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Abstract

Predictions for the operation of tokamak divertors are reliant on edge plasma simulations typically utilizing a fluid plasma

code in combination with a Monte Carlo code for neutral species. Pilot-PSI is a linear device operating with a cascaded arc

plasma source that produces plasmas comparable to those expected in the ITER divertor (Te ∼ 1 eV, ne ∼ 1021m−3). In this

study, plasma discharges in Pilot-PSI have been modelled using the Soledge2D fluid plasma code [1] coupled to the Eirene

neutral Monte Carlo code. The plasma is generated using an external source of plasma density and power. These input

parameters are tuned in order to match Thomson scattering (TS) measurements close to the cascaded arc source nozzle. The

sensitivity of the simulations to different atomic physics models was explored. It was found that elastic collisions between

ions and hydrogen molecules have a strong influence on calculated profiles. Without their inclusion, supersonic flow regimes

are obtained with M ∼ 2 close to the target plate. Simulation results have been compared with experimental findings using

TS close to the target and in the case of Pilot-PSI, a Langmuir probe embedded in the target. Comparison between

experimental trends observed in a background pressure scan [2] and the simulations show that the inclusion of the elastic

collision is mandatory for the trends to be reproduced.
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1 Introduction

The technological limit of steady-state power loading of the ITER plasma-facing components (PFCs) is 10 MW/m2

[3]. The plasma heat flux to the PFCs is chanelled through a narrow layer given by the power flux fall-off length,

λq. The numerical value of this parameter has been extrapolated to ITER using multi-machine scaling [4] and has a

pessimistic value of ∼ 1 mm. Therefore, in order to avoid excessive heating of the PFCs, a large fraction of the plasma
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heat flux has to be dissipated before reaching the divertor targets. This can be achieved by radiation of a significant

amount of power by impurity species and/or by transferring the plasma kinetic energy to neutral hydrogen particles

(e.g. via excitation, charge-exchange) which are inherently present in the vicinity of the plasma-solid interface.

Neither photons nor neutral particles follow magnetic field lines and can potentially spread the heat load over a larger

area of the PFCs. Additionally, these processes can lead to detached divertor regimes, where significant reduction

of power and particle fluxes can occur between upstream and target locations. For ITER and next step fusion

facilities, predictions of heat and particle transport from upstream locations of the scrape-off layer to the PFCs

rely largely on modelling using fluid/Monte Carlo code packages (i.e. SOLPS, SolEdge2D-Eirene, EDGE2D-Eirene,

SOLDOR/NEUT2D). Within this work, we use the SolEdge2D-Eirene code to simulate the Pilot-PSI linear plasma

device. Pilot-PSI offers a high density (ne ∼ 1020− 1021 m−3), low temperature (Te ∼ 0.1 - 5 eV) plasma relevant to

detached divertors. The simulations are compared to experimental data published in [2]. Such an approach enables

to 1) provide interpretation for the experimental results by detailed bookkeeping of individual processes within the

code, 2) assess how accurately the code can reproduce experimental findings with implications for divertors and 3)

point towards ways of improving the performance of linear plasma devices to deliver high power and particle fluxes

for the needs of material testing.

2 The Pilot-PSI linear plasma generator

The Pilot-PSI [5] linear device uses a cascaded arc discharge source and is depicted in Fig. 1. A cylindrical r-φ-z

coordinate system is used, where the z-coordinate is aligned with the magnetic field and is the axis of symmetry of

the plasma beam and z=0 is situated at the exit of the source discharge channel. The cascaded arc operates in steady

state and the discharge channel is fed by a constant gas flow rate typically in the range of 1.5 to 3.0 standard liters

per minute (1 slm ∼ 4×1020 molecules per second). The plasma leaving the arc discharge chamber is confined by an

axial magnetic field that in the experiment shown here had a magnitude of 0.2T. Typical discharge currents are 100 -

220 A. The background neutral pressure in the vessel is given by the pumping and the inflow of the residual neutrals

from the source and is typically of the order of several Pa. The plasma beam is terminated at axial position z=56

cm by an actively cooled solid target. The key diagnostic was Thomson scattering which was performed at two axial

locations (at z=4 cm and z=54 cm, referred to as ”upstream” and ”target” locations, respectively) and is particularly

suited to measure low temperature plasmas in the range 0.07 eV to 5.0 eV [6]. A single Langmuir probe was embedded

in the target with a collecting area perpendicular to the magnetic field lines. The current collecting surface was

circular and 2 mm in diameter. The backround neutral pressure, which we will denote as Pn, was measured by a

capacitance manometer.
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Figure 1: Schematic layout of the Pilot-PSI linear plasma device, with the two positions where radial profile
measurements using Thomson scattering can be performed.

3 Simulation setup

The Soledge2D transport code was designed for investigation of the transport of quasineutral plasma in the tokamak

edge plasma and in the SOL [1, 7] and is coupled to the kinetic Monte-Carlo (MC) code Eirene [8]. The code assumes

toroidal symmetry. The equations for density, parallel velocity and electron and ion temperature are solved. The

parallel transport is solved self-consistently while the cross-field transport is imposed by ad-hoc diffusion coefficients.

Kinetic corrections for cases with low collisionality are provided by the use an artificial flux limiter. Drifts, electric

fields and currents are implemented in Soledge2D [9], however they were turned off in simulations presented in this

contribution.

The geometry of the linear plasma device may seem very different from a tokamak, however they have common

aspects, which enable to create a field-aligned grid that the code can directly use. The grid for the linear device

can be regarded as a subspace of a tokamak grid. It is in fact topologically equivalent to a scrape-off layer with no

toroidal field and no major radius, i.e. the plasma is simulated up to the axis of symmetry, unlike tokamaks. The axial

magnetic field of the linear device corresponds to the poloidal magnetic field of a tokamak and had a constant value

of 0.2 T in all simulations presented here, in line with the experiment. The grid used in the simulations is depicted

in Fig. 2. Additionally, a variable grid density is used in order to provide high resolution in the plasma beam and

close to the walls, while in areas of less interest the cells are larger, to save computational time.

The plasma wall interaction is treated using the penalization technique [10] which recovers standard Bohm boundary

conditions and sheath heat transmission at the plasma-wall interface, i.e. |M | ≥ 1 and qt,α = γαnMcsTα, whereM is

the Mach number, qt,α is the energy flux density through the interface for species α (electrons or ions), cs is the sound

speed and γα are the sheath heat transmission factors for ions and electrons, set to 2.5 and 4.5 , respectively. The

Soledge2D energy equations are written in terms of the total energy. However, the values of heat transmission factors



4 K. Jesko et al

0 0.2 0.4 0.6 0.8 1
z (m)

0

0.1

0.2
r 

(m
)

Puff

Cell boundaries
Wall contour
Pumping surface

Figure 2: The Pilot-PSI non-uniform grid used in the Soledge2D-Eirene simulations.

reported here are for the internal energy part. We assume the ion velocity distribution function at the sheath edge

to be a shifted Maxwellian with cs normal to the wall, so the effective sheath heat transmission factor for ions is in

fact 3.5 for Ti = Te. This choice ensures internal consistency of the code and is related to the coupling of SolEdge2D

and Eirene. On the axis of symmetry the boundary condition of vanishing perpendicular gradients is used.

Anomalous values are assigned to the radial transport coefficients. For density, a diffusion coefficient of Di = 0.3

m2/s is chosen based on an estimate obtained from the Bohm diffusion coefficient for Te=1 eV and B =0.2 T and is

found to reproduce broadening of beam profiles at least qualitatively, Fig. 5 (D). Simulation results were found not

to be sensitive to the radial thermal conductivities in the range 0.1 - 3.0 m2/s. In the simulations, values of χe,i⊥ =

0.3 m2/s are used.

It is beyond the scope of this contribution to model the details of the cascaded arc discharge self-consistently. This

would require inclusion of the electric currents and drifts in the simulations, as well as thermionic emission from

the hot cathode. However, the principal focus here lies in the interaction of the plasma beam with the surrounding

neutral gas. Therefore, the plasma particle and power sources are directly prescribed as external volumetric source

terms in the Soledge2D equations. The shape and magnitude of these is defined to match Thomson scattering profiles

measured close to the source. For example, the external volumetric source terms for the plasma ion/electron source

has the form of a Gaussian function in both r and z directions:

S(ext)
n (r, z) =

S
(ext,tot)
n

C
exp
(
− (r − rsrc)2/λ2r

)
exp
(
− (z − zsrc)2/λ2z

)
, (1)

where rsrc, zsrc are the positions of the profile maxima, λr, λz are the profile widths, C is a normalization constant

such that the volume integral over the simulation domain be equal to the total number of injected particles, i.e.∫
V
Sextn dV = Sext,totn . The position and spatial extent of the external volumetric source terms was chosen such that

it stays well within the small area of the cascaded arc source, i.e. rsrc = 0, zsrc =-2.5 cm, λr = 0.5 cm, λz = 1 cm,

Fig. 2.
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Table 1: List of atomic and molecular physics processes used in Eirene, listed for both AM1 and AM2. In AM1,
rate coefficients for reactions (3)-(10) originate from the HYDHEL database (the remaining ones are from AMJUEL,
while in AM2 all reactions are taken from the AMJUEL database. Both databases available from www.eirene.de.

# Reaction AM1 AM2 Event type
(1) H + e → H+ + 2e yes yes Electron impact ionization
(2) H + H+ → H+ + H yes yes Charge exchange
(3) H2 + e → H+

2 + + 2e yes yes Electron impact ionization
(4) H2 + e → 2H + e yes yes Dissociation
(5) H2 + e → H + H+ + 2e yes yes Dissociative ionization
(6) H2 + H+ → H2 + H+ n/a yes Elastic collision
(7) H2 + H+ → H+

2 + H n/a yes Ion conversion
(8) H+

2 + e → H+ + H + 2e yes yes Dissociation
(9) H+

2 + e → H+ + H+ + e yes yes Dissociative ionization
(10) H+

2 + e → 2H yes yes Dissociative recombination
(11) H+ + e → H yes yes Electron-ion recombination

The interaction of plasma and neutrals is handled by the Eirene Monte-Carlo code [8]. In the case of Pilot-PSI,

there are three channels through which neutral particles can enter the system. 1) The constant gas flow from the

cascaded arc discharge source, 2) Recycling source at the plasma wall interface and 3) Volumetric recombination. The

latter two are calculated self-consistently by Eirene, while the constant gas inflow rate is simulated as a constant puff

of H2 at ambient temperature (0.03 eV) at the location depicted in Fig. 2. In the experiment, this is an externally

controlable quantity and in the experiment [2] the value of the total source inflow was 2.5 standard liters per minute

(slm) corresponding to about 1021 H2/s in all experiments presented here. This value is also used in the simulations.

The recycling coefficent at the plasma-wall interface is set to unity throughout all the simulations presented here.

In order to achieve steady state a pumping surface must be present. This is located at the back end of the vessel,

Fig. 2, where one can specify an absorption probability for neutral particles. The absorption probability is set to

match measurements of the neutral pressure in the vacuum vessel, typically in the range of several Pa. The species

considered in Eirene are hydrogen atoms H and molecules H2 and H+
2 molecular ions. Two different sets of atomic

and molecular reactions were used in the simulations and are listed in Tab. 1. For the sake of clarity we label them

AM1 and AM2. AM1 was the default set of reactions available in Eirene. AM2 corresponds to the model described

in [11] (first used in [12]). However, in our case it is without neutral-neutral collisions and radiation opacity. Here, the

main difference between the models is that the AM2 model contains two more reactions: elastic collisions between

H+ and H2 and ”ion conversion”, which is a charge-exchange between H+ and H2. It was shown in [11] that the elastic

collisions can affect the results significantly. Moreover, [13] also shows high sensitivity of JET detachment simulations

to the atomic physics model. In the next section, a sensitivity study of simulation results involving both models and

their refinements will be presented in order to determine the key processes at hand, i.e. the ones with significant

effect on the solution.
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Figure 3: Parallel profiles of various plasma parameters located 1.7 mm radially from the axis of symmetry, obtained
by the Soledge2D-Eirene code for different versions of the atomic physics model.

4 Results & Discussion

4.1 Impact of atomic physics on simulation results

In order to address the sensitivity of the plasma solution to the atomic physics, four different cases (a)-(d) of atomic

physics reactions were used. Case (a) is the AM1 model, Case (b) is AM2, case (c) is AM2 but with the elastic

collision (6), (Tab. 1) and ion conversion (7) artificially turned off (this case may seem identical to case (a), however

in (a), the source database for rate coefficients for some reactions is different, see caption of Tab. 1). Lastly, case (d)

is AM2 with only the ion conversion (7) turned off. For each case (a)-(d), a converged solution was obtained for a

Pilot-PSI relevant plasma, with upstream ne and Te values of ∼ 3×1020 m−3 and ∼ 3-5 eV. Fig. 3 shows parallel

profiles of several plasma parameters for each of these four cases. The parallel profiles are taken at a radius of 1.7

mm from the axis of symmetry. It can be seen that with case (a) (AM1) the plasma enters a supersonic regime very

close to the nozzle. However, in case (b) (AM2), it is found that the plasma remains subsonic. Moreover, the ion flux

and plasma pressure reaching the target are also strongly reduced as opposed to case (a). The principal differences

in AM1 and AM2 are the inclusion of the two processes (6), (7) in Tab. 1. In order to discriminate which of these

two processes is responsible for the significant qualitative change in behavior, case (d) is introduced, where the ion

conversion reaction (7) is turned off. In this case, the situation is very similar as in case (b), although some minor

differences can be spotted, e.g. ne and also the ion flux density is somewhat higher troughout the profile in case

(b). Indeed, it is the elastic collisions (6) that are responsible for keeping the flow subsonic in case (b). To support

this, in Fig. 4 the volumetric source terms for plasma particles, momentum and energy are plotted for the same flux
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Figure 4: Parallel profiles of the plasma particle, momentum and energy sources for the field line located 1.7 mm
radially from the axis of symmetry. The inset figure is a zoom-in on the particle source in the range z=0.05 m to
z=0.38 m.

tube in the same color code as Fig. 3. Indeed, in case (b), a strong momentum sink appears throughout the parallel

profile and is also present in case (d). Although it is known [11, 13] that the elastic collision process is important in

detached/low temperature plasmas, this study illustrates the important consequences that omission of this process

can have on the simulation results (e.g. by using a more crude atomic physics model).

The lower density and flux density in the case (b) as opposed to case (d) can be explained by the fact that the

ion conversion reaction is the first step of the ”molecular assisted recombination (MAR)” reaction chain, the second

step being the dissociative recombination reaction (10). Therefore, by removing the reaction (7) the MAR pathway

is now effectively forbidden in the simulations. Indeed, if one zooms in on the particle source term at the inset of

Fig. 4, one can notice that for case (b) the ionization front moves closer to the cascaded arc source and that the

recombination sink is much stronger as opposed to case (d) when the MAR is deactivated. On the other hand, the

magnitude of the recombination is much smaller compared to ionization in both cases. It is also important to add

that MAR was reported to be of large importance in linear devices [14, 15] and has triggered discussion whether it is

an important recombination pathway in tokamak divertors in the past.

4.2 Comparison with experimental data

An experimental scan on the background pressure was performed, and is described in detail in [2]. Within the

experiment, the pressure of the background neutral gas was changed between 3.2 Pa and 12.6 Pa by means of

controlling the pumping speed. All the other input parameters were kept constant: The gas inflow rate to the cascaded

arc source was 2.5 slm and the discharge current was 220A. Thomson scattering was performed at two locations of

the plasma beam: 4 cm from the source nozzle and 2 cm in front of the target and a Langmuir probe was measuring

the ion flux to the target. Experimentally, the plasma conditions at the source have been found to be insensitive

to the background pressure [2]. In Fig. 5 (A) the ion flux density measured by the LP and recalculated from TS
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Figure 5: Comparisons between measurements of various quantities with TS and a LP and Soledge2D-Eirene simula-
tions using different versions of the atomic physics model: (A) Target ion flux density, (B) Total, section integrated
ion flux upstream and at the target, (C) FWHM of the radial ion flux density profile upstream and at the target and
(D) ion transit time for two cases of the atomic physics model.

measurements at the target location are compared to values obtained from Soledge2D-Eirene. Strong reduction of

the local ion flux is seen both by the LP and TS. In the simulations, the trend is recovered only with the full AM2

atomic physics model. However, the target ion flux density is completely insensitive to changes in the background

pressure in the case where the ion conversion (IC) and elastic collision (EC) reactions are turned off. However, it

was shown that the volume recombination sink is rather low in the simulations even with the IC included in section

4.1. The reduction in ion flux density in the simulations is caused by the radial transport: The momentum sinks

caused by the EC are efficient at slowing down the plasma flow (see section 4.1). The parallel ion transit time (

τ‖ =
∫ t
u
v−1z dz, where vz is the drift velocity in the z (parallel) direction) is strongly increased, as seen in Fig. 5 (D),

giving the plasma more time for perpendicular diffusion.

In Fig. 5 (C) the full width half maxima of the radial ion flux profiles Γ(r) are plotted as a function of the Pn for

both experiment and simulation. In the experiment, it can be seen that at the target, the FWHM of the Γ profile is

broadening with an increase in the background pressure, while at upstream it remains constant. In the simulations

this trend can only be reproduced with the full AM2 model. It is to be noted that the magnitude of the broadening
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in the simulations is set by the perpendiclar diffusion coefficients. In the case of omission of the EC and IC processes

a constant value of the broadening throughout the Pn scan is obtained.

Next, the total, radial section-integrated ion flux (Γtot(z) =
∫
S
rΓ(r, z)drdφ = 2π

∫ R
0
rΓ(r, z)dr, where S is the

area of the radial section of the vessel and R is the vessel radius) is plotted for both experiments and simulations.

There was no measurement available to calculate the plasma velocity upstream, however, from earlier work using

spectroscopy [5, 16] it can be taken that the plasma flow velocity at z=4 cm is between 2 km/s and 5 km/s for a broad

range of machine settings in terms of B-field, discharge current and flow rate. A Mach number of 0.4 was assumed

for all the experimental profiles in question. This assumption may seem crude, however what we are really interested

in is the reductions of plasma flux, rather than the absolute values. As can be seen in Fig. 5 (B), the total ion flux

at the target is strongly reduced with the exception of the case with the lowest background pressure, for which we

cannot conclude regarding this matter. For all the other Pn cases, the strong reduction of the integrated particle flux

Γtot translates to the fact that there has to be a net plasma sink in the volume between upstream and target. In the

simulations, if the EC/IC reactions are not included, this trend is not recovered, there is no difference between the

total flux at upstream and target. On the other hand, after the inclusion of these processes, a small reduction in the

total ion flux is recovered in the simulations for the higher end of the Pn scan. For cases with very low background

pressure, the total ion flux at the target increases compared to upstream. This means that ionization dominates over

recombination in the volume between these two locations, given the higher temperature for the cases with low Pn.

The low Pn cases were not accessible experimentally due to constraints of the pumping system and conversely, the

high Pn cases could not be simulated due to numerical instabilities. Future work will be focused on broadening the

window of overlap between measurements and simulations.

5 Conclusions

In this paper we report on Soledge2D-Eirene simulations of the Pilot-PSI linear plasma device with focus on using

different atomic physics models and the sensitivity of the results to them. Subsequently, simulation results are

compared to experimental data from Thomson scattering and a single Langmuir probe. The elastic collision between

ions and hydrogen molecules is identified as a key player in the simulations, providing momentum sinks which keep

the plasma flow subsonic as opposed to cases when the process is not included. The ion conversion reaction provides

the pathway for the H+
2 branch of molecule assisted recombination (MAR), which is the strongest recombination

channel, however the total magnitude of recombination is small compared to the total ionization source. Comparison

between experimental trends observed in a background pressure scan and the simulations show that the inclusion of

the elastic collision is mandatory for the trends to be reproduced. This result demonstrates that it is important to

use the atomic model introduced in [12] for detached/low temperature cases with high neutral molecule densities and
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that using versions without elastic collisions can lead to qualitatively different simulation results. Strong reduction

of the ion flux density at the target is reproduced in the simulations, however it is mainly driven by radial transport.

The total volume recombination source appears to be underestimated in the simulations. However, cases with high

background pressure were not accessible so far in the simulations and are subject to further study.
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