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ABSTRACT: The excitation of localized surface plasmon resonances in Au and Ag colloids can 

be used to drive the synthesis of complex nanostructures, such as anisotropic prisms, bipyramids, 

and core@shell nanoparticles. Yet, after two decades of research, it is challenging to paint a 

complete picture of the mechanisms driving such light-induced chemical transformations. In 
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particular, while the injection of hot charge carriers from the metal nanoparticles is usually 

proposed as the dominant mechanism, the contribution of plasmon-induced heating can often not 

be neglected. Here, we tackle this uncertainty and quantify the contribution of different 

activation mechanisms using a temperature-sensitive synthesis of Au@Ag core@shell 

nanoparticles. We compare the rate of Ag shell growth in the dark at different temperatures with 

the one under plasmon excitation with varying laser intensities. Our controlled illumination 

geometry, coupled to numerical modeling of light propagation and heat diffusion in the reaction 

volume, allows us to quantify both localized and collective heating effects and determine their 

contribution to the total growth rate of the nanoparticles. We find that non-thermal effects can be 

dominant and their relative contribution depends on the fraction of nanoparticle suspension under 

irradiation. Understanding the mechanism of plasmon-activated chemistry at the surface of metal 

nanoparticles is of paramount importance for a wide range of applications, from the rational 

design of novel light-assisted nanoparticle syntheses, to the development of plasmonic 

nanostructures for catalytic and therapeutic purposes. 

In the past two decades, a lot of interest has been devoted to the development of light-assisted 

syntheses of hierarchical and anisotropic metal nanoparticles (NPs).1–3 Such syntheses are driven 

by the excitation of localized surface plasmon resonances (LSPRs) in noble metal nanoparticles 

and can result in nanostructures with high yields and narrow size and shape distributions.4–6 The 

decay of LSPRs via non-radiative heat dissipation and the ejection of hot charge carriers are 

primarily responsible for these plasmon-assisted syntheses.5,7 

One of the milestones in the field of plasmon-assisted nanoparticle synthesis is the 

photochemical transformation of spherical Au and Ag seeds into triangular prisms. These 

reactions are thought to proceed via the plasmon-mediated excitation of short-lived (< 100 fs)8 
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hot charge carriers and their subsequent injection into adsorbed organic ligands on the metal 

nanoparticle surface. In the case of silver sphere to prism transformation, the citrate molecules 

present on the silver seeds are photo-oxidized by the injection of hot holes, thereby generating a 

negative photovoltage on the seed particles and facilitating the reduction of Ag+ ions.3,5,9 In the 

case of Au sphere to prism transformation, it has been shown that the surface ligand 

polyvinylpyrrolidone (PVP) increases the lifetime of plasmonically produced hot electrons	via 

interfacial coulombic interactions. These electrons are then injected into adsorbed Au3+ ions at 

the surface of the gold seeds.2 Such hot charge carrier driven mechanisms are further supported 

by photo-electrochemical measurements of nanoparticle-decorated electrodes,10–12 as well as by 

the characterization of the redox states of the involved organic ligands and the wavelength and 

polarization dependence of the reaction kinetics.3,10	

Despite these significant insights into the mechanism of plasmon-driven nanoparticle 

synthesis, several open questions remain on the efficiency of hot charge carrier driven reactivity 

and on the role and magnitude of light-induced heating.13,14 Due to the strong light and 

temperature sensitivity of these nanoparticle syntheses, disentangling the relative contributions 

of hot charge carrier and photothermal effects is experimentally challenging. Furthermore, 

despite recent developments,15–20 a theoretical understanding of the mechanism and efficiency of 

hot electron generation in metal nanoparticles and of their injection in molecular adsorbates 

under actual reaction conditions is still at its infancy. 

Under continuous wave (CW) irradiation, the non-radiative decay of LSPRs leads to a local 

increase of the nanoparticle surface temperature with respect to its surrounding medium, !!, 

which is proportional to the particle absorption cross-section !!"# and inversely proportional to 

its diameter ! according to:21 
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!" =  !
2!"# =  !!"# !

2!"#           (1) 

where ! is the absorbed power, ! is the optical power per unit area and ! is the thermal 

conductivity of the medium surrounding the nanoparticle. In most light-driven syntheses reported 

in the literature, the low optical power used leads to a predicted local temperature increase at the 

surface of the metal nanoparticles of the order of milliKelvins.5 As a consequence, localized 

plasmonic heating has generally been ruled out as an activation mechanism for these 

transformations. However, depending on the number density of the nanoparticles, even a slight 

increase of a few milliKelvins in !! on the nanoparticle surface can result in an increase of up to 

tens of Kelvins of the solution temperature, due to collective heating effects.22 For example, 

collective plasmonic heating has been previously used to generate steam from water kept at room 

temperature,23 for fractional distillation of azeotropic mixtures,24 and in photo-thermo-electric 

devices.25 Such macroscopic temperature increases could easily be sufficient to activate 

endothermic reactions, such as the citrate mediated reduction of silver ions used in Ag 

nanoparticle transformations.5 Furthermore, it has been proposed that the surface redox potentials 

of metal nanoparticles and the rate of charge transfer at their surface can be significantly 

influenced by temperature.7 As such, quantifying the contributions of localized and collective 

plasmonic heating is crucial for properly understanding the activation mechanism of light-driven 

nanoparticle syntheses.26 

In the limit of low light scattering and no convection, empirical equations have been derived to 

correlate the local temperature increase !!, to the collective increase in temperature of the 

irradiated volume of solution.22 These equations, however, cannot be used when both scattering 

and absorption by the plasmonic nanoparticles strongly affect light propagation and large 

temperature gradients can develop across the liquid.27 Under these conditions, mapping the three-
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dimensional temperature distribution or estimating average temperatures inside reaction vessels 

during plasmon excitation is challenging. In light-driven syntheses, thermocouples are typically 

limited by the sensitivity of the thermoelectric probes to the incoming light. Furthermore, 

infrared (IR) cameras are restricted to measuring the surface temperatures of the chemical 

glassware, due to the low penetration depth of infrared radiation through glass or quartz. 

Alternative techniques such as Temperature Imaging using Quadriwave Shearing Interferometry 

(TIQSI) and Raman spectroscopy are limited to mapping temperature distributions over 2D 

surfaces.28,29	For this reason, numerical modelling of light absorption and scattering as well as of 

heat transfer by conduction and convection are essential to derive a realistic picture of the 

temperature distribution in reaction vessels for light-activated chemistry.27 

Here, we quantitatively assess the effect of local and collective plasmon-induced heating in a 

plasmon-driven nanoparticle synthesis, using a combination of experimental and numerical 

methods. First, we develop a temperature-sensitive synthesis of Au@Ag core@shell 

nanoparticles, in which the growth rate of the silver shell increases exponentially with the 

temperature of the solution. The formation of a silver shell on the gold nanoparticles leads to a 

marked increase in their extinction cross-section, which we follow spectroscopically during the 

reaction. Second, we study the rate of Ag shell growth under plasmon excitation using 

monochromatic light with varying optical power, in the absence of any external heating. Third, 

we use numerical modelling to simulate light propagation and heat transfer by conduction and 

convection to quantify temperature distributions in our reaction vessel under experimental 

conditions. Finally, by comparing the observed shell growth rates under light irradiation to the 

ones measured in the dark, and in light of the numerical results, we quantify the relative 

contributions of photothermal and hot charge carrier effects to the total growth rate of the Ag 
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shell. In our experimental conditions the effect of localized heating is negligible, leading to 

surface temperature increases of the order of a few milliKelvins. Collective heating effects, 

however, can account for 30% to nearly 100% of the total reaction rate, depending on the volume 

fraction of nanoparticle solution under illumination. The remaining observed activity is attributed 

to electromagnetic effects, such as the hot electron driven reduction of Ag+ ions at the surface of 

Au nanoparticles. 

 

RESULTS AND DISCUSSION 

Ag shell growth in the dark. 

Large spherical Au nanoparticles with a diameter of 69±11 nm (measured over 1765 particles) 

were synthesized adapting a previously reported method (Figure 1A).30 This nanoparticle size has 

been chosen to maximize the increase in surface temperature for Au nanospheres capped with the 

surfactant cetyltrimethylammonium chloride (CTAC) under a 532 nm laser irradiation. Smaller 

particles have lower absorption cross-sections thereby generating lower temperature increases. 

Larger particles, despite having a larger absorption cross-section at 532 nm, distribute the 

absorbed power over larger volumes, leading to lower overall temperature increases (see 

Supporting Information, SI 1). 

In order to assess the effects of plasmonic heating, we designed a temperature-activated 

synthesis of Au@Ag core@shell nanoparticles (see Figure 1B and the Materials and methods 

section). Our final objective is to properly quantify different contributions to the total reaction 

rate during laser (532 nm) irradiation experiments. For this reason, we want to minimize the 

variation in the absorption cross-section of Au@Ag nanoparticles during the shell growth 

reaction (see eq (1)). We, therefore, limit our reactions to the growth of very thin (0-3 nm) Ag 
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shells (see SI 2). Briefly, aqueous solutions containing AgNO3,	 bis(p-

sulfonatophenyl)phenylphosphine (BSPP), and ascorbic acid are added sequentially to CTAC 

stabilized Au nanoparticle suspensions. The water-soluble ligand BSPP is used to complex free 

Ag+ ions and control the shell growth rate.9,31 In our studies, we follow the silver shell growth by 

measuring the variation in the extinction spectra of our Au@Ag nanoparticle suspensions. We 

optimize the relative molar concentrations of BSPP and Ag+ between 1 and 3.3, and we find that 

for a ratio of [BSPP]/[Ag+] = 2.5, Ag+ reduction is kinetically inhibited at room temperature. At 

60 °C, however, such a ratio leads to the growth of a silver shell on the Au nanoparticles as 

evidenced by a large increase in their extinction spectra in the λ<500 nm range (Figure 1C). The 

observed change in extinction is consistent with an Ag shell growth rate of ~1.5 nm in thickness 

per hour, as evidenced by Mie theory calculations of the extinction spectra of Au@Ag 

nanoparticles (Figure 1D). 

 

Figure 1. (A) Representative SEM image of Au nanoparticles before Ag shell growth. The inset 

shows the measured size distribution. (B) Schematic representation of the temperature-activated 
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synthesis of Au@Ag core@shell nanoparticles in the dark. (C) Time evolution of the extinction 

spectra of the reaction mixture in the dark (left) at 20 °C and (right) at 60 °C. (D) Extinction 

cross-section of Au@Ag core@shell nanoparticles with 69 nm Au diameter and varying Ag shell 

thicknesses, calculated using Mie theory with literature dielectric data for Au and Ag.32 (E) High-

Angle Annular Dark-Field Scanning Transmission Electron Micrograph (HAADF-STEM) and 

corresponding Energy Dispersive X-ray (EDX) maps of Au Lα1 and Ag Lα1 signals for an 

Au@Ag core@shell nanoparticle grown in the dark at 60 °C for 6 hours. 

The growth of an Ag shell is further confirmed by elemental mapping using energy dispersive 

X-ray spectroscopy (EDX), as shown in Figure 1E. The formation of Ag shells on Au 

nanoparticles at moderately high temperatures suggests the dissociation of Ag[BSPP]x
+ 

complexes to release free Ag+ ions, which are subsequently reduced by ascorbic acid, to form 

Au@Ag core@shell nanoparticles. Such temperature-driven dissociation of silver-phosphine 

complexes have already been observed in organic solvents.33 

In order to quantify the growth rate of the Ag shell, we monitor the temporal evolution of the 

extinction spectra of Au@Ag nanoparticles in the wavelength range between 397 nm and 477 

nm. In this spectral region, the features due to Ag are most prominent and minimally affected by 

the dipole resonances of the core@shell nanoparticles (see SI 3). We define an extinction 

contrast parameter, !", that accounts for the relative increase in extinction at time ! with respect 

to the extinction at time ! = 0: 

!" =  
 !"# ! d!!"" !"

!"# !" −  !"# 0 d!!"" !"
!"# !"

 !"# 0 d!!"" !"
!"# !"

 

In Figure 2A, we plot the time evolution of the extinction contrast for a silver shell growth 

reaction in the dark at 60 °C. Similar trends are observed for all reaction temperatures, with 
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higher temperatures leading to faster shell growth (see SI 4). The reaction proceeds through three 

different regimes: i) an induction period during which the solution temperature equilibrates to the 

final value and the !" initially decreases and then recovers, ii) a growth period (orange dots) in 

which the !" increases linearly with time due to the silver shell formation, and iii) a depletion 

period during which the shell growth slows down due to the decreasing concentration of free Ag+ 

ions in solution. 

Figure 2. (A) Time evolution of the extinction contrast, !", during the Ag shell growth reaction 

at 60 °C in the dark. The inset shows the time evolution of the slope ! !" /!!. (B) Apparent 

rate of the Ag shell growth reaction in the dark as a function of temperature. The dashed line is a 

fit to the data using eq (2). The inset shows the same data as an Arrhenius plot. 

The inset in Figure 2A shows the time evolution of the fitted slope for the “EC vs Time” plot, 

calculated by fitting a straight line through 20 data points between tn and tn+19: (i) in the induction 

period the slope increases from negative to positive values, (ii) during the growth regime the 

slope ! !" /!" is roughly constant and the mean and standard deviation of the slope in this 

regime are used to define an apparent rate of the reaction, ! !" /!" , (iii) in the depletion 

regime the slope slowly decreases. The decrease in the extinction intensity during the induction 



 10 

period is most likely due to the change in the packing density of the CTAC bilayer around the Au 

nanoparticle surface (SI 5). Interestingly, the higher the reaction temperature, the faster the shell 

growth begins, and the shorter is the induction period (SI 4). 

During the growth period, the extinction contrast increases linearly with time, indicating that 

the concentration of Ag+ ions in solution is roughly constant. For small Ag shell thicknesses (0 - 

3 nm), the extinction contrast scales linearly with the number of reduced silver atoms, and we 

can therefore write the following rate equation (see details in SI 6): 

! !"
!" ≈ !"#$%&#% ∙ !"# − !!

!"           (2) 

In Figure 2B, we plot the apparent rate, ! !" /!" , as a function of the nanoparticle solution 

temperature !. An exponential fit to the data using eq (2) leads to an activation energy for the 

silver shell growth of 76±10 kJ/mol, which is comparable to the one measured for other 

temperature-activated Ag nanoparticle syntheses.34 

 

Ag shell growth under plasmon excitation. 

After having characterized the temperature dependence of the silver shell growth rates in the 

dark, we repeated the synthesis by irradiating the growth solution at the Au plasmon resonance in 

the absence of any external heating. We perform this experiment on a 90 μL nanoparticle growth 

solution placed in a 10 mm × 2 mm quartz cuvette, inside a home-built setup that allows 

simultaneous laser irradiation and extinction spectroscopy (see SI 7 and the Materials and 

methods section). We excite the plasmon resonance of the Au nanoparticles using a 532 nm CW 

laser of varying optical powers ranging from 100 mW to 440 mW. For sufficiently high laser 

intensities, we observe an extinction increase similar to the one observed for the nanoparticle 

solutions heated in the dark, indicating the formation of a silver shell on the Au nanoparticles 
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(Figure 3A). As shown in Figure 3B, higher laser intensities lead to faster rates of silver shell 

growth. 

Figure 3. (A) Time evolution of the extinction spectra of Au nanoparticles suspended in Ag shell 

growth solution, under a 532 nm laser irradiation at an optical power of 400 mW, corresponding 

to an intensity of ~23 W/cm2 (Gaussian profile, beam width 1/e2 = 1.5 mm). (B) Natural 

logarithm of the apparent rate of silver shell growth as a function of the laser irradiation power. 

In order to understand the Ag shell growth reaction dynamics under plasmon excitation, we 

can compare the apparent rates observed under laser irradiation (Figure 3B) with the Arrhenius 

plot obtained from the temperature-activated syntheses in the dark (inset in Figure 2B). For 

example, the rate measured for a laser power of 400 mW is comparable to the one observed 

when the nanoparticle solution is heated to a temperature of ~50 °C in the dark. To determine if 

the observed activity under plasmon excitation is purely due to a photothermal process, it is 

necessary to evaluate the steady-state temperature profile in our solution during laser irradiation. 

The use of thermocouples is hindered by their limited spatial resolution compared to our reaction 

volume (90 μL) and by their typical high sensitivity to light, which prevents us from measuring 

temperatures inside the illumination path (SI 8).22 Temperature measurements using IR cameras, 



 12 

on the other hand, are limited to measuring surface temperatures of our reaction vessels, due to 

the low IR transmittance of our quartz cuvettes.35 Interestingly, upon irradiation of a suspension 

of Au NPs with 400 mW laser power for 30 min the surface temperature of the cuvette only 

increases by ~8 °C (SI 9). To properly evaluate temperature profiles inside our nanoparticle 

suspension during plasmon-induced reactions, we therefore use numerical methods to model 

light propagation and heat transfer by conduction and convection in our system. 

 

Light propagation and heat transfer. 

The propagation of light in a scattering and absorbing medium is described by the radiative 

transfer equation (RTE).36 Our experiments are performed on suspensions of Au nanoparticles of 

69 nm in diameter with a nanoparticle density of 2.24×1010 NPs/mL, corresponding to an optical 

density of 1.92 at 532 nm for an optical path length of 1 cm. Such nanoparticle suspensions are 

highly scattering and highly absorbing at the wavelength used for laser irradiation. For this 

reason, we cannot use approximate solutions to the RTE that are valid for light propagation in a 

non-scattering (Beer-Lambert equation) or non-absorbing (diffusion equation) media.37 To 

properly account for light scattering and absorption in our reaction volume, we developed a 

Monte Carlo model that simulates photon propagation in a suspension of metal nanoparticles.38 

Our model uses realistic probabilities of photon scattering and absorption, from cross-sections 

calculated with Mie theory,39 and considers an exponential probability density distribution in 

photon scattering path length, in agreement with what is expected from light propagation in a 

medium with random scatterers.40 To calculate the angular distribution of the scattered photons, 

we approximate the radiation profile of our 69 nm Au nanoparticles with the one of a perfect 

electric dipole (SI 10). The 90 μL nanoparticle solution, which is contained in a 2×10×4.5 mm3 
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volume, is divided into cubic unit cells of 0.1 mm edge length. In our Monte Carlo calculations, 

we inject photons into the simulation volume, with a spatial distribution and a propagation 

direction matching our experimental laser beam profile. At each iteration of the model, the 

photon travels a distance corresponding to a calculated path length and it is then either absorbed 

or scattered. If the photon is scattered, a new propagation direction is generated from the 

scattering profile and the process is repeated. If the photon is absorbed, the event is registered 

into a matrix !!"# !! , !! , !! , where !!, !!, and !! are the indices corresponding to the unit cell in 

which the absorption process occurred. Our model also takes into account, the reflection and 

transmission of photons at the liquid/quartz (sides and bottom) and liquid/air (top) interfaces, 

using Fresnel’s equations. From the Monte Carlo simulation, we find that only a fraction of 

photons are transmitted through the cuvette of ~1.5 %, corresponding to an optical density of 1.8, 

which is in good agreement with the measured value. Given an incident optical power, !!"#, and 

a total number of simulated photons, !, we can calculate the optical power absorbed in each unit 

cell of volume !" as:27 

! !! , !! , !! = !!"# !! , !! , !! !!"#
! !"           (5) 

We find that under our experimental conditions (532 nm laser beam with optical power of 400 

mW and a 1/e2 beam width of 1.5 mm) most of the photons are absorbed in the first few 

millimetres of the nanoparticle suspension (Figure 4A). From the absorbed power and the 

nanoparticle density, we can then calculate the local increase in the surface temperature of the 

Au nanoparticles, !!, using eq (1). The use of eq (1) is justified, as it has been shown that 

temperature deviations due to a finite interface conductivity are negligible for Au nanoparticles 

capped with cetyltrimethylammonium salts.41 Interestingly, even at an irradiation power of 400 

mW, the maximum local temperature increase is a negligible 8 mK (Figure 4A), with an average 



 14 

surface temperature increase in the solution of ~0.6 mK. These values are much too small to 

justify any Ag shell growth due to a local increase in the surface temperature of the Au 

nanoparticles. However, at high enough nanoparticle densities, collective heating effects can 

arise, leading to a macroscopic temperature increase of the solution.22 Due to the highly 

inhomogeneous distribution of the absorbed power and the complex heat transfer mechanism in 

our reaction cuvette, composed of both conduction and convection processes, it is not possible to 

derive an analytical equation to calculate the average solution temperature. 

 

Figure 4. (A, left) Schematic illustration of the irradiation geometry for a 90 μL volume of 

nanoparticle suspension inside our quartz cuvette The zoomed in image shows the 3D spatial 

distribution of the absorbed optical power per unit cell, !(!! , !! , !!), and of the local temperature 

increase, !". (B) Steady-state temperature profile inside the nanoparticle solution due to 

collective heating effects, after 30 min of laser irradiation, calculated using COMSOL. (C) 
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Convection induced fluid flow for an irradiated nanoparticle solution visualized by Lagrangian 

fluid parcel trajectories using COMSOL. 

We, therefore, employ a Finite Element Method (FEM, COMSOL) to compute the magnitude 

and spatial profile of the solution temperature inside our cuvette, using the heat power density 

derived from the Monte Carlo simulations as heat source input. Figure 4B shows the computed 

steady-state temperature distribution inside the reaction volume after 30 minutes of laser 

irradiation. Notably, a large temperature gradient of the order of ~1 °C/mm is present in the 

liquid. Such a spatial inhomogeneity would lead to significant errors when estimating the 

average solution temperature using a single thermocouple measurement. Furthermore, we find 

that laminar flow convection is the dominant mechanism of heat exchange over conductive heat 

transfer in the nanoparticle solution, with fluid velocities as large as 2.6 mm/s (Figure 4C). 

Similar high velocities have been measured in plasmonically-heated solutions using scattering 

glass beads.22 The COMSOL calculated magnitudes and rates of temperature increase at different 

locations in the solution and at the surface of the cuvette agree quantitatively with IR camera and 

thermocouple measurements performed during laser irradiation (SI 11). Most notably, we find 

that upon laser irradiation with 400 mW optical power, the average solution temperature 

calculated with COMSOL reaches a steady-state value of 37 °C in about 10 min (SI 12). 

An average solution temperature of 37 °C is significantly lower than the 50 °C we estimated 

comparing the rates in Figures 2B and 3B. In particular, we find that in our light-driven synthesis 

at 400 mW, collective heating effects can only account for ~30% of the total reaction rate. The 

remaining ~70% must be due to non-thermal effects, such as hot electron driven reduction of Ag+ 

ions on the Au nanoparticle surface or two-photon mediated reduction of Ag+ to Ag0 assisted by 

the near-field enhancements on the Au nanoparticle surface. The latter process has been 
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previously demonstrated under 800 nm femtosecond laser pulsed irradiation and has been 

attributed to the higher reduction potential of photo-excited silver ions.42 Two-photon mediated 

processes can also be carried out with CW lasers with very high power densities43 (of the order of 

MW/cm2) or using optimized metallic substrates that can highly enhance the near-fields on the 

particle surface (>30,000x).44 In our work, however, we use CW laser power densities of the 

order of tens of W/cm2 and gold nanoparticles with maximum near-field enhancements of about 

35x (SI 13). Furthermore, we performed a control experiment in which we irradiated a Ag+ 

growth solution with a laser power of 440 mW in the absence of Au nanoparticles: after 15 hours 

of continuous illumination, we did not observe any spectroscopic evidence of Ag nanoparticle 

formation, indicating that the Ag+ ions are not sensitive to our irradiation conditions (SI 14).  

Given the above considerations, we can safely conclude that the principal mechanism of non-

thermal activation in our reaction is the hot electron mediated reduction of silver ions and we can 

therefore estimate the efficiency of the hot electron-driven process. We define the hot electron 

internal quantum efficiency (IQE) as the number of Ag+ ions reduced per photon absorbed by an 

Au nanoparticle. For a silver shell growth of ~2 nm, corresponding to a 400 mW irradiation over 

a period of 2 h, we find an average IQE over the reaction volume of ~10-6. Such low quantum 

yield is not necessarily surprising, considering that the size of our Au nanoparticles has been 

optimized to maximise photo-thermal effects and that smaller particles are expected to be more 

efficient sources of hot electrons.15,19 Furthermore, our IQE implicitly includes efficiency losses 

due to the generation of hot charge carriers, their injection into chemical reactants, and any 

efficiency loss due to competing chemical reactions at the nanoparticle surface. 
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Interestingly, in light-driven syntheses we do not observe any induction period (SI 15), 

strongly suggesting that, under laser irradiation, the Ag shell growth starts immediately thanks to 

non-thermal activation processes. 

Finally, it is important to note that the fraction of the irradiated volume of nanoparticle 

suspension also plays an important role in determining the relative contributions of photothermal 

and hot charge carrier effects in plasmon-driven reactions. When the volume of the nanoparticle 

suspension is increased from 90 μL to 450 μL under identical illumination conditions we find 

that, while the total reaction rate decreases, photothermal effects become the dominant 

contribution, essentially accounting for 100% of the total reaction rate (SI 16). This is a direct 

consequence of the fact that, while light propagation is only marginally affected by the volume 

increase, collective heating effects can extend to much longer distances, thanks to the large 

convection flows in the liquid. 

 

CONCLUSIONS 

In summary, we have studied the mechanism of activation of a plasmon driven synthesis of 

Au@Ag core@shell nanoparticles. Our controlled reaction and illumination conditions, coupled 

to numerical modelling of light propagation and heat transfer processes by convection and 

conduction in the reaction volume, allow us to quantify the relative contributions of 

photothermal and electromagnetic effects. We find that hot charge carrier effects can be a 

dominant driving force in the silver shell growth reaction, but their relative contribution strongly 

depends on the irradiated volume fraction of nanoparticle suspension. Quantifying the non-

radiative mechanisms contributing to plasmon-activated chemical reactions is essential for a 

wide range of applications. Our approach, combining experimental characterization and 
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numerical modelling, could therefore prove crucial to understand the plasmonic activation 

mechanisms of nanoparticle syntheses, drug delivery, and heterogeneous catalysis. 
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METHODS 

Gold(III) chloride trihydrate (HAuCl4.3H2O, ≥99.9% trace metals basis ), 

Hexadecyltrimethylammonium bromide (CTAB, ≥98%), Sodium borohydride (NaBH4, 99%), 

Silver nitrate (AgNO3, 99.9999% trace metals basis), L-Ascorbic acid (≥99%), 

Hexadecyltrimethylammonium chloride (CTAC, ≥98.0%) and Bis(p-

sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP, 97%) were purchased from 

Sigma-Aldrich. All the solutions were performed using deionized MilliQ water (18.2 MΩ at 25 

°C). 

 

Synthesis of Au nanoparticles. Au nanoparticles with an average diameter of 69 nm are 

synthesized adapting a previous report.30 In order to obtain larger particles, the concentration of 

HAuCl4 and ascorbic acid are modified in steps (3) and (4). The seed-mediated synthesis is 

performed in four steps, as follows: 

1) Synthesis of ~1.5 nm spherical seeds: In a typical synthesis, 125 μL of 10 mM HAuCl4 

solution is added into a CTAB solution (5 mL, 100 mM) under stirring, kept in a round bottom 

flask at 30 °C. Into the flask, an ice-cold NaBH4 solution (0.3 mL, 10 mM) is added. The solution 

is then kept stirring for 2 min and then left undisturbed for 1 h.  

2) Synthesis of gold nanorods: In this step, HAuCl4 solution (2 mL, 10 mM), AgNO3 solution 

(240 μL, 10 mM) and ascorbic acid solution (320 μL, 100 mM) are added sequentially to a 

stirring CTAB solution (40 mL, 100 mM) at 30 °C. Afterwards, Au seeds (48 μL) from step (1) 

are added and the solution is stirred for 1 minute and then left undisturbed for 2 h. 40 mL of the 

above solution is centrifuged twice (20,000 xg, 10 min), the first time with redispersion in water 

(40 mL) and the second time in an aqueous CTAB solution (40 mL, 10 mM). 
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3) Overgrowth of gold nanorods: An aqueous HAuCl4 solution (20 mL, 10 mM) and an 

ascorbic acid solution (20 mL, 100 mM) are added sequentially to 40 mL of the centrifuged 

nanorod solution obtained from step (2), while stirring 40 °C. The mixture is then left 

undisturbed overnight, maintaining the same temperature. 

4) Transformation into spherical nanoparticles: 40 mL of the fattened gold nanorod solution 

from step (3) is centrifuged (20,000 xg, 10 min) and redispersed in an aqueous CTAB solution 

(40 mL, 10 mM). An HAuCl4 solution (8 mL, 10 mM) is then added and stirred for a minute. 

The mixture is then left undisturbed overnight, at 40 °C. The nanoparticles are centrifuged thrice 

(20,000 xg, 10 min) and redispersed in the same amount of aqueous CTAC solution (20 mM). 

Finally, the nanoparticles are centrifuged once more (20,000 xg, 10 min) and redispersed in 

water. 

 

Synthesis of Au@Ag core@shell nanoparticles. Au@Ag core@shell nanoparticles are 

synthesized by adapting a previous report.45 In order to slow down the reaction, the precursor 

concentrations are modified and a phosphine complexing agent, BSPP is added. In a typical 

synthesis, an aliquot of Au nanoparticles is added to a CTAC solution (2.7 mL, 66.67 mM) and 

mixed thoroughly. BSPP solution (90 μL, 375 mM) is then added into it and mixed well. After 

10 minutes, AgNO3 solution (90 μL, 150 mM) and ascorbic acid solution (270 μL, 1500 mM) are 

added sequentially and mixed well between each addition. The final mixture has an optical 

density of 2 at the plasmon resonance λLSPR = 540 nm. The reaction does not occur in the absence 

of heating or laser irradiation. 

Synthesis under conventional heating in the dark: 3 mL of the above mixture is transferred to a 

quartz cuvette (path length of 10 × 10 mm) along with a magnetic stir bar, and sealed. The 
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cuvette is then placed in a temperature controlled cuvette holder (Qpod 2e/MPKIT) and heated to 

temperatures ranging from 20 °C to 60 °C, under stirring. Simultaneous extinction spectroscopy 

is performed by placing a white light source (Energetiq EQ-99XFC LDLS) and a spectrometer 

(Ocean optics HR 4000), on either sides of the cuvette holder. Multiple neutral density filters are 

placed to reduce the intensity of the light source (few μW/cm2 at 532 nm) passing through the 

nanoparticle solution. 

 

Synthesis under laser irradiation at room temperature: 90 μL of the above solution are 

transferred to a 10 × 2 mm quartz cuvette, using a micro-syringe. The cuvette is placed in a 

Thorlabs holder (CVH 100), and is irradiated with a 532 nm laser beam (CNI laser, MGL-FN-

532) through one of the 2 mm wide cuvette window. The laser beam has a Gaussian profile with 

a diameter of 1.5 mm at its 1/e2 power, and the optical power can increase up to 440 mW 

(corresponding to 25 W/cm2). Simultaneous extinction spectroscopy is performed by placing a 

white light source (Energetiq EQ-99XFC LDLS) and a spectrometer (Ocean optics HR 4000), 

normal to the laser irradiation. Multiple neutral density filters are placed to reduce the intensity 

of the white light source passing through the nanoparticle solution. A 365 nm long pass filter is 

also used to filter off any UV light that could induce Ag nucleation. A 532 nm notch filter 

(Semrock, NF01-532U-25) with a bandwidth of 17 nm, is placed in front of the spectrometer in 

order to filter any scattered laser light. 

 

Characterization techniques. The optical density of the Au nanoparticle suspension is obtained 

from extinction measurements performed in a Perkin Elmer Lambda 1050 UV-Vis-NIR 

spectrophotometer, using the Beer-Lambert’s relation. Scanning electron microscopy images are 
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obtained using a Zeiss Sigma field emission SEM operating at 10 kV. HAADF-STEM images 

and EDX maps are measured on an FEI Verios 460 SEM equipped with a scanning transmission 

electron microscopy (STEM) retractable detector. The temperature in the irradiated solution is 

measured using a K-type thermocouple (CHAL-005, Omega Engineering Limited) connected to 

a data logger (OM-EL-USB-TC, Omega Engineering Limited). Temperature measurements of 

the cuvette surface are performed using a Fluke Ti20 infrared camera. 

 

Numerical calculations. Monte Carlo simulations are implemented in MATLAB, and the heat 

generation matrix ! !! , !! , !!  is further used as input in COMSOL simulations. The evolution of 

the velocity field and the temperature field is numerically obtained from the following set of 

equations: 

! !!!" +  ! !.∇ ! =  −∇! + !+  ∇ !∇!  

!"
!" +  ∇. !! = 0 

!!!
!"
!" +  !!!!.∇! =  ∇ !∇! + !(!! , !! , !!) 

Here F is the volume force of buoyancy 

! =  −!" ! !! 
 

where g is the gravitational acceleration, ! is the density, ! is the velocity field, ! is the 

pressure, and ! is the temperature. Furthermore, ! =  !(!) is the dynamic viscosity, ! = !(!) 

is the thermal conductivity and !!  =  !!(!) is the heat capacity at constant pressure. Variations 

of density are taken into account only in terms of temperature variations. The variations in 

density may cause an expansion of the fluid, but the direct dynamic effects of those expansions 
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on the pressure field are neglected (weak compressibility approximation). Realistic temperature-

dependent properties of water are taken into account. The above equations reduce to just a heat 

conduction equation inside the quartz walls of the cuvette, where the velocity field ! ≡  0. This 

problem is solved using a finite element method (COMSOL Multiphysics) with a sufficiently 

fine mesh. The equations are integrated in time using the backward difference formula. No-slip 

boundary conditions on the inner cuvette walls are imposed on the nanoparticle suspension, 

except at the upper surface, which is considered as stress-free. All the outer walls of the cuvette 

including the bottom one are considered to provide a natural convection to the outside world, 

with an outward heat flux, ! = ℎ (! − !!"#$%&'). Here, ℎ is the heat transfer coefficient and 

!!"#$%&' is chosen as 22.5 °C. The heat transfer coefficient for the bottom wall is tuned such that 

numerical results match with experimental IR camera measurements on the cuvette external 

surface. 
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