energy that would have to be
injected into of extracted from the plasma through the open boundary in order to maintain
the time-dependence of the system at exp(−iωt) with a particular value of ω. The eigenvalues
are then obtained by computing the zeros of that complementary energy, where the potential
energy becomes real again:

Wcom

[
ξ(r; ω)

]
= 0 ⇒





Im(Wcom) = 0 (solution path)

Re(Wcom) = 0 (conjugate path)
. (7)

This involves computing two paths, viz. the mentioned solution path and another path, called
the conjugate path. The ideal MHD spectrum of unstable modes of stationary equilibria is
then found by constructing the Spectral Web consisting of the superposition of the curves of
the solution path and the conjugate path in the complex ω-plane, whereas the eigenvalues
are located at the intersections of those curves.

II. STATIONARY CYLINDRICAL PLASMAS

A. Model equilibria

The most basic model for confined plasmas is the circular cylinder model with a cylin-
drically symmetric magnetic field and velocity with a longitudinal (z) and an azimuthal (θ)
component. For the equilibrium of such translating–rotating plasmas, just one restriction
needs to be observed on the radial dependence of the density ρ, the pressure p, the magnetic
field components Bθ, Bz, and the velocity components vθ, vz, viz.:

(p + 1
2
B2)′ = (ρv2

θ − B2
θ )/r − ρΦ′

gr , Φgr ≈ −GM∗/r , (8)

where the prime indicates differentiation with respect to r. The gravitational potential Φgr of
an external compact object of mass M∗ is included for the analysis of the magneto-rotational
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instabilities of thin accretion disks in the cylindrical approximation (Section V). Of course,
this contribution is dropped for laboratory plasmas.

The circular cylinder symmetry permits to express the displacement vector in terms of a
sum of uncoupled Fourier harmonics of the form

ξ(r, θ, z, t) =
[
ξr(r)er + ξθ(r)eθ + ξz(r)ez

]
ei(mθ+kz−ωt) , (9)

where m is an integer and k is a real number. We will consider four kinds of cylindrical
equilibrium models having different restrictions on the wave number k, viz.:

(a) standard infinite cylinder : −∞ < k < ∞;

(b) ‘straight’ tokamak, a periodic cylinder of length L = 2πR0 modeling a toroidal plasma
of major radius R0 : k = n/R0 with integer n;

(c) rotating jet, a cylinder of length L with fixed ends : k = nπ/L with integer n;

(d) thin accretion disk, an annular cylinder with ∆r ≡ r2 − r1 and small L = ∆z ≪ ∆r,
so that the approximation (8)(b) for the gravitational potential is valid : k∆z ≫ 1.

For model (a), the normalized (inverse) pitch of the magnetic field lines is expressed by
µ ≡ Bθ/(rBz). For the models (b) and (c), it is expressed in terms of the tokamak safety
factor, q ≡ (µR0)

−1 ≡ rBz/(R0Bθ) = 4πr2Bz/(LIz), where Iz is the total longitudinal
current flowing in the plasma, so that the parallel gradient operator becomes

F ≡ −iB · ∇ = mBθ/r + kBz =





(k + µm)Bz (infinite cylinder)

(m/q + n)Bz/R0 (tokamak)

(m/q + 1
2
n)2πBz/L (jet)

. (10)

We also define the perpendicular gradient operator, G ≡ −i(B × n) · ∇ = mBz/r − kBθ ,
for later use. For plasma surrounded by vacuum, the Kruskal–Shafranov condition for the
absence of a rational magnetic surface F = 0 in the vacuum, i.e. stability with respect to
the m = n = 1 external kink mode of a static plasma, then becomes:

q(r = a) > 1 (tokamak) , q(r = a) > 2 (jet) . (11)

In normal tokamak operation, this limit is always observed. In astrophysical jets, this limit
usually appears to be violated so that it becomes imperative to consider the modifications
caused by the equilibrium background velocities vθ and vz. Since the present paper is
restricted to internal modes, this topic is relegated to future investigations.

B. Spectral differential equations

To implement the Spectral Web method, we first need to solve the spectral differential
equation. For translating–rotating cylindrical plasma equilibria, this becomes a second or-
der ordinary differential equation (ODE) for the radial component χ ≡ rξr of the plasma
displacement, obtained from the Frieman–Rotenberg spectral equation (1) in the cylindrical
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limit,6,7 for astrophysical applications extended with the contributions of the gravitational
potential.8 We here exploit the representation given in Eq. (13.107) of Ref. 9:

d

dr

(
N

D

dχ

dr

)
+

[
A +

B

D
+

(
C

D

)′ ]
χ = 0 , (12)

where the coefficients are defined below. This ODE is to be solved subject to the BCs

χ(0) = 0 , χ(a) = 0 , (13)

where the second one is due to a rigid wall at r = a. For the annular model (d), the positions
r = 0 and r = a are to be replaced by r = r1 and r = r2, of course not to be considered as
positions of rigid walls but as defining the region of localization of the eigenfunctions.

For stationary equilibria, the coefficients of the spectral differential equations not only
involve the gradient operator projected onto the magnetic field, F , defined in Eq. (10), but
also the gradient operator projected onto the velocity field, U ≡ −iv · ∇ (connected to the
solution-averaged Doppler–Coriolis shift defined in Eq. (22) below). The Doppler part of
that operator appears in the coefficients through the local Doppler-shifted frequency

ω̃(r) ≡ ω − Ω0(r) , Ω0(r) ≡ mvθ(r)/r + kvz(r) . (14)

The singularity coefficients N and D of the ODE (12) are defined by

N ≡ 1

r
Ã S̃ , Ã ≡ ρ(ω̃2 − ω2

A) ≡ ρ(ω − Ω+
A)(ω − Ω−

A) ,

S̃ ≡ ρ(γp + B2)(ω̃2 − ω2
S) ≡ ρ(γp + B2)(ω − Ω+

S )(ω − Ω−
S ) , (15)

D ≡ f̃0 s̃0 , f̃0 ≡ ρ(ω̃2 − ω2
f0) ≡ ρ(ω − Ω+

f0)(ω − Ω−
f0) ,

s̃0 ≡ ρ(ω̃2 − ω2
s0) ≡ ρ(ω − Ω+

s0)(ω − Ω−
s0) . (16)

An alternative expression for the latter reads: D ≡ ρ2ω̃4 − h2S̃, where h2 ≡ m2/r2 + k2.
The expressions Ω±

A and Ω±
S represent the forward/backward (±) Alfvén and slow genuine

singularities associated with the four continuous spectra of stationary equilibria:

Ω±
A(r) ≡ Ω0(r) ± ωA(r) , Ω±

S (r) ≡ Ω0(r) ± ωS(r) ,

ω2
A ≡ F 2/ρ , ω2

S ≡
[
γp/(γp + B2)

]
ω2

A , (17)

where ±ωA and ±ωS are the static counterparts. Likewise, the expressions Ω±
f0 and Ω±

s0 repre-
sent the forward/backward (±) fast and slow apparent singularities of stationary equilibria:

Ω±
f0(r) ≡ Ω0(r) ± ωf0(r) , Ω±

s0(r) ≡ Ω0(r) ± ωs0(r) ,

ω2
f0/s0 ≡ 1

2
ω2

m

[
1 ±

(
1 − 4ω2

S/ω
2
m

)1/2 ]
, ω2

m ≡ h2(γp + B2)/ρ . (18)

The expressions of the remaining coefficients A, B and C are given in Appendix A.
For numerical integration, a representation by first order ODEs is to be preferred over a

second order one. By means of the Eulerian total pressure perturbation,

Π ≡ −(Nχ′ + Cχ)/D , (19)
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the second order ODE (12) may be transformed into the equivalent system of first order
ODEs in terms of χ and Π:

N
d

dr

(
χ

Π

)
+

(
C D

E −C

)(
χ

Π

)
= 0 . (20)

The new coefficient E is related to the coefficients of Eq. (12) by

E ≡ −N
(
A + B/D

)
− C2/D . (21)

This expression exhibits two significant proportionalities, viz. NB + C2 ∼ D, which guar-
antees the absence of spurious D = 0 singularities in the second order formulation, and
DE + C2 ∼ N , which guarantees the absence of spurious N = 0 singularities in the first
order formulation. Crucially, the explicit expression for E, given in Appendix A, is a poly-
nomial in ω̃, just like the other five coefficients.

For real values of ω̃, all of the above expressions are real. For complex values of ω̃, the
expressions need to be split into real and imaginary parts. Writing ω ≡ σ + iν, it is noticed
that the r-dependence of ω̃(r) = σ̃(r) + iν only resides in the real part: σ̃(r) ≡ σ − Ω0(r).
Thus, for complex values of ω̃, Eq. (20) becomes a system of four first order ODEs. Since
they are singular at r = 0, numerical integration requires the expansions of Appendix B.
The consequences of real singularities away from the origin are presented in Appendix C.

C. Spectral Web and alternator

Since numerical integration of the system of two (for real ω) or four (for complex ω)
first order ODEs (20) starting from the origin is straightforward, the only problem left
is to design an iterative procedure for the eigenvalue search in the complex ω-plane such
that, eventually, both BCs (13) are satisfied. For unstable eigenvalues, the solution-averaged

Doppler–Coriolis shift should vanish according to Eq. (5), so that

σ = V
[
χ(r; ω)

]
≡
∫

ρ
[
rΩ0|ξ|2 + iv̄θ(χ

∗ξθ − χξ∗θ)
]
dr∫

ρ|ξ|2 rdr
(solution path) . (22)

Here, the term with Ω0 represents the Doppler part and the term with v̄θ ≡ vθ/r represents
the Coriolis part of the shift. To evaluate the volume integrals, one would need to substitute
the expressions for ξθ and ξz [obtained from Eqs. (A6) and (A7) of Appendix A] in terms of
the solutions χ and Π of the ODE (20).

In the Spectral Web method, instead, the iteration on the eigenvalues is performed by
determining the zeros of the two components of the complementary energy according to
the scheme (7). The explicit expressions for Wcom are given by Eqs. (18), (40) and (42) of
Paper I for the left, right and mixed internal solutions, respectively. For the left solutions
of a finite length cylinder, the complementary energy reduces to

W ℓ
com

[
χ(r; ω)

]
= πL

(
χ∗Π

)
r=a

⇒





πL
(
χ1Π2 − χ2Π1

)
r=a

= 0 (solution path)

πL
(
χ1Π1 + χ2Π2

)
r=a

= 0 (conjugate path)
. (23)

Similar simple expressions are easily derived for the other solutions. Whereas the rela-
tion (22) for the solution path is physically quite significant, the equivalent relation (23)(a)
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is clearly to be preferred since it just requires evaluation of an expression involving the
known boundary data of χ and Π.

As pointed out in Paper I, the numerical implementation of the Spectral Web method
involves two stages, which may be executed independently, viz.
(a) Contour plotting of the full Spectral Web by solving Eqs. (23) in the strip of the complex
ω-plane where the unstable eigenvalues are restricted to lie according to Eq. (22);
(b) Separate eigenvalue search by, first, constructing the solution path by solving Eq. (23)(a)
and, next, finding the eigenvalue(s) and associated eigenfunctions on that path by deter-
mining the zeros of the alternator.
In this manner, a physically meaningful structure is obtained that connects all eigenvalues
in the complex ω-plane. The significant implications for the spectral theory of stationary
equilibria will be demonstrated by the explicit examples of the following sections.

The ideal MHD spectrum of a static cylindrical plasma obeys a fundamental oscillation
theorem:10 the eigenfrequencies are monotonic in the number of nodes of the eigenfunction
for values of ω that lie outside the ranges of the continua {±ωA} and {±ωS} and the appar-
ent singularities {±ωs0} and {±ωf0}. This property appears restricted to static equilibria
because the eigenvalue only enters as the real parameter ω2 so that the eigenfunctions are
essentially real. Because ω̃(x) is real for ν = 0, this remains true for the stable oscillations
of stationary equilibria so that the real part of the spectrum is still monotonic outside the
ranges {Ω±

A}, {Ω±
S }, {Ω±

s0}, {Ω±
f0}, and {Ω0}, as proved in Ref. 11. These ranges frequently

leave very little space for monotonic real discrete modes and, most important, the theorem
does not apply to the complex unstable part of the spectrum.

Fortunately, a generalization of the oscillation theorem to stationary equilibria could
be constructed by exploiting a quantity that was called the alternator.1,5 This involves the
quotient of the boundary values of χ and Π so that it is directly related to the complementary
energy. For the left, right, and mixed solutions this yields, respectively:

W ℓ
com = πL

(
χ∗Π

)
rr

= πL
∣∣Π
∣∣2
rr

Rℓ∗ , Rℓ ≡ χ(rr)/Π(rr) ,

W r
com = πL

(
χ∗Π

)
rℓ

= πL
∣∣Π
∣∣2
rℓ

Rr∗ , Rr ≡ χ(rℓ)/Π(rℓ) ,

Wmix
com = −πL

(
χ∗[[Π]]

)
rmix

= −πL
∣∣χ
∣∣2
rmix

Rmix , Rmix ≡ [[Π(rmix)]]/χ(rmix) . (24)

where the various endpoints of the integration are indicated by rr, rℓ and rmix, and the
superscripts ℓ, r and mix on χ and Π are omitted for simplicity. Along the solution path,
where Wcom is real, this alternator is also real, it vanishes at the eigenvalues, and it is
monotonic in between the zeros of the boundary values of the other variable (where the
alternator blows up). Similarly, along the conjugate path, where Wcom is purely imaginary,
the alternator vanishes at the eigenvalues, and its imaginary part is monotonic in between
the zeros of the boundary values of the other variable. The behavior of the alternator
as a tangent facilitates extremely rapid convergence to the eigenvalues. The monotonicity
properties of the alternators were proved in Appendix A of Paper I.

The mixed representation is by far the most flexible one since it involves the free parameter
rmix, where the left and right solutions are joined. Integrating in a fixed direction starting
from one boundary frequently runs into the problem that the solution becomes very imprecise
at the opposite boundary, e.g. due to very low densities or other near-singularities. This
problem is usually solved by a judicious choice of the value of rmix. Another use of this
parameter is the possibility to transform a solution path with gaps into one that is locally
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connected and, thus, establishing the order of the sequences of eigenvalues across those
gaps. Recall from Paper I that the proof of definiteness of the sequencing integral exploits
an equality [Eq. (A19) of Paper I] in terms of a quadratic form X, which would fail if that
quantity vanishes somewhere along the solution path. That is precisely where the solution
path would become disconnected, as we will see in Sec. IV.

Most examples below exploit the mixed representation with the general form of the spec-
tral differential equations (20) for the real and imaginary components of χ and Π, where the
sole simplification will be the specification of the equilibrium variables according to Eq. (8).
The solutions are obtained by ‘shooting’ from the left [satisfying the left BC, χ(0) = 0]
and from the right [satisfying the right BC, χ(1) = 1], and joining the two fragments in
some internal point x = xmix by equating χ there. According to Eq. (24)(c), the jump [[Π]]
determines both the complementary energy Wcom for the determination of the Spectral Web
and the alternator for the accurate eigenvalue search. This procedure is incorporated in a
computer program, called ROC (= rotating cylinder).

The Spectral Web method is here applied to a selection of some of the classical MHD
instabilities, viz. to the internal kink modes of a force-free magnetic field subjected to linear
shear flow (Section III), and to the Rayleigh–Taylor instability of a rotating theta-pinch
(Section IV) and the Magneto-Rotational Instability (MRI) of an accretion disk (Section V).
The spectra of the shear flow equilibria are governed by the Doppler shift profile Ω0(r), the
rotating equilibria attain in addition the complicating Coriolis effects. The main thrust is to
demonstrate how this new method facilitates the investigation of all flow-driven instabilities
by means of the very intriguing geometries of the Spectral Web, which puts an order into
the multitude of complex eigenvalues that was absent heretofore.

III. INTERNAL KINK MODES IN FORCE-FREE MAGNETIC FIELDS

Our first example is about the effects of a linear flow field on the classical, current driven,
internal kink instability. Consider a cylindrical equilibrium with a force-free magnetic field
of constant α, and parabolic density and velocity profiles:

Bz(r) = J0(αr) , Bθ = J1(αr) , ρ(r) = ρ0(1 − r2) , p(r) = p0 , vz = v0(1 − r2) . (25)

Here, J0 and J1 are the Bessel functions of zeroth and first order, and the constant pressure p0

is taken to be large enough to assume incompressibility (γp0 ≫ 1) for the modes. We will
show that the velocity field changes the spectral properties of this equilibrium completely, in
particular the parameter domains and the character of the instabilities of a force-free mag-
netic field. This is relevant for many astrophysical plasmas. One example is the filamentary
structure of the penumbra (the outer region) of sunspots where large flows are observed,12

with possible implications for reconnection, heating, flares and coronal mass ejections.
But, first, recall some relevant results on the static case. In the context of observed regu-

lar magnetic field structures in the Crab Nebula, Woltjer13 studied the stability of force-free
fields of constant α and concluded them to be stable against axi-symmetric perturbations.
In contrast to the widely held belief at that time this to be true in general, Voslamber and
Callebaut14 then showed that a cylindrical force-free magnetic field of constant α is actually
unstable to internal |m| = 1 kink modes for αa > 3.176. Their analysis crucially exploited
the concept of independent sub-intervals, introduced in the seminal paper2 by Newcomb, to
account for the enormously stabilizing influence of rational surfaces where the current den-
sity perturbation becomes infinite, similar to the influence of a perfectly conducting wall at
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those positions (see the left panes of Fig. 2 below). Next, Goedbloed and Hagebeuk15 com-
puted the eigenfunctions and growth rates of the instabilities and showed them to smoothly
join the different independent sub-intervals, with rapid changes across the rational surfaces
characteristic for internal kink modes (see the right panes of Fig. 2). The growth rates
turned out to be considerable. Also recall that force-free magnetic fields of constant α play
an important role in Taylor’s theory of relaxation and magnetic reconnection,16 as applied
to reversed field pinches,17 spheromaks,18 and magnetic structures in the solar corona.19

A. Intricacies: Stability of static force-free fields

The stability of a cylindrical force-free magnetic field is extremely complex, already for
the static case, but it touches upon the basics of MHD spectral theory. Hence, we here
subject the topic with extra scrutiny. In Fig. 1, we have reconstructed the Voslamber–
Callebaut stability diagram,14 in terms of the relevant dimensionless parameters k/α and
αa, but extended with the higher radial modes needed for the present analysis. In the limit
of marginal stability (ω = 0) for incompressible modes (γp → ∞) of static equilibria, the
spectral equation (12) has the explicit solution χ = rQr/F in terms of the radial magnetic
field perturbation Qr and the parallel gradient operator F = mBθ/r + kBz, where

rQr = C
[
m(α − k) Jm

(√
α2 − k2 r

)
+ kr

√
α2 − k2 Jm−1

(√
α2 − k2 r

)]
,

F = (1/r)
[
mJ1(αr) + krJ0(αr)

]
. (26)

Naively, one expects that subjecting the above (left) Bessel function solution for Qr(r) also
to the pertinent right BC, Qr(a) = 0, would yield the marginal solutions of the problem.
The corresponding parameter relations yield the dashed black curves of Fig. 1. From mono-
tonicity, one would then expect the n = 1, 2, . . . eigenvalues to lie in the areas to the right
of the respective curves. Those areas are indicated by n = 1, n = 2, etc., and shaded
increasingly darker black. That conclusion would be fundamentally wrong though since it
ignores the ideal MHD constraint that the solution ξ should be square integrable, i.e. have
finite energy content. That condition involves the function F relating χ and rQr. Since that
relation does not hold in resistive MHD, the indicated areas are precisely the parameter
regions where the n = 1, n = 2, etc. tearing modes are unstable. Those modes exponentiate
with a broken power of the resistivity, so that they are negligible on the ideal MHD time
scales of interest in the present context.

Accounting for the ideal MHD constraint involves the additional consideration of the
effects of the singularities of χ, i.e. of the zeros of F (r). They provide the sequence of, what
Newcomb2 has termed, independent sub-intervals, labeled n = 1, 2, . . ., which is crucial for
the stability analysis of the ideal MHD modes. For the intervals n ≥ 2, the solution (26) for
rQr should then be replaced by the expression which vanishes at the left boundary of that
interval, i.e. it should be extended with the appropriate Bessel functions of the second kind.
Rather than exploiting those explicit expressions, it is more convenient to just integrate
the ODEs for Qr and F , imposing the modified BCs on Qr but, of course, still imposing
F (0) = 0 on F . At this point it is expedient to note that the problem can be reduced to a
one-parameter family, in terms of k̄ ≡ k/α alone (ignoring the dependence on m since only
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the |m| = 1 modes are unstable), by exploiting the scaled radial variable r̄ ≡ αr:

d

dr̄

[ r̄

m2 + k̄2r̄2

d

dr̄
(r̄Qr)

]
+
[ r̄2

m2 + k̄2r̄2

(
1 +

2mk̄

m2 + k̄2r̄2

)
− 1
]
Qr = 0 ,

d

dr̄

( r̄3

D̂

dF

dr̄

)
+

r̄3

D̂

(
1 +

2mk̄

D̂

)
F = 0 , D̂(r̄) ≡ m2 + k̄2r̄2 + 2mk̄ . (27)

Indicating the zeros of F by r̄n, the parameter relations F (r̄n = αa) = 0 yield the red curves
of Fig. 1. Note the remarkable feature of the ODE for F to develop an apparent singularity

D̂(r̄) = 0 in the radial interval for values of k̄ below −1
2
m (indicated by the red dashes).

This marks the emergence from the origin of an additional zero in the solution F , so that
the value of n increases by 1 there. The drawn black curves in Fig. 1 indicate the ideal MHD

parameter relations Qr(r̄n = αa) = 0 where the modified solutions Qr satisfy both BCs of
the pertinent sub-interval. Those curves just intersect (or touch) the red curves at the red
dots. For reference, we list the coordinates of the red dots for the first two values of n:

(αa, k/α) =

{
(3.1750, 0.2725) , (3.8317, 0.0) , (4.7444,−0.2365) (n = 1)

(6.4828, 0.0951) , (7.0158, 0.0) , (7.6202,−0.0865) (n = 2)
. (28)

The values for n = 1 agree with those given in Ref. 14, as they should. For values of
k̄ ≡ k/α in between those points, the modified solution Qr oscillates just a little bit faster
than F so that that solution has at least one zero in the open sub-interval, indicating ideal
MHD instability for that sub-interval. Since, for given n, all those intervals are identical
in terms of the rescaled variable r̄ (but shrinking in size in terms of the physical variable
r), this oscillatory behavior does not change with larger values of αa. Hence, the ideal
MHD internal kink instability regions lie to the right of the black curves, in between the
intersections with the red curves, i.e. in the red shaded strips which become ever narrower
and are increasingly darker shaded for larger n. Note the very loose connection between the
ideal (red) and the resistive (black) instability regions!

Some representative parameter choices for the equilibria and associated perturbations are
indicated by the letters A–E in Fig. 1. For the static case, the solutions of a marginal mode
and corresponding eigenfunction are shown in Figs. 2(a) for the internal kink instability in
the n = 1 strip (case A), and in Figs. 2(b) and 2(c) for the two internal kink instabilities in
the n = 2 strip within the n = 1 strip (case C). The latter two are distinguished by being
mainly localized inside or outside the first singularity. In the following, these solutions will
be subjected to a flow field and shown to become much more unstable. This is demonstrated
by moving into parameter regimes that are resistively unstable, but stable in ideal MHD for
static equilibria. The cases B (n = 1 stable in the static case), D (n = 1 unstable but n = 2
stable in the static case), and E (both n = 1 and n = 2 stable in the static case) will be
shown to become unstable for the two kinds of modes, with quite different eigenfunctions
and much larger growth rates.

B. Internal kink modes with flow

We will now demonstrate how a flow field completely changes the stability properties of
this configuration and how the Spectral Web facilitates the search of the complex eigenvalues.
Figure 3 shows the rather elementary Spectral Web for the n = 1 internal kink instability
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for the configuration of case A, subjected to a parabolic flow profile with associated Doppler
frequencies Ω0 = 0.8(1 − x2), where x ≡ r/a. The corresponding eigenfunction is shown
in Fig. 4(a). As is evident from Fig. 3, the Spectral Web is an excellent guide to find the
eigenvalues. Contour plotting may be restricted to the strip Ω0,min ≤ σ ≤ Ω0,max where
the solution path should be located according to Eq. (5). This corresponds with the range
{Ω0(r)} of Doppler shifts on the radial interval 0 ≤ r ≤ a depicted by the dashed line in
the upper part of Fig. 3. The incompressible ideal MHD continuum frequencies {Ω+

A(r)}
and {Ω−

A(r)}, depicted in red, intersect this range at the Doppler frequency Ω0 ≈ 0.437 of
the rational surface at r/a ≈ 0.674. For the block shape (in ξr) of a marginal internal kink
mode, having an infinite contribution from the jump at the rational surface, the real part
of the eigenfrequency would precisely have that value. However, as shown in Fig. 4(a), the
eigenfunction is much more rounded than that so that the actual real part σ ≈ 0.478 of the
eigenfrequency of the mode is larger, due to the contribution of the eigenfunction at smaller
values of r (where Ω0 is larger). This also explains the shape of the solution path of Fig. 3.
Intuitive explanation of the disconnected curves of the conjugate path is less clear. Probably,
the extremum of the underlying continuum {Ω−

A} is responsible for that. Since there are no
eigenvalues located on the right branch of the conjugate path, this is not important here.
(A different situation occurs in subsection IIIC below.)

Comparing Fig. 4(a) with Fig 2(a) for the internal kink mode inside the n = 1 instability
domain of the static equilibrium (case A of Fig. 1), the growth rate is about a factor 2.0
larger than without flow. Fig. 4(b) shows an internal kink mode far outside the n = 1
instability domain of the static equilibrium (case B of Fig. 1): the near marginal mode has
a clear internal kink mode signature. Evidently, for plasmas with flow, the current driven
instabilities of a force free magnetic field have much larger growth rates and much wider
instability domains than for static equilibria.

Figure 5 shows the Spectral Web for the n = 1 and n = 2 internal kink instabilities of
the configuration of case D, subjected to a parabolic flow profile with associated Doppler
frequencies Ω0 = 1.152(1 − x2). This case was used in Figures 1 and 2 of Paper 1 for the
purpose of illustrating the different concepts used in the new method, where the first figure
showed the trivial case of a constant velocity and the second one demonstrated the complete
change of the Spectral Web, with the appearance of two modes instead of one, for a genuine
flow profile. For the present Fig. 5, the magnitude of that flow has been reduced to bring
out the new class of instabilities that will be discussed in the next subsection. The first
thing that strikes is that the solution path is no longer a single curve, as one might have
expected from the fact that it is actually the counterpart of the imaginary axis (the locus of
instabilities for static equilibria), but split in two. The rather straight right sub-path contains
the n = 1 internal link instability (labeled I1) and the loop contains the n = 2 internal link
instability (labeled I2). Actually, loops of the solution path or the conjugate path are a
bonus in this method since they necessarily contain an eigenvalue due to the monotonicity
of the alternator along these paths. Also noteworthy is the useful visual difference between
the conjugate paths of Fig. 2 of Paper 1 and Fig. 5 of the present paper, where the latter
right away leads to the new class of modes (labeled Gi) which is absent in the former.

The eigenfunctions of the two internal kink modes I1 and I2 of Fig. 5 are shown in Fig. 6.
The growth rate of the n = 1 eigenmode, shown in Fig. 6(a), is slightly smaller (a factor 0.93)
than in the corresponding static case (not shown but similar to Fig. 2(b)), but the amplitude
of the eigenfunction in the second “independent” sub-interval is effectively suppressed. On
the other hand, the n = 2 mode is now unstable and even has a larger growth rate than the
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n = 1 mode, whereas the eigenfunction, shown in Fig. 6(b), has completely lost its signature
of being localized to the second “independent” sub-interval. Also notice the peaks in the
eigenfunctions at the locations of the underlying continuous spectra, where σEF = Ω±

A(r).
Although these continuum frequencies are far away from the complex eigenfrequencies of
the instabilities, their influence on the discrete eigenfunctions is quite noticeable. Finally,
for fixed αa = 8.0 increasing the value of k/α to k/α ≈ 3.0 (case E in the stability diagram
of Fig. 1, just above the stability boundary for the static n = 1 modes but far above
that for the static n = 2 modes), both modes have become stable nearly simultaneously:
the stability domains of the internal kink modes are extended far into the resistive regions.
Hence, the Spectral Web method reveals how flow completely changes the spectrum of MHD
instabilities, but also how it brings about new modes, as we will see next.

C. A truly Global Alfvén Instability

It remains to discuss the sequence of eigenvalues labeled Gi, emerging from the continua
(the grey horizontal axis of Fig. 5) and highlighted by the inset of Fig. 5. The inset is
a blow up of a part of the G1 loop overarching all other loops of these modes. Two of
the corresponding eigenfunctions are depicted in Figs. 7(c) and (d). The real part of the
frequency of these instabilities is clearly related to the local maximum Ω+

A,max ≈ 0.657 of
the forward Alfvén continuum shown in the radial plots of the continua in the upper part
of Fig. 5. Note the logarithmic scale in ν and the very narrow range in σ of the inset, which
are needed to exhibit the vary rapid decrease of the growth rates and the clustering towards
Ω+

A,max for increasing index i of the eigenvalues. These instabilities are someway related to

the infinite sequence of stable Global Alfvén Eigenmodes (GAEs),20 that would be found for
real frequencies approaching Ω+

A,max if that potential cluster point would not be overlapped
by the rest of the continua. However, it is evident from the plots in the upper part of Fig. 5
that multiple overlapping occurs so that discrete GAEs cannot exist in this case, they are
simply ‘swallowed’ by the continua.

Although the stable GAEs cannot occur in the present equilibrium, it is useful to digress
on them to clarify the relation with the instabilities we are interested in. Actually, the
designation ‘global’ in Global Alfvén Eigenmodes is a misnomer since these modes occur
when a local criterion is satisfied, associated with infinitely rapidly oscillating solutions as
the cluster frequency is approached. This is quite analogous to the occurrence of interchanges
when Suydam’s criterion is violated; see the expression (C2) of Appendix C for the modified
Suydam criterion for plasmas with flow. [Incidentally, satisfaction of that criterion is not
obvious for force free equilibria (p′ = 0) with flow, because of the large negative term in
criterion (C2). We checked though that the criterion for incompressible modes is satisfied
at the rational surfaces for the parameters chosen, so that interchanges do not occur in the
present case.] Appendix C also presents the modification by flow of the cluster criteria for
Alfvén and slow modes.21 Those criteria are not valid for the present, incompressible, modes
because some of the terms blows up. The two regular singularities Ω+

A and Ω+
S and the

apparent singularity Ω+
s0 in between then coalesce into one irregular singularity.22 Expansion

about that singularity yields the following leading order ODE with solutions:

d

ds

(
s2 dχ

ds

)
+ (qs)−1χ = 0 , q ≡ r

√
ρ Ω+′′

A

2kBθ
⇒ χ = C1 sin(qs)−1 + C2 cos(qs)−1 . (29)

There is no criterion to be satisfied in this case, so that incompressible stable GAEs always
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occur if one of the Alfvén continua has an extremum, provided that the radial interval may
be chosen small enough to exclude overlap with the continuum frequencies of the complete
plasma. This local behavior is demonstrated in Figs.7(a) and (b), where the real eigenfunc-
tions of two of the GAEs are plotted on the sub-interval 0.8 ≤ r ≤ 1.0. This interval refers
to the equilibrium of an annular plasma enclosed by two walls, which is not the equilibrium
though we are interested in.

The global eigenfunctions of the instabilities indicated by the labels Gi, shown in Figs. 7(c)
and (d) for G1 and G3, do exhibit the oscillatory properties of the first and third ‘local’ GAE,
illustrated in Figs. 7(a) and (b), on the outermost part of the plasma, but, equally important,
they also exhibit sharp peaks at the three radial locations r1 > r2 > r3 of the embedding
continua, where Ω−

A(r1) = Ω+
A(r2) = Ω−

A(r3) = Ω+
A,max. The large contribution of these peaks

to the eigenfunction is crucial to produce an instability with the eigenvalue on the solution
path, i.e. having a real part equal to the solution-averaged Doppler shift, σ = Ω0,av ≈ ΩA,max,
according to Eq. (5). Note that the local GAE cannot possibly be unstable by itself since it
has Ω0(rmax) ≪ Ω+

A,max, much too small to be on the complex branch of the solution path.

But at the three mentioned continuum locations we have Ω0(r1) < Ω+
A,max < Ω0(r2) < Ω0(r3),

so that those three contributions on average produce the proper global localization of the
eigenfunction needed for the eigenfrequency to be on the solution path.

For the same reason, the continuum profiles shown in Fig. 3 for the first instability
domain of the force-free field equilibrium at once explain why GAIs do not occur in that
configuration. Those profiles also do have an extremum Ω−

A,max, with an associated GAE for
a narrow annular plasma, but, in that case, the location r1 of the overlapping continuum
frequency with Ω+

A(r1) = Ω−
A,max is on the wrong side of the profile Ω0(r) so that it cannot

produce the localization needed to pull the solution over onto the solution path.
In conclusion, in contrast to the stable GAEs, the present instabilities are truly global

modes, which we will call Global Alfvén Instabilities (GAIs). One could say that they
are GAEs driven unstable by the delocalization caused by the proximity of the continua,
requiring both plasma current and plasma flow. In those respects they are similar to Toroidal
Flow-induced Alfvén Eigenmodes (TFAEs)23 and Toroidal Alfvén Eigenmodes (TAEs) that
are driven unstable by the interaction with the flow of fusion-born fast particles; see, e.g.,
Ref. 24 and references therein. Finally, concerning the Spectral Web method, it is of interest
to note that the GAIs were discovered because the tiny loop of the conjugate path at σ ≈ 0.68
in Fig. 2 of Paper I suggested unknown modes there. Without the guidance of the conjugate
path it is unlikely that they would have been discovered by another method.

IV. RAYLEIGH–TAYLOR INSTABILITIES IN ROTATING THETA-PINCHES

Our second example concerns the |m| = 1 modes of a class of rigidly rotating equilibria of
theta pinch-like plasma configurations in the straight cylinder approximation, as exemplified
by the ordinary theta pinch25,26 and the Field Reversed Configuration (FRC).27,28 Although
of historical interest only, we will treat the rather disastrous instabilities of the rotating
theta pinch more extensively since they provide an excellent illustration of the Spectral Web
method which also applies to the more subtle instabilities of modern devices.

The stability of the rotating theta pinch is of fundamental interest since it was used in
the original literature on the stabilization of MHD instabilities by the finiteness of the ion
gyro radius,29,30 which is least effective for the |m| = 1 modes. (Hence, the interest in these
modes at the time, though the |m| > 1 modes grow faster yet.) This literature contains
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some confusing results that have not been clarified before. In particular, Taylor30 makes
the erroneous remark that the growth rate of the instability for vanishing longitudinal mode
number (k = 0), i.e. the imaginary part of his expression for the complex frequency,

ω = Ω
[
m − sgn(m) ± i

√
|m| − 1

]
, (30)

is “quite independent of the plasma profile”. According to this expression, the Coriolis shift
(∆σ)C = −sgn(m)Ω then precisely cancels the Doppler shift (∆σ)D = mΩ so that the real
part of the complex frequency also vanishes. This would imply marginal stability of the
|m| = 1 modes for these configurations in general. However, contrary to Taylor’s remark,
this expression is only valid for the special case he investigated, viz. a theta pinch with a step
function density profile without a wall. Effectively, for the incompressible |m| = 1, k = 0
modes of that equilibrium, there is no perturbation at all since that ‘perturbation’ of the
plasma column simply corresponds to a translation to a new equilibrium state with the same
properties. A detailed numerical calculation by Freidberg and Wesson25 appeared to confirm
Taylor’s result, by searching in the complex ω-plane for solutions in the neighborhood of
the imaginary axis as suggested by Eq. (30). A later study by Freidberg and Pearlstein26 of
the finite ion gyro radius effects on these modes actually found substantial deviations from
Eq. (30) for an additional class of internal |m| = 1 modes. The Spectral Web method will
highlight one of the intricacies involved of the stability of rotating stationary equilibria, viz.
that the more local internal |m| = 1 modes actually grow faster than the most global one!

Diffuse rigidly rotating theta pinch equilibria are described by satisfying Eq. (8) with
constant angular frequency Ω ≡ vθ/r and the following choice of the profiles:

ρ(r) = ρ0sech
2f(x) , p(r) = p0sech

2f(x) ,

Bz(r) = B∞

[
δ + (1 − δ) tanh f(x)

]
, f(x) ≡ α2(x2 − x2

0) , (31)

where x ≡ r/a, whereas p0 = 1
2
(1 − δ)2B2

∞ and Ω = α
√

2δ(1 − δ) B∞/(a
√

ρ0). The plasma
radius a, the maximum density ρ0, and the asymptotic value B∞ of the magnetic field
merely provide parameters to make the basic quantities dimensionless, like the unit plasma
interval 0 ≤ x ≡ r/a ≤ 1, the longitudinal wave number k̄ ≡ ka, and the complex frequency
ω ≡ ωa

√
ρ0/B∞. Hence, only three genuinely free dimensionless parameters remain, viz.

the normalized radius x0 at maximum density, the stretching parameter α, and the magnetic
field deviation parameter δ. The parameter x0 is the distinguishing one for the FRC, but
it vanishes for the theta pinch equilibrium. The parameters α and δ are more conveniently
represented by the dimensionless pressure, β ≡ 2p̄0 = (1−δ)2, and the dimensionless angular

rotation frequency, Ω̄ = α
√

2δ(1 − δ). We will exploit the latter parameters, dropping the
bars. A representative equilibrium is depicted in Fig. 8.

The rotating theta pinch equilibrium of Fig. 8 has decreasing density and pressure profiles
over the whole plasma domain, and a uni-directional increasing magnetic field profile. Since
the stabilizing magnetic field terms k2B2

z vanish for the k = 0 modes, the instabilities
are essentially hydrodynamic, Rayleigh–Taylor, instabilities driven by the negative density
gradient and the centrifugal acceleration.31 Magnetic stabilization occurs for the k 6= 0
modes, but a large range 0 ≤ |k| ≤ |k0| remains unstable. Similar conclusions hold for the
straight cylinder approximation of the FRC equilibrium, but the instability is less severe
because the density increases in the region 0 ≤ x ≤ x0, so that the inner region is stable,
whereas the magnetic field reversal, and associated singularity k · B = 0, close to x = x0

significantly modifies the modes at marginal stability.
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A. Hydrodynamic modes (k = 0)

The Spectral Web for the compressible m = 1, k = 0 modes of the rotating theta pinch
equilibrium is shown in Fig. 9 (note Ref. 32). One immediately notices the interlacing
structure of the solution path (in red) and the conjugate path (in blue), with genuine and
false eigenvalues (EVs) alternating at the intersections. Furthermore, the solution path is
not a single curve, as one might have expected, but it is split into a separate open curve with
the most global n = 1 mode on it and a closed loop with the n = 2 mode and all the rest of
infinitely many clustering modes. The latter have a Doppler shifted frequency σ̃ ≡ σ − mΩ
which tends to zero, whereas the most global modes have a large Coriolis shift, opposite to
the Doppler shift, such that the combined Doppler–Coriolis shift V , and hence σ, becomes
very small. The most striking feature is already mentioned, viz. that the n = 2 mode has
a larger growth rate than the n = 1 mode. Such behavior never occurs for static equilibria.
This calls for justification of the labels n = 1, n = 2, etc.

For the n ≥ 2 modes, the justification of the labeling is provided by the monotonicity
of the alternator along the solution path, which yields a well-ordered sequence toward the
cluster point ω = mΩ. This sequence does not include the n = 1 EVs though since they
are on a separate sub-path. At this point, it is important to note that the Spectral Webs
of Fig. 9 and 11 were obtained for a specific choice of the parameter xmix (viz. xmix = 0.7)
which is optimal for the present problem. Whereas the complex eigenvalues are independent
of this choice (as they should be), the geometries of the solution path and of the conjugate
path are not. In particular, their split into disconnected sub-paths, as in Fig. 9, depends on
the value of xmix. Frequently, disconnected sub-paths may be merged by just changing that
value. However, in this case, the attempt of connecting the sub-paths by a different choice
of xmix fails: for xmix = 0.7493, the topology of the solution path is still as shown in Fig. 9,
but for xmix = 0.7494, it has abruptly changed into one where now n = 1 is on a closed loop
and the n ≥ 2 EVs are on an open curve. Apparently, a possible merger (with |X| = 0 at
the reconnection point) is simply avoided. However, the conjugate path does connect the
two EVs and, with the proof of monotonicity of the imaginary part of the alternator along
the conjugate path (see Appendix A of Paper I), this provides clinching evidence for the
validity of the collective labeling n = 1, n = 2, etc.

To get more grip on the physics of these instabilities, some explicit analysis is expedient.
First, consider the local (high n) modes. For k = 0, the four MHD continua {Ω±

A(r)}
and {Ω±

S (r)}, defined in Eq. (17), collapse into the hydrodynamic (HD) flow continuum,33

{Ω0(r)}, which is infinitely degenerate here since Ω0 = mΩ is constant. Approaching this
continuum tangentially to the vertical line σ̃ ≡ σ − mΩ = 0 in the ω plane, the differential
equation obtained from Eq. (12) in the pertinent approximation,

ω̃2 d

dr

(
ρr

dχ

dr

)
+ m2Ω2

(
ρ′ − rρ2Ω2

γp + B2

)
χ = 0 , (32)

gives rise to an infinite sequence of ever more rapidly oscillating solutions. This is associated
with a cluster sequence of unstable discrete modes (approaching the red dot of Fig. 9) when
the well known local stability criterion for convective, Rayleigh–Taylor, instability,

Cstab ≡ 1

α2

( ρ′

ρr
− ρΩ2

γp + B2

)
> 0 , (33)

is violated. This is the case for the equilibrium of Fig. 8 over the whole plasma (as shown
by the green curves). The second term, representing additional destabilization due to com-
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pressibility, becomes increasingly more important at higher densities, faster rotations, and
smaller magnetic field strengths. For the present equilibrium, the first term dominates over
most of the plasma (except for the neighborhood of the magnetic axis), so that the assump-
tion of incompressibility appears to be reasonable for most modes (except for the higher n
ones, and the marginal k 6= 0 modes discussed below).

To understand the overall geometry of the Spectral Web of Fig. 9, it is useful to tem-
porarily make the approximation of incompressibility for the k = 0 modes. For both global
and local modes, the spectral differential equation (12) then reduces to

r
d

dr

(
ρr

dχ

dr

)
−
(
m2ρ + λrρ′

)
χ = 0 , λ ≡ −mΩ(2ω̃ + mΩ)/ω̃2 , (34)

where λ is a convenient eigenvalue replacing ω. This equation does not have the compress-
ibility term of Eq. (33), but it is no longer restricted to the neighborhood of the cluster point
ω̃ = 0. For this special case, as noted by Spies,34 the complex eigenvalue problem has de-
generated into a Sturm–Liouville problem with real eigenvalues λ and real eigenfunctions χ,
where the actual complex eigenvalues ω follow from the definition of λ. One may construct
the following quadratic equation for the eigenvalue ω̃ from Eq. (34):

ω̃2 + 2QmΩ ω̃ + Qm2Ω2 = 0 , (35)

where Q ≡ λ−1 turns out to be a quotient of two integrals,

Q = −(1/m2)

∫
ρ′|χ|2dr

/∫
ρ
[
(1/r)|χ|2 + (r/m2)|χ′|2

]
dr . (36)

Hence, the eigenvalues of the instabilities are given by

ω = mΩ
[
1 − Q ± i

√
Q(1 − Q)

]
. (37)

By eliminating Q, one finds that the eigenvalues are located on a circle |ω − 1
2
mΩ| = 1

2
|m|Ω

through the origin (where Q = 1) and that the cluster point (where Q = 0) is approached
by EVs associated with eigenfunctions that have an increasing number of oscillations.34 It
is clear that instability occurs for ρ′ < 0, when the eigenvalue Q is in the range 0 < Q < 1.
However, the value of Q and, hence, the values of σ and ν cannot be evaluated a priori: they
depend on the non-trivial solution χ of the boundary value problem (34), (13). Since the
effects of compressibility are small for most of the k = 0 modes of the present equilibrium,
the eigenvalues shown in Fig. 9 are rather close to the mentioned circle.

Comparison of the expression (37) with the general expression (4) for the eigenvalues
yields the following intriguing relations for the solution averages of the Doppler–Coriolis
shift and the potential energy for this case:

V = (1 − Q)mΩ , W = −(1 − Q)m2Ω2 . (38)

They clearly demonstrate that, for the investigation of the stability of stationary equilibria,
the two quadratic forms W and V play equally important roles.

We return to the actual numerical results for the compressible k = 0 modes. The eigen-
functions for the n = 1 and n = 2 modes, shown in Figs. 10(a) and (b), display the usual
features of low n modes, where n = 1 is the most global one. If the plasma column would
be more confined (by increasing the value of the stretching parameter α), the configuration
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would tend to the one discussed by Taylor30 and that eigenvalue would approach the origin
(where Q = 1 in the incompressible analysis). Hence, the n = 1 mode is intrinsically more
stable than the n = 2 mode, which is located farthest away from both the origin and the
cluster point (where Q = 0).

The side frame of Fig. 9 shows a zoom of the cluster spectrum, with a further zoom
in the bottom frame highlighting the n = 53, . . . 56 modes. One notices the characteristic
alternation of genuine and false eigenvalues, with monotonicity of the alternator [[Π]]mix/χmix

in between the false ones. This is in perfect agreement with the oscillation theorem for
complex eigenvalues permitting counting of modes in the complex ω plane. The adjacent
location of the n = 55 and 56 modes on the same loop of the conjugate path, which would
conflict with this theorem, is only apparent. Small loops of the conjugate path may become
entangled with bigger ones, leading to a convoluted structure at very small scales which
only becomes visible by further zooming in (as shown for the n = 55 mode in the bottom
side frame of Fig. 9). These higher n compressible modes localize both at the position of
maximum Cstab (on the outside) and at the origin (where compressibility is dominant), as
shown in Fig. 10(c) for the compressible n = 54 mode. For comparable growth rate of the
incompressible modes, the number of oscillations about the origin decreases, indicative of
the next significant difference with static equilibria: for stationary equilibria, compressibility

destabilizes.

B. Magnetohydrodynamic modifications (k 6= 0)

The magnetic field completely changes the topology of the Spectral Web and, with it, the
location of the unstable eigenvalues, in particular of the more global modes. This is shown
in Fig. 11 by the Spectral Web for the m = 1, k = 0.1 modes. For this value of k, the
two separate branches of the solution path with the n = 1 and n = 2 modes on them have
merged, but those two modes are still wide apart in the ω-plane, with very different values
of σ. It is convenient to express this real part of the EV in terms of the Coriolis shift, which
may be equated with the Doppler shifted frequency σ̃, since, along the solution path,

σ = V = (∆σ)D + (∆σ)C ⇒ σ̃ ≡ σ − mΩ = (∆σ)C . (39)

As in Fig. 9 for k = 0, the growth rate ν of the n = 2 mode is still much larger than the
growth rate for the n = 1 mode, whereas the Coriolis shift σ̃ is much smaller.

Concerning the higher n modes, the Spectral Web of Fig. 11 illustrates how the majority
of the unstable modes of the hydrodynamic cluster spectrum of Fig. 9 is now stabilized by
the magnetic field. It also illustrates how the degeneracy of the HD flow continuum is lifted
and how the approach of the marginal stability point is now governed by the resulting spread
of the MHD continuum frequencies. In particular, the backward continua are well separated
from the forward continua, leaving a narrow gap for marginal modes ω = σmarg to pass:

{Ω−
A} = [−1.6751, 1.0375] , {Ω+

A} = [1.0706, 3.7835] ,

{Ω−
S } = [0.9781, 1.0379] , {Ω+

S } = [1.0705, 1.1302] ,

⇒ {Ω−
S , Ω−

A}max < σmarg < {Ω+
S , Ω+

A}min . (40)

One can clearly see the transition from the pairs of complex modes (n = 1 – 4 are highlighted
in the main frame, n = 5 – 13 in the side frame) to the pairs of real stable modes (n ≥ 14).
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The numbering n = 1, 2, . . . 13 of the complex eigenvalues (obtained by counting the number
of branches of the alternator) smoothly joins that of the stable eigenvalues on the real axis
(where n counts the number of nodes of the real eigenfunctions). In order not to clutter the
picture, only the two n = 14 modes are shown since there is a large number of stable modes
close to the continua, whereas the highest ones have been ‘swallowed’ by them.

We finally apply the Spectral Web method to compute the complete curve of the growth
rate ν(k) and of the Coriolis shift σ̃(k) for all values of k, from the most unstable modes at
k = 0 to the marginally stable ones at k = k0. Of course, all the underlying Spectral Webs
will not be shown. Actually, one of the advantages of this method is that one may restrict
the investigation to small pieces of the ω-plane if, in a parameter scan, one already roughly
knows where the next eigenvalue will be located. Because of the increasing magnetic field
stabilization, the curves shown in Fig. 12 are overall decreasing. At larger k (k > 0.254),
the dominance of the instability of the n = 2 modes (indicated by the blue and green curves
in Fig. 12) disappears and the n = 1 modes (indicated by the red and black curves) become
more unstable, so that eventually marginal stability is determined by the n = 1 mode. Note
that the values of the growth rate ν and of the unstable ranges of the wave vector k shown
here are completely different from those reported in Ref. 25.

For larger k, the values of ν and σ̃ are also quite different for incompressible and com-
pressible modes (note the deviation of the dashed curves from the drawn ones in Fig. 12).
It is clear from the equilibrium profiles shown in Fig. 8 that magnetic field line bending,
expressed by the terms k2B2

z in the spectral equation, is strongest on the outside so that,
eventually, the marginal stability transition at k = k0 is determined by the internal region,
where compressibility is dominant. This explains the large differences at marginal stability:
k0 = 0.948 for the compressible n = 1 modes (k0 = 0.548 for n = 2), versus k0 = 0.792 for
the incompressible n = 1 modes (k0 = 0.419 for n = 2). Recall that such differences never
occur for static equilibria (those numbers would coincide there). Hence, compressibility
makes a significant qualitative change.

In conclusion: the Spectral Web analysis of the rotating theta pinch demonstrates that
three ‘intuitive’ assumptions originating from numerous investigations of the stability of
static equilibria, viz. (1) that stability is determined by the sign of the potential energy W ,
(2) that the most global modes have the largest growth rate, (3) that it is sufficient for
stability to investigate the incompressible modes only, are false for stationary equilibria.

V. MAGNETO-ROTATIONAL INSTABILITIES IN ACCRETION DISKS

Our third example concerns the magneto-rotational instability (MRI), independently
found by Velikhov35 and Chandrasekhar36 and later applied by Balbus and Hawley37 to clar-
ify the mechanism of accretion onto compact objects. The relevant equilibrium is introduced
as case (d) of Sec. IIA. We exploit three basic magnitudes referring to the inner edge of the
accretion disk, viz. r1, ρ1 and GM∗, to make all variables dimensionless: r̄ ≡ r/r1, ρ̄ ≡ ρ/ρ1,
v̄θ ≡ [r1/(GM∗)]1/2vθ, p̄ ≡ [r1/(ρ1GM∗)]p, B̄θ,z ≡ [r1/(ρ1GM∗)]1/2Bθ,z, and immediately
drop the bars again (which amounts to substituting r1 ≡ 1, ρ1 ≡ 1, and GM∗ ≡ 1). A
thin disk equilibrium satisfying Eq. (8), with appropriate approximation of the gravitational
potential, is then obtained from self-similarity arguments38 and an estimate of the viscosity
needed for accretion.39 On the fast time scale of the pertinent MHD processes, dissipation
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may be neglected and one obtains the following radial equilibrium distributions:

ρ = r−3/2 , vθ = vθ1r
−1/2 , p = p1r

−5/2 , Bθ = Bθ1r
−5/4 , Bz = Bz1r

−5/4 ,

where Ω1 ≡ vθ1 = [1 − 5
2
p1 − 1

2
B2

θ1 − 5
4
B2

z1]
1/2 . (41)

Instead of the three parameters p1, Bθ1, Bz1, it is convenient to exploit their relative mag-
nitudes and a parameter measuring the radial size of disk:

ǫ ≡ √
p1 ≪ 1 , β ≡ 2p1/B

2
1 ≫ 1 , µ1 ≡ Bθ1/Bz1 ∼ 1 , δ ≡ r2/r1 ≫ 1 . (42)

This ordering has been chosen such that the angular rotation parameter is of order unity,
Ω1 ≈ 1 − (5/4)ǫ2, implying that the rotation is close to Keplerian, whereas the pressure is
small enough to warrant the thin disk approximation and the magnetic fields are extremely
small, yet important enough to yield the MRIs.

A. Analytical estimates

To get an estimate of the important mechanisms, we collect some approximate results (see
Refs. 8 and 9). Consider axi-symmetric modes, m = 0, so that the Doppler shift vanishes,
ω̃ ≡ ω, and the continua transform into the static ones: Ω±

A = ±ωA and Ω±
S = ±ωS.

Moreover, since β is so large (γβ ≫ 1), the perturbations are approximately incompressible
so that the slow and Alfvén continu virtually coincide. With these approximations, and
writing ωA ≡ kBz/

√
ρ and µ ≡ Bθ/(rBz), the spectral equation (12) reduces to

r
d

dr

[
ρ(ω2 − ω2

A)
1

r

dχ

dr

]
− k2

[
ρ(ω2 − ω2

A) + ∆ − 4(kµB2
z + ρΩω)2

ρ(ω2 − ω2
A)

]
χ = 0 , (43)

where ∆, defined in Eq. (A1), becomes

∆ = −ρ′(rΩ2 − GM∗/r2) − rρΩ2′ + r(µ2B2
z )

′ . (44)

This at once demonstrates the essential difference with the rotating θ pinch of Sec. IV: for
Keplerian rotation, the centrifugal term is exactly cancelled by the gravitational term, so
that the first term, representing the Rayleigh–Taylor instability drive, trivially vanishes.
Since the last term is negligible (B2

z ∼ ǫ2/β), only the shear flow term remains:

∆ ≈ −rρΩ2′ ≡ −ρ(κ2
e − 4Ω2) , (45)

where κ2
e ≡ (1/r3)(r4Ω2)′ is the square of the epicyclic frequency. For the equilibrium

distributions (41), this yields κe = Ω2 and ∆ = 3ρΩ2.
In agreement with the general rationale of the MRIs (to provide a mechanism for turbulent

dissipation), the vertical wave number is chosen very large, k ≫ 1, so that ωA ∼ 1 in the
units chosen. This implies that the term kµB2

z ∼ (1/k) in Eq. (43) may be neglected, with
the enormous simplification that ω only appears squared in the spectral equation, just like
in static MHD. The Coriolis shift is then negligible and the eigenfunctions are essentially
real, so that the solution path will be the same as what it would be for static equilibria (viz.
the real and imaginary axes). With these additional simplifications of Eq. (43), a quadratic
form may be constructed,

∫
ρ

r

{
(ω2 − ω2

A)|χ′|2 + k2
[
ω2 − ω2

A − κ2
e −

4Ω2ω2
A

ω2 − ω2
A

]
|χ|2
}

dr = 0 , (46)
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which immediately yields the well known local instability criterion for MRIs:

ω2
A(ω2

A + κ2
e − 4Ω2) < 0 , or 0 < k2B2

z < ∆ , (47)

showing that the magnetic field is necessary for the instability but eventually stabilizes it
again. The corresponding expression for the eigenfrequencies of local modes χ ∼ exp(iqr),

ω2 ≈ ω2
A + (1/E)

[
1
2
κ2

e ± 1
2

(
κ4

e + 16EΩ2ω2
A

)1/2
]
, E ≡ 1 + q2/k2 , (48)

yields estimates of both the growth rate of the most global MRI, for q2/k2 ≪ 1, and the
frequencies of the continua, for q2/k2 ≫ 1.

B. Spectral Web results

Figures 13–15 show the numerically calculated Spectral Web and corresponding eigen-
functions for the MRIs, were none of the above approximations were exploited. In fact, the
numerical results exhibit significant differences with respect to compressibility and the Cori-
olis shift of the eigenvalues. They were obtained by solving the full compressible (γ = 5/3)
equations (20) for complex values of ω, substituting the explicit equilibrium profiles (41).
The right solutions ξr were exploited, i.e. the complementary energy W r

com was evaluated at
the inner edge of the disk. The values of ǫ, β, and µ1 were chosen according to the order-
ing (42). However, the radial width δ was chosen of order unity, rather than much larger
than 1, in order to be able to distinguish the different modes on the solution path. We will
see below that extrapolation to larger radial widths, δ ≫ 1, can easily be inferred from the
results obtained for δ ∼ 1.

The Spectral Web shown in Fig. 13 has a very clear structure (note Ref. 32). All modes
are located on the solution path (in red). For the unstable modes, that path slightly deviates
from the imaginary axis due to the Coriolis shift caused by the non-vanishing ‘toroidal’
field component Bθ, in agreement with earlier MRI calculations.40,41 Due to the choice of
a moderate value of the radial width δ of the disk, the conjugate path (in blue) consists
of a series of separate ‘pancakes’, with precisely one genuine (and one false) EV on each
pancake, thus determining the sequence number n (= 1, . . . 29) of the unstable modes with
growth rates that diminish monotonically as n increases, in agreement with the Complex
Oscillation Theorem of Paper 1. This counting is exactly continued by the counting of nodes
of the real eigenfunctions of the stable modes (n ≥ 30 and n′ ≥ 30) along the real parts of
the solution path, where the Real Oscillation Theorem of Ref. 11 dictates monotonicity of
the eigenvalue ω as a function of n outside the genuine and apparent singularity regions.
The latter include the collection of Doppler shifts ω = Ω0 ≡ mvθ/r + kvz (here degenerate
at ω = 0), at the same frequencies as the HD flow continuum singularities (but no longer
representing a continuum in ideal MHD11). At ν = 0 (but σ = σ0 6= 0), the stable modes
are split into two sequences, an anti-Sturmian one with modes approaching the backward
continua and a Sturmian one approaching the forward continua.

Three representative MRI eigenfunctions are shown in Fig. 14. The first one (n = 1),
with the maximum growth rate, is clearly localized at the position where the stability crite-
rion (47) is violated most, i.e. at the inner edge of the disk. As n increases, the growth rate ν
decreases and the eigenfunction spreads over the whole disk. For the last unstable mode
(n = 29), the amplitude of the imaginary part of the eigenfunction has decreased, whereas
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the eigenfunctions of the stable modes (n ≥ 30) become real. For the purpose of reference,
we report the precise eigenvalues of the lowest n stable modes highlighted in Fig. 13:

n = 30′ : σ = −2.2985 × 10−2 , n = 30 : σ = 2.1366 × 10−2 ,

n = 31′ : σ = −8.0106 × 10−2 , n = 31 : σ = 7.8519 × 10−2 . (49)

The asymmetry of these values with respect to σ = σ0 is due to the Coriolis shift.
For larger values of n, the eigenfunctions have an increasing number of oscillations in the

region corresponding to the boundaries of the approached continua. This approach is shown
for n = 100 and n′ = 100 in the zoomed out Spectral Web of Fig. 15(a), with a plot of
the radial dependence of the continua in the upper frame. The eigenfunction for n = 100
shown in Fig. 15(b) illustrates that, eventually, an infinite number of oscillations occurs at
the radial location corresponding to the boundary of the pertinent (forward or backward)
slow magneto-sonic continuum, i.e. at the outer edge of the disk. Hence, those boundaries of
the continua are cluster points of the discrete spectrum of stable “MRIs” (quotation marks
to indicate the contradiction in terminology).

C. The spectral connection

It is now evident how the Spectral Web of Figs. 13 and 15 will be affected by choosing
δ ≫ 1 (i.e. r2 → ∞). The continua Ω−

A,S and Ω−
A,S will then extend to ω = 0, pushing the

infinity of cluster modes onto the complex branch of the solution path. The Coriolis shift
will vanish at ω = 0, which then becomes the branching point of the solution path and a
cluster point of infinitely many unstable MRIs. Hence, the solution path in between the
most unstable n = 1 mode and the n → ∞ modes at the origin will be densely packed
(not ‘dense’ in the mathematical sense though) with discrete modes. However, the fastest
growing one will not be affected much since it only depends on the conditions of where it is
localized, viz. at the inner edge of the disk. Thus, in peculiar contrast with instabilities of
laboratory plasmas (e.g. tokamaks), the lowest n modes with the highest growth rates are
here the “local” ones, whereas the higher n modes with much reduced growth rates are the
“global” ones spreading over the whole disk.

For finite δ, the division of unstable MRIs and stable modes occurs at the marginal (ν = 0)
value of the solution-averaged Doppler–Coriolis shift σ0 = V [χ(σ0)], i.e. at the frequency
where the solution path intersects the real axis (indicated by the crosses in the side frame of
Fig. 13). An explicit expression for σ0 may be obtained from the general expression (22) by,
first, noting that the Doppler part vanishes for the present case (since m = 0), and, next,
exploiting the approximations (42) and assuming σ to be small to simplify the expressions
for the two tangential components of ξ resulting from Eqs. (A6) and (A7):

iξθ ≈ − 2Bθ

kr2Bz

[
1 +

r2Λ

2γp
+

rρΩ

kBθBz

σ
]
χ , iξz ≈ −(kr)−1χ′ . (50)

Here, the second term in square brackets involves the deviation Λ from Keplerian rotation,
which is small but not at all negligible for the present purpose:

Λ ≡ ρ(Ω2 − GM∗/r3) ≈ − 5

2r2
p ∼ ǫ2 ⇒ r2Λ

2γp
≈ − 5

4γ
. (51)
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The last term in square brackets corresponds to the term kµB2
z of Eq. (43) that was also

neglected in the analysis of Eqs. (46)–(48). Since this term involves the unknown σ, the
corresponding integral needs to be moved to the LHS of Eq. (22). This yields the following
expression for the Coriolis shift:

σ0 ≈ −4µ1

k

(
1 − 5

4γ

)∫
ρ(Ω/r2)|χ|2 dr

/∫
(ρ/r)

[
|χ|2 + |χ′/k|2 + 4(Ω2/ω2

A)|χ|2
]
dr . (52)

This is still an implicit equation for the determination of σ0 since the integrals involve the
solution χ(σ0) of the spectral equation. However, they may be estimated for the explicit
equilibrium (41) by rather straightforward approximations. The corresponding values of σ0

are in excellent agreement with the results of the numerical code.
The factor 1− 5/(4γ), which equals 1/4 for γ = 5/3 (but 1 for γ = ∞), produces a large

effect of compressibility at marginal stability (as illustrated in the side frame of Fig. 13):
σ0 = −8.262 × 10−4 for the compressible modes, whereas σ0 = −3.373 × 10−3 for the
incompressible ones. A similar large factor of about 4 occurs in the deviation of the solution
path from the imaginary axis (illustrated in the main frame of Fig. 13 for the compressible
modes). For example, the EVs corresponding to the eigenfunctions of Fig. 14 are given by:

n = 1 : σ = −2.0312 (−8.2883) × 10−3 , ν = 6.2772 (6.2077) × 10−1 ,

n = 10 : σ = −1.2866 (−5.2491) × 10−3 , ν = 3.8605 (3.8104) × 10−1 ,

n = 29 : σ = −8.2615 (−33.728) × 10−4 , ν = 7.3537 (5.9292) × 10−2 , (53)

where the values in brackets are for incompressibility. The latter assumption gives reasonable
estimates for the growth rates, but the real parts of the eigenvalues are completely off.

For finite size disks, the split in unstable and stable modes is of considerable physical
significance, since the unstable MRIs are relevant for turbulence studies of the accretion
process, whereas the frequencies and eigenfunctions of the stable modes contain important
information about the morphology of the disk because of the strong radial dependence of the
equilibrium profiles. The latter, stable, part of the spectrum may become relevant in some
distant future when the subject of magneto-seismology (correlating spectral studies with
observations) of accretion disks8 has come of age. As for the present, it appears that we
have succeeded to incorporate the MRI into the general MHD spectral theory of equilibria
with sizeable background flows by means of the method of the Spectral Web.

VI. SUMMARY

– The new method of the Spectral Web to calculate the spectrum of waves and instabilities
of plasma equilibria with sizeable flows, developed in the preceding Paper I,1 is applied to
a collection of classical MHD instabilities operating in cylindrical plasmas with shear flow
or rotation. After a review of the basic concepts of the complementary energy giving the
solution path and the conjugate path, which together constitute the Spectral Web (Section I),
the cylindrical model is presented and the spectral equations are derived (Section II).

– The first example concerns the internal kink instabilities of a cylindrical force-free mag-
netic field of constant α subjected to a parabolic shear flow profile. The old Voslamber–
Callebaut14 stability diagram and the associated Goedbloed–Hagebeuk15 growth rate calcu-
lations for static equilibria are replaced by a new intricate stability diagram and associated
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complex growth rates for the stationary model. The power of the Spectral Web method
is demonstrated by showing that the two associated paths in the complex ω-plane nearly
automatically guide to the new class of Global Alfvén Instabilities (GAIs) of the force-free
configuration, that would have been very hard to predict by other methods (Section III).

– The second example concerns the Rayleigh–Taylor instability of a rotating theta-pinch.
The old literature25,30 is revisited and shown to suffer from inconsistencies that are reme-
died. The most global n = 1 instability and a cluster sequence of more local but much more
unstable n = 2, 3, . . .∞ modes are located on separate solution paths in the HD version of
the instability, whereas they merge in the MHD version. The Spectral Web offers visual
demonstration of the central position the HD flow continuum and of the MHD Alfvén and
slow magneto-sonic continua in the respective spectra by connecting the discrete modes in
the complex plane by physically meaningful curves towards the continua (Section IV).

– The third example concerns the magneto-rotational instability (MRI)35,36 thought to be
operating in accretion disks about black holes37. The sequence n = 1, 2, . . . of unstable
MRIs is located on one continuous solution path, but also on infinitely many separate loops
(‘pancakes’) of the conjugate path with just one MRI on each of them. For narrow accretion
disks, those sequences are connected with the slow magneto-sonic continuum, which is far
away though from the marginal stability transition. In this case, the Spectral Web method
is the first to effectively incorporate the MRIs into the general MHD spectral theory of
equilibria with background flows (Section V).

– Together, the three examples provide compelling evidence of the computational power of
the Spectral Web Method.
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Appendix A: Coefficients of the spectral differential equations

It is expedient to renormalize the azimuthal variables with r by redefining h̄2 ≡ r2h2,
B̄θ ≡ Bθ/r and v̄θ ≡ vθ/r, and to introduce abbreviations for two equilibrium functions,
∆(r) and Λ(r), and three perturbation functions, P (r; ω̃), Q(r; ω̃) and R(r; ω̃):

∆ ≡ r
(
B̄2

θ − ρv̄2
θ

)′
+ ρ′Φ′

gr , Λ ≡ ρ(v̄2
θ − Φ′

gr/r) ,

P ≡ B̄θF + ρv̄θω̃ , Q ≡ B̄θFP + B̄2
θ Ã , R ≡ B̄2

θ

[
2mP − h̄2(B̄2

θ + ρv̄2
θ)
]
. (A1)

The coefficients A, B and C of the second order ODE (12) are then defined by

A ≡ 1

r

(
Ã + ∆

)
, (A2)

B ≡ −4

r

{
(ρω̃2 − k2γp)P 2 − ρω̃2R +

(
mρω̃2P − h̄2Q

)
Λ + 1

4
h̄2ÃΛ2

}
, (A3)

C ≡ 2

r2

{
mS̃P − r2ρω̃2

(
Q − 1

2
ÃΛ
)}

. (A4)

whereas the coefficient E of the first order system (20) is defined by

E ≡ − 1

r2

{
ÃS̃

(
Ã + ∆

)
− 4S̃P 2 + 4r2

(
Q − 1

2
ÃΛ
)2}

. (A5)

This corresponds with the coefficients derived by Bondeson et al.,7 extended with the con-
tributions of the gravitational potential.8

The perpendicular and parallel components of ξ follow directly from χ ≡ rξr:

η =
1

rBD

{
GS̃χ′ − 2

[
kγpFP − r(B̄zP − GB̄2

θ + 1
2
GΛ)ρω̃2

]
χ
}

, (A6)

ζ =
1

rBD

{
FγpÃχ′ + 2

[
kγpGP + r(B̄θP − FB̄2

θ + 1
2
FΛ)(ρω̃2 − h2B2)

]
χ
}

, (A7)

where G ≡ mBz/r− kBθ. The solution-averaged Doppler–Coriolis shift V may be obtained
by substituting iξθ ≡ (Bzη + Bθζ)/B and iξz ≡ (−Bθη + Bzζ)/B into the definition (22).

In the first order formulation (20), for complex frequencies, all expressions split into real
and imaginary components:




χ′
1

χ′
2

Π′
1

Π′
2




+




Ĉ1 −Ĉ2 D̂1 −D̂2

Ĉ2 Ĉ1 D̂2 D̂1

Ê1 −Ê2 −Ĉ1 Ĉ2

Ê2 Ê1 −Ĉ2 −Ĉ1







χ1

χ2

Π1

Π2




= 0 , (A8)

where Ĉ ≡ C/N , D̂ ≡ D/N , Ê ≡ E/N , with real and imaginary parts Ĉ1,2, D̂1,2, Ê1,2.
The explicit expressions for these coefficients are obtained by straightforward expansion of
Eqs. (A2)–(A4). Significant simplification occurs in the incompressible limit (γp → ∞).
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Appendix B: Boundary condition at the origin

Numerical implementation of the left BC (13)(a) requires expansion of the coefficients
about the singularity r = 0. This expansion is essentially different for the mode numbers
m 6= 0 and m = 0.

(a) For m 6= 0, the leading order terms of the contributing coefficients in Eq. (12) read:

N ≈ 1

r
Ã0S̃0 , D ≈ −m2

r2
S̃0 , A ≈ 1

r
Ã0 , C ≈ 2m

r2

(
B̄θF + ρv̄θω̃

)
0
S̃0 , (B1)

so that close to the origin

χ ≈ cr|m| , Π ≈ c

|m|
[
Ã + 2sgn(m)

(
B̄θF + ρv̄θ ω̃

)]
0
r|m| , (B2)

where the subscript 0 signifies evaluation at r = 0.

(b) For m = 0, the leading order terms of the contributing coefficients read:

N ≈ 1

r
Ã0S̃0 , D ≡

(
ρ2ω̃4 − k2S̃

)
0
, A ≈ 1

r
Ã0 ,

B ≈ −1

r

[
4
(
ρω̃2 − k2γp

)(
B̄θF + ρv̄θ ω̃

)2]

0
, (B3)

so that close to the origin

χ ≈ c
(
r2 − 1

8
αr4
)
, Π ≈ −c

( 2ÃS̃

ρ2ω̃4 − k2S̃

)

0
. (B4)

The contribution with α in χ is just added to show consistency of the expansion.

For complex frequencies, the above expressions split into real and imaginary parts, again
obtained by straightforward expansion.

Appendix C: Singular expansions

We here restrict the analysis to plane shear flow (vθ = 0). Indicating the distance to a
singular point by s ≡ x−xs, where x = xs is the singular point, it is expedient to introduce
the local shear Alfvén Mach number, together with its slow critical value:

M ≡ Ω0 − Ω0(rs)

ωA − ωA(rs)
≈ Ω0

′

ωA
′

∣∣∣∣
rs

(
= −

√
ρ vz

′

Bz(µ′/µ)

∣∣∣∣
rs

)
, Mc ≡

√
γp

γp + B2

∣∣∣∣
rs

, (C1)

so that M/Mc = (Ω0
′/ω′

S)rs
. (The expression in large brackets is only valid at rational

surfaces, k/m = −µ, or m/n = −q.) Local trans-Alfvénic transitions are indicated by
M = ±1 and local trans-slow transitions by M = ±Mc. We now summarize the results of
three relevant expansions of the singular factors of the spectral equation (12).
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(a) Suydam rational surface expansion

At a rational surface (where ωA = ωS = 0), a confluence of almost all singularities
occurs: Ω±

A = Ω±
S = Ω±

s0 = Ω0 at x = xs. For stationary equilibria, a local stability
criterion is obtained by analyzing the approach to that confluence at σ = Ω0, ν = 0, i.e.
at the crossing of the solution path with the real axis. The expansions of the singular
factors there read: ω̃2−ω2

A ≈ (M2−1)ωA
′s2, and ω̃2−ω2

S ≈ ω̃2−ω2
s0 ≈ (M2−M2

c )ωA
′s2.

As derived by Hameiri6 and Bondeson et al.,7 the dominant solution χ ∼ sn of Eq. (12)
then has a complex exponent n, associated with a cluster point of infinitely rapidly
oscillating solutions, if the modified Suydam criterion,

Smod ≡ 1

1 − M2

(p′

r
− 2B2

θ

r2

M2
c M2

M2
c − M2

)
+ 1

8
B2

z

(µ′

µ

)2

> 0 . (C2)

is violated. To avoid local instability, one needs to satisfy (C2). The derivation clearly
breaks down in the neighborhoods of the critical points M = ±Mc and M = ±1.
These points coalesce for incompressible modes (M2

c = 1), resulting in a criterion that
is not even obviously satisfied in the absence of a pressure gradient (as for the force
free field of Sec. III) because of the large negative second term.

(b) Alfvén cluster point expansion

At an extremum of one of the Alfvén continua, where Ω±
A
′
(xs) = 0 so that M = ±1, the

expansion reads: σ−Ω±
A ≈ −1

2
Ω±

A
′′
s2. Again, the exponent n of the dominant solution

is complex, and a cluster point of infinitely rapidly oscillating solutions results, if one
of the following condition is satisfied:

either 0 < ±1
4
ωAΩ±

A
′′

< QA , or 0 > ±1
4
ωAΩ±

A
′′

> QA ,

where QA ≡ rG2

B2

(B2
θ

r2
− 2BθBzF

r2G

)′
+

4k2B2
θ

r2

1 − 2M2
c

1 − M2
c

. (C3)

These solutions correspond to a sequence of stable Global Alfvén Eigenmodes (GAEs),
if the cluster point is not overlapped by the rest of the continua.

(c) Slow cluster point expansion

At an extremum of one of the slow continua, where Ω±
S
′
(xs) = 0 so that M = ±Mc,

the similar expansion gives rise to the conditions for a slow cluster point:

either 0 < ±1
4
ρωSΩ

±
S
′′

< QS , or 0 > ±1
4
ρωSΩ

±
S
′′

> QS ,

where QS ≡ −M4
c

B2

[
F 4(1 − M2

c ) + rF 2
(B2

θ

r2

)′
− 4k2B2

θB
2

r2(1 − M2
c )

]
. (C4)

A sequence of stable Global Slow Eigenmodes results if the continua do not overlap.

The GAEs, and their prospect of low frequency plasma heating, were described by Appert
et al.20 for static equilibria. The Alfvén and slow cluster conditions were presented in the
form (C3) and (C4) for the static case (where ±Ω±

A,S
′′ → ωA,S

′′) by Goedbloed.21 The revised

expansion needed for incompressible modes (M2
c = 1) is described in Sec. IIIC.
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23 B. van der Holst, A. J. C. Beliën and J. P. Goedbloed, Phys. Rev. Lett. 84, 2865 (2000); Phys.

Plasmas 7, 4208 (2000).
24 W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).
25 J. P. Freidberg and J. A. Wesson, Phys. Fluids 13, 1117 (1970).
26 J. P. Freidberg and L. H. Pearlstein, Phys. Fluids 21, 1207 (1978).
27 D. C. Barnes, Phys. Plasmas 8, 4856 (2001).
28 L. C. Steinhauer, Phys. Plasmas 18, 070501 (2011).
29 M. N. Rosenbluth, N. A. Krall and N. Rostoker, Nucl. Fusion Suppl. I, 143 (1962).
30 J. B. Taylor, Plasma Physics (J. Nucl. Energy Part C) 4, 401 (1962).
31 E. Hameiri, Phys. Fluids 22, 89 (1979).
32 The Figures 9 and 13 were used before, in the different context of illustrating the difference

between laboratory and astrophysical plasmas with respect to MHD stability, in:

J. P. Goedbloed, Plasma Physics and Controlled Fusion 60, 014001 (2017).
33 K. M. Case, Phys. Fluids 3, 143 (1960).
34 G. O. Spies, Phys. Fluids 21, 580 (1978).
35 E. P. Velikhov, Soviet Phys.–JETP Lett. 36 (1959) 995.

27



36 S. Chandrasekhar, Proc. Nat. Acad. Sci. USA 46 (1960), 253.
37 S. A. Balbus and J. F. Hawley, Astron. J. 376(1991) 214.
38 H. C. Spruit, T. Matsuda, M. Inoue and K. Sawada, Monthly Not. Roy. Astron. Soc. 229 (1987)

517.
39 N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24 (1973) 337.
40 B. Dubrulle and E. Knobloch, Astron. Astrophys. 274, 667 (1993).
41 J. W. S. Blokland, E. van der Swaluw, R. Keppens and J. P. Goedbloed, Astron. Astrophys.

444, 337 (2005).

28



FIGURE CAPTIONS

Figure 1. Stability diagram for the m = 1 internal kink modes of a static equilibrium
with a force-free magnetic field of constant α. The instability regions of the resistive tearing
modes are bound by the dashed curves and shaded black, the instability regions of the ideal
MHD modes are bound by the drawn black curves and the thin horizontal red lines and
shaded red.

Figure 2. Marginal modes (left) and corresponding real eigenfunctions (right) of the
internal kink instabilities of a static equilibrium with a force-free magnetic field: (a) αa =
5.0 , k/α = 0.16: ν = 4.3171 × 10−2 (case A); (b) αa = 8.0 , k/α = 0.05: ν = 1.7766 ×
10−2(case C, n = 1 mode); (c) αa = 8.0 , k/α = 0.05: ν = 1.9294 × 10−3 (case C, n = 2
mode). The red dashed lines indicate the locations of the rational surfaces.

Figure 3. Spectral Web for the n = 1 internal kink mode of a force-free magnetic field
with shear flow, vz = 1 − x2, αa = 5.0, k/α = 0.16, xmix = 0.3 (case A). The upper part of
the diagram shows the radial profiles of the continua Ω+

A and Ω−
A (in red) and the Doppler

frequency Ω0 (dashed).
Figure 4. (a) Complex eigenfunctions of the n = 1 internal kink instability of a force-free

magnetic field with shear flow, vz = 1−x2, αa = 5.0 corresponding to Fig. 3. (a) k/α = 0.16:
σ = 0.47831, ν = 8.7428 × 10−2 (case A); (b) k/α = 0.4: σ = 1.2675, ν = 1.0964 × 10−3

(case B). The position of the rational surface is indicated by the red dashed vertical line.
Figure 5. Spectral Web for the n = 1 and n = 2 internal kink modes and the first Global

Alfvén Instability of a force-free magnetic field with shear flow, vz = 0.9 (1− x2), αa = 8.0,
k/α = 0.16, xmix = 0.3 (case D). The inset shows the logarithmic Spectral Web for some
of the higher Global Alfvén Instabilities. The upper part of the diagram shows the radial
profiles of the continua Ω+

A and Ω−
A (in red) and the Doppler frequency Ω0 (dashed).

Figure 6. Complex eigenfunctions of the n = 1 and n = 2 internal kink instabilities of a
force-free magnetic field with shear flow corresponding to Fig. 5, vz = 0.9 (1−x2), αa = 8.0.
k/α = 0.16 (case D). (a) n = 1 (point I1 in Fig. 5): σ = 0.95712, ν = 7.9930 × 10−2;
(b) n = 2 (point I2 in Fig. 5): σ = 0.58027, ν = 9.1377×10−2. The red dashed lines indicate
the rational surfaces.

Figure 7. Stable and corresponding unstable Global Alfvén Eigenmodes of a force-free
magnetic field with shear flow corresponding to Fig. 5, vz = 0.9 (1−x2), αa = 8.0, k/α = 0.16
(case D). (a) First stable Global Alfvén Eigenmode on the interval (0.8, 1.0): σ = 0.65749;
(b) Third stable Global Alfvén Eigenmode on the interval (0.8, 1.0): σ = 0.65722; (c) First
Global Alfvén Instability on the complete interval (point G1 in Fig. 5): σ = 0.66428, ν =
4.6809 × 10−3; (d) Third Global Alfvén Instability on the complete interval (point G3 in
Fig. 5): σ = 0.65725, ν = 2.7796 × 10−6.

Figure 8. Equilibrium density (black) and magnetic field (red) of a rotating theta pinch
for β = 0.6944 and Ω = 1.0542 (corresponding to x0 = 0, α = 2, δ = 0.1667). The local HD
stability criterion Cstab is indicated in green for compressible (drawn) and incompressible
(dashed) plasmas.

Figure 9. Spectral Web consisting of solution path (red) and conjugate path (blue), with
some eigenvalues highlighted by black dots, for the m = 1, k = 0 (HD) modes of the rotating
theta pinch equilibrium of Fig. 8. The side frame shows the cluster sequence toward the HD
flow continuum (red dot in the main frame), with a zoom of the n = 53, . . . 56 eigenvalues
in the bottom frame.
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Figure 10. The first two (global) eigenfunctions, and a high n (local) one, for the rotating
theta pinch equilibrium of Fig. 8: (a) n = 1 (σ = 0.06547, ν = 0.25248), (b) n = 2
(σ = 0.82729, ν = 0.41698), (c) n = 54 (σ = 1.0538, ν = 0.01939).

Figure 11. Spectral Web consisting of solution path (red) and conjugate path (blue), with
some eigenvalues highlighted by black dots, for the m = 1, k = 0.1 (MHD) modes of the
rotating theta pinch equilibrium of Fig. 1. The range of the continua is indicated by grey
strips above (Alfvén) and below (slow) the horizontal axis, their spatial dependence is shown
in the top frame. The side frame shows a zoom of the unstable n = 5, . . . 13 eigenvalues and
the stable n ≥ 14 eigenvalues (only the n = 14 ones are highlighted).

Figure 12. Growth rate ν ≡ Im(ω) (in red) and Coriolis shift σ̃ ≡ Re(ω)−mΩ (in black)
as a function of k for the compressible (drawn) and incompressible (dashed) m = 1, n = 1
modes of the rotating theta pinch equilibrium of Fig. 8. The blue and green curves refer
to ν and σ̃ for the n = 2 modes. The vertical red and blue dashes indicate the marginal
stability transitions.

Figure 13. Spectral Web of MRIs for an accretion disk equilibrium with ǫ = 0.1, β = 100,
µ1 = 1, δ = 2, and mode numbers m = 0, k = 70. The eigenvalues of the n = 1–29 unstable
modes and of the n = 30, 31 and n = 30′, 31′ stable modes are highlighted by black dots.
The side frame shows a zoom of the Spectral Web close to the origin with the marginal
Coriolis shift σ0 indicated by the cross (the dashed curves refer to incompressible modes).

Figure 14. Eigenfunctions of MRIs corresponding to some of the eigenvalues of the
Spectral Web shown in Fig. 13: (a) n = 1, (b) n = 10, (c) n = 29.

Figure 15. (a) Zoomed out lower part of the Spectral Web of Fig. 13, highlighting the
continua and the stable n = 100′ (σ = −0.43682) and n = 100 (σ = 0.43632) modes.
The range of the continua is indicated by grey strips above (Alfvén) and below (slow) the
horizontal axis, their spatial dependence is shown in the top frame. (b) Eigenfunction of the
n = 100 mode.
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FIG. 1: Stability diagram for the m = 1 internal kink modes of a static equilibrium with a force-free

magnetic field of constant α. The instability regions of the resistive tearing modes are bound by

the dashed curves and shaded black, the instability regions of the ideal MHD modes are bound by

the drawn black curves and the thin horizontal red lines and shaded red.

31



FIG. 2: Marginal modes (left) and corresponding real eigenfunctions (right) of the internal kink

instabilities of a static equilibrium with a force-free magnetic field: (a) αa = 5.0 , k/α = 0.16:

ν = 4.3171 × 10−2 (case A); (b) αa = 8.0 , k/α = 0.05: ν = 1.7766 × 10−2(case C, n = 1 mode);

(c) αa = 8.0 , k/α = 0.05: ν = 1.9294× 10−3 (case C, n = 2 mode). The red dashed lines indicate

the locations of the rational surfaces.
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FIG. 3: Spectral Web for the n = 1 internal kink mode of a force-free magnetic field with shear

flow, vz = 1−x2, αa = 5.0, k/α = 0.16, xmix = 0.3 (case A). The upper part of the diagram shows

the radial profiles of the continua Ω+
A and Ω−

A (in red) and the Doppler frequency Ω0 (dashed).

33



FIG. 4: (a) Complex eigenfunctions of the n = 1 internal kink instability of a force-free magnetic

field with shear flow, vz = 1 − x2, αa = 5.0 corresponding to Fig. 3. (a) k/α = 0.16: σ = 0.47831,

ν = 8.7428 × 10−2 (case A); (b) k/α = 0.4: σ = 1.2675, ν = 1.0964 × 10−3 (case B). The position

of the rational surface is indicated by the red dashed vertical line.
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FIG. 5: Spectral Web for the n = 1 and n = 2 internal kink modes and the first Global Alfvén

Instability of a force-free magnetic field with shear flow, vz = 0.9 (1 − x2), αa = 8.0, k/α = 0.16,

xmix = 0.3 (case D). The inset shows the logarithmic Spectral Web for some of the higher Global

Alfvén Instabilities. The upper part of the diagram shows the radial profiles of the continua Ω+
A

and Ω−
A (in red) and the Doppler frequency Ω0 (dashed).

35



FIG. 6: Complex eigenfunctions of the n = 1 and n = 2 internal kink instabilities of a force-free

magnetic field with shear flow corresponding to Fig. 5, vz = 0.9 (1 − x2), αa = 8.0. k/α = 0.16

(case D). (a) n = 1 (point I1 in Fig. 5): σ = 0.95712, ν = 7.9930 × 10−2; (b) n = 2 (point I2 in

Fig. 5): σ = 0.58027, ν = 9.1377 × 10−2. The red dashed lines indicate the rational surfaces.
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FIG. 7: Stable and corresponding unstable Global Alfvén Eigenmodes of a force-free magnetic field

with shear flow corresponding to Fig. 5, vz = 0.9 (1− x2), αa = 8.0, k/α = 0.16 (case D). (a) First

stable Global Alfvén Eigenmode on the interval (0.8, 1.0): σ = 0.65749; (b) Third stable Global

Alfvén Eigenmode on the interval (0.8, 1.0): σ = 0.65722; (c) First Global Alfvén Instability on the

complete interval (point G1 in Fig. 5): σ = 0.66428, ν = 4.6809 × 10−3; (d) Third Global Alfvén

Instability on the complete interval (point G3 in Fig. 5): σ = 0.65725, ν = 2.7796 × 10−6.
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FIG. 8: Equilibrium density (black) and magnetic field (red) of a rotating theta pinch for β = 0.6944

and Ω = 1.0542 (corresponding to x0 = 0, α = 2, δ = 0.1667). The local HD stability criterion

Cstab is indicated in green for compressible (drawn) and incompressible (dashed) plasmas.

FIG. 9: Spectral Web consisting of solution path (red) and conjugate path (blue), with some

eigenvalues highlighted by black dots, for the m = 1, k = 0 (HD) modes of the rotating theta pinch

equilibrium of Fig. 8. The side frame shows the cluster sequence toward the HD flow continuum

(red dot in the main frame), with a zoom of the n = 53, . . . 56 eigenvalues in the bottom frame.
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FIG. 10: The first two (global) eigenfunctions, and a high n (local) one, for the rotating theta pinch

equilibrium of Fig. 8: (a) n = 1 (σ = 0.06547, ν = 0.25248), (b) n = 2 (σ = 0.82729, ν = 0.41698),

(c) n = 54 (σ = 1.0538, ν = 0.01939).
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FIG. 11: Spectral Web consisting of solution path (red) and conjugate path (blue), with some

eigenvalues highlighted by black dots, for the m = 1, k = 0.1 (MHD) modes of the rotating theta

pinch equilibrium of Fig. 8. The range of the continua is indicated by grey strips above (Alfvén)

and below (slow) the horizontal axis, their spatial dependence is shown in the top frame. The side

frame shows a zoom of the unstable n = 5, . . . 13 eigenvalues and the stable n ≥ 14 eigenvalues

(only the n = 14 ones are highlighted).
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FIG. 12: Growth rate ν ≡ Im(ω) (in red) and Coriolis shift σ̃ ≡ Re(ω) − mΩ (in black) as a

function of k for the compressible (drawn) and incompressible (dashed) m = 1, n = 1 modes of

the rotating theta pinch equilibrium of Fig. 8. The blue and green curves refer to ν and σ̃ for the

n = 2 modes. The vertical red and blue dashes indicate the marginal stability transitions.
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FIG. 13: Spectral Web of MRIs for an accretion disk equilibrium with ǫ = 0.1, β = 100, µ1 = 1,

δ = 2, and mode numbers m = 0, k = 70. The eigenvalues of the n = 1–29 unstable modes and of

the n = 30, 31 and n = 30′, 31′ stable modes are highlighted by black dots. The side frame shows

a zoom of the Spectral Web close to the origin with the marginal Coriolis shift σ0 indicated by the

cross (the dashed curves refer to incompressible modes).
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FIG. 14: Eigenfunctions of MRIs corresponding to some of the eigenvalues of the Spectral Web

shown in Fig. 13: (a) n = 1, (b) n = 10, (c) n = 29.
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FIG. 15: (a) Zoomed out lower part of the Spectral Web of Fig. 13, highlighting the continua

and the stable n = 100′ (σ = −0.43682) and n = 100 (σ = 0.43632) modes. The range of the

continua is indicated by grey strips above (Alfvén) and below (slow) the horizontal axis, their

spatial dependence is shown in the top frame. (b) Eigenfunction of the n = 100 mode.

44


