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ABSTRACT

In this paper, techniques for optimal input design are
used to optimize the waveforms of perturbative experi-
ments in modern fusion devices. The main focus of the
paper is to find the modulation frequency for which the
accuracy of the estimated diffusion coefficient is max-
imal. Mathematically this problem can be formulated
as an optimization problem in which the Fisher infor-
mation matrix is maximized. First this optimization
problem is solved for a simplified diffusion model, while
assuming a slab geometry and a semi-infinite domain.
Later, the optimization is repeated under more general
conditions such as a cylindrical geometry, finite domain,
and simultaneous estimation of multiple transport co-
efficients. Based on the results of these optimizations,
guidelines are offered to select the modulation frequency
and to determine the optimality of the corresponding
experiment.

I. INTRODUCTION

Since many years perturbative experiments have been
used to study the transport of heat and particles in toka-
maks and stellarators [1–3]. These experiments allow to
measure quantities that in steady-state cannot be iden-
tified separately [2]. Some of these important quantities
that can be identified through such experiments are the
transport coefficients, which can be calculated based on
the Fourier spectra of the measured time-traces [4, 5].
However, how well the transport coefficients can be de-
termined strongly depends on experimental conditions
[6]. Some of these conditions are fixed by the physical
properties of the measurement setup, e.g., the thermal
noise level, the unknown transport coefficient and the
non-linear distortions, while others can be influenced
by the expermentalist, e.g., the total available power,

the deposition profile, waveform of the heat source, and
sometimes the location of the sensors.

Performing (perturbative) experiments in the field of
nuclear fusion is often very costly, due to restricted ma-
chine availability to perform experiments. As a result, a
lot of effort and time is put into determining the exper-
imental conditions which optimize the use of the mea-
surement resources. In the plasma fusion community
determining the optimal experimental conditions is of-
ten done based on first order principles, heuristics, and
experience of experimentalists. In contrast, the field of
system identification provides a vast library of meth-
ods to design the optimal experiment in a more system-
atic way for linear [7–9] and non-linear systems [10–12].
These methods are based on model knowledge, which is
rarely used explicitly to optimize the perturbations.

The key idea of optimal experiment design in the sys-
tem identification community is to minimize estimation
error on the measured quantities with respect to the ex-
perimental design choices. In general, the estimation
error is determined by the bias (systematic error) and
covariance (stochastic error) of estimated parameters
[13, 14]. However, in the field of optimal input design
it is common to assume that the estimator is asymptot-
ically unbiased and efficient [15]. Hence, minimization
of the estimation error reduces to the minimization of
the covariance matrix. Moreover, the assumption of an
asymptotic unbiased and efficient estimator allows us to
approximate the covariance matrix only with the inverse
of the Fisher information matrix. This matrix can be
computed prior to the experiment based on the model,
noise distribution, and prior guess of the model param-
eters [14, 16].

In theory the presented optimal input design can be
extended to biased estimators by replacing the Fisher
information matrix with an analytic expression of the
mean square error matrix (which depends on the ex-
pression for the bias and covariance matrix). However,
if an analytic expression for the bias is available, one can
simply use this information to correct the estimation,
which reduces the problem back to an unbiased problem
(be it with an altered expression for the Fisher informa-
tion matrix). The two cases where this is not possible is
when the bias depends on the measured quantities or no
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analytical expression is available. Unfortunately, these
conditions also prohibit the computation of the optimal
input prior to the experiment.

In principle the above methodology can be applied to
optimize any controllable aspect of a perturbative exper-
iment such that the uncertainty of the measured quanti-
ties is minimized. However, in this paper the main focus
lies on computing the modulation frequency of the heat
source that is used to generate the perturbation of the
experiment. Often the range for modulation frequency
is set by physical restrictions (see Sec. II for more de-
tails). However, to the best of the authors knowledge
the relation between the modulation frequency and the
uncertainty of the estimation has not yet been explored.

Initially it will be assumed that only the diffusion
coefficient is estimated during the experiment. This
means that the Fisher information matrix becomes a
simple scalar. By reducing the dimension of the opti-
mization problem, it will be possible to derive an ana-
lytical expression for the optimal modulation frequency
given some simplifying assumption. Later, it will be
explained how the method can be extended for simulta-
neous estimation of multiple transport coefficients.

The remainder of this paper is organized as follows.
First, in Sec. II an overview is given from the physical
consideration that are made when choosing the wave-
form of a perturbative experiment. Next, in Sec. III
an introductory example is presented, and the concept
of the Fisher information matrix is introduced. Addi-
tionally, it is explained how the Fisher information ma-
trix can be used to optimize an experiment. Then, in
Sec. IV, the optimal modulation frequency is computed
for various conditions and modulation waveforms. Fi-
nally, in Sec. VI it is explained how the method can be
extended when multiple transport coefficients are esti-
mated, as well as how the spectra of complex waveforms
can be optimized.

II. PHYSICAL RESTRICTIONS ON THE
MODULATION FREQUENCY

In most perturbation experiments a periodic block-
wave is used to modulate the heat source. Since these
excitations are periodic, i.e., they have a fixed modula-
tion frequency (fmod), the relevant perturbation can be
extracted from the experimental data with correlation
methods, e.g., using the fast Fourier transform (FFT).
This improves the signal-to-noise ratio and allows one
to minimize the magnitude of the perturbation. Due
to the well-defined frequency fmod, the FFT exhibits a
frequency spectrum with narrow peaks exactly at fmod,
and possibly higher harmonics, depending on the mod-
ulation scheme. At each radial position of the measure-
ment, one gets FFT’s amplitude and phase at fmod and
its higher harmonics. The ensemble of measurement
points provides radial profiles of amplitude and phase
whose shape is determined by the sources and by the
propagation of the perturbation.

One of the strengths of perturbative experiments is
that they can provide a separation between diffusive
and non-diffusive (convective) contributions [1], which
cannot be separated in a steady-state (local power bal-
ance) analysis. An example of such separation is the de-
tection of a heat pinch in various experiments [17, 18].
As the effect of non-diffusive (convective) terms on the
pulse propagation diminishes with increasing fmod, it
is very useful to be able to analyze higher harmonics
of the ground frequency. The choice of a non-standard
(i.e. far away from 50%) duty cycle helps to enhance
the signal of higher harmonics. The relative strength of
higher harmonics can be further enhanced by choosing
complicated waveforms. If one has modulated sources
at different modulation frequencies, say fmod,i, i = 1, 2,
the interacting modulations may produce perturbations
at some beat frequencies mfmod,1 + nfmod,2, which can
provide additional transport information. This can be
done using natural interaction between sawtooth and
modulated electron cyclotron heating (ECH) [19] or us-
ing directly two modulated ECH sources [20, 21]. Ana-
lyzing higher harmonics can specifically be used to test
the linearity of the experiment, which is a necessary
condition when comparing to linearized physics models.

When designing the waveform of the modulation, it
is also important to consider that fmod and the ampli-
tude of the waveform determine the modulation depth
and linearity of the experiments. One wants to avoid
non-linearities as for the estimation of transport coef-
ficients linearized models are used. Non-linear effects
are usually present due to a large perturbation in the
non-linear heat flux relation or by modulating a non-
linear boundary condition. As such, we want to avoid
perturbations that lead us too far from the equilibrium.
Additionally, the excitation should be small enough to
minimize perturbation of quantities other than the one
to be studied.

On the other hand, one wants to be able to analyze
the perturbation over a significant radial range of the
plasma. For pure diffusive propagation in a region free
of the modulated source, the amplitude profile decreases
exponentially with a decay length, λ ∼

√
χ/fmod (where

χ is the diffusion coefficient of the perturbed quantity).
The amplitude profile should be large enough to allow
for a measurable amplitude in the region of interest, but
remain smaller than the typical plasma size to avoid
the influence of the plasma boundary which might pre-
vent interpreting the transport results locally. More-
over, when the perturbation is settled (or almost settled)
to an equilibrium, decreasing the modulation frequency
no longer increases the amount of information in the
measurement. As a rule of thumb this lower bound on
fmod is similar to the inverse of the confinement time
1/τE . However, as this settling down time relates to
many aspects it is not entirely clear how accurate it is.
In conclusion under given plasma conditions, these re-
quirements determine the best range for fmod.

A last well-known phenomenon in heat plasma’s that
should be taken into consideration, is the existence of
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critical gradients. Above a certain threshold of the in-
verse scale length (∇X/X)crit of quantity X (e.g. elec-
tron temperature Te) some type of turbulence is trig-
gered, which makes it very hard to further enhance the
inverse scale length. This phenomenon is known as stiff
profiles. Perturbative experiments are very suited to
study this type of phenomenon. Below the threshold
generally χpert = χ. Above threshold χpert is (much)
larger than χLPB , and χpert is a measure for stiffness
[1, 22, 23]. The original critical gradient models have
been build based on linearization of transport around
different operating points [24, 25] for which we will opti-
mize the modulation frequency in this paper. At exactly
the transition point, the so-called knee, the linearization
may not exist due to the discontinuous behaviour of the
critical gradient. If during the perturbative experiment
this discontinuity lies in the domain of the perturba-
tion. Then, new higher harmonic components will ap-
pear showing that the linearization does not hold and
the estimates of χpert are unreliable. The appearence
of higher harmonics due to non-linear behaviour is dis-
cussed in more detail in Sec. VIB.

III. HOW TO OPTIMIZE THE
PERTURBATION?

In this section, the basic concepts to optimize the
modulation signal are explained. First, an introductory
example is given to get a better understanding of what
determines the optimal modulation frequency. Next,
the concept of the Fisher information matrix is intro-
duced, and it is explained how this matrix can be used
to determine the optimal modulation signal. To con-
clude this section, an expression for the Fisher informa-
tion matrix is derived for the specific case were we want
to optimize the modulation frequency in order to reduce
the uncertainty on the estimate diffusion coefficient.

A. Introductory example

Assume that we want to optimize the modulation fre-
quency of the perturbation for a linearized transport
model depicted in Fig. 1 , which is described by

ne
∂Te (t, x)

∂t
= neχ

∂2Te (t, x)

∂x2
+ pech (t, x) , (1)

where

pech (t, x) = p (t)
1

a
√
π

exp

(
− (x− xdep)2

a2

)
, (2)

with boundary conditions ∂Te/∂x (x = 0) = 0 and at
the boundary xend, T (xend =∞) = 0.

Moreover, a localized Gaussian deposition profile is
considered with a chosen to be small. The other quan-
tities in this model are Te the temperature, x the spatial

coordinate, constant density ne, χ the diffusion coeffi-
cient, and the source pech (t, x) with the center of de-
position xdep and dispersion a. Note, that the possible
static terms in (1) do not need to be taken into account
in an perturbative analysis [2].

Assuming that the perturbative source is localized,
the diffusion coefficient can be estimated outside the
source domain, i.e., where, see (2), contributions become
negligible. The estimation of the transport coefficients
such as χ is then generally determined on a local do-
main between two temperature measurement locations
(x1 and x2) [4]. The solution of (1) can be calculated
analytically in the frequency domain assuming constant
transport coefficients and is given by [5]

G (ω, χ) =
Θ (ω, x2)

Θ (ω, x1)
= exp

(
−

√
iω

χ
∆x

)
, (3)

where Θ (ω, x) = F (Te (t, x)) in which F denotes the
Fourier transform, ∆x represents the distance between
x1 and x2, and G (ω, χ) is referred to as the transfer
function which models the relation between the input
Θ (ω, x1) and the output Θ (ω, x2). It is chosen to rep-
resent the solution in transfer function form [5] instead
of the more common form in terms of logarithmic spa-
tial derivatives A′/A and φ′ [3–5] because it significantly
simplifies the calculation of the optimized perturbation
signals later.

It is important to note that G (ω, χ) does not depend
on the source, but only describes how Θ (ω, x2) changes
as result of Θ (ω, x1) because x1 6 x, pech (x) ≈ 0. In
Fig. 2 the dependence of G (ω, χ) on the frequency is
presented for two different values of the diffusion coef-
ficient χ = 1 and χ = 10. Notice, that aside from the
frequency and the transport coefficient χ, the transfer
functions in (3) also depends on the sensor locations
x1 and x2. However, these are considered to be known
prior to the experiment.

The goal of the experiment is to estimate the trans-
port coefficient χ based on temperature measurements
T (x1) and T (x2). It is assumed that the temperature
measurements are corrupted by additive Gaussian noise,
which results in complex circular normal noise (CCND)
in the frequency domain [26] with variance σ2

ω. As a
result the exact transfer function cannot be obtained
during the experiment. Instead a noisy version of the
transfer function is obtained, as represented by the point
clouds in Fig. 2.

The optimal modulation frequency corresponds to the
frequency for which it is the easiest to discriminate be-
tween different values of χ. Qualitative assessment of
this optimal frequency can be obtained based on Fig. 2.
For low-frequency, i.e., ω → 0, it is observed that both
transfer functions converge to the same value. In other
words, at low-frequency different values for χ are in-
distinguishable. This is well known in the literature
[2, 4]. On the other hand, at high frequencies, the noise
contribution starts to dominate the measurement. This
results in an overlap between the measurement points
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G(ω, χ)

Te(t, x1)

Θ(ω, x1)

Te(t, x2) +N(t, x2)

Y (ω) = Θ (ω, x2) +N (ω, x2)
+

p(t)

P (ω)

n(t, x2)
time:

freq.:

∂Te

∂x = 0 Te (xe) = 0
x1 x2

pech(t, x)
χ

Gp(ω, χ, a, xdep)

Figure 1. Graphical overview of transfer functions in relationship to 1D domain. Note that depending what problem is
analyzed the boundary condition can be different.
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Distance dx = x2 − x1 = 0.3 [m], σω = 0.05 [keV]

χ = 1 [m2/s]
χ = 10 [m2/s]

Figure 2. Amplitude ratio of (3) between two spatial lo-
cations as function of frequency for two different values of
χ where on the output Θ (ω, x2) additive stationary Gaus-
sian distributed white noise. The solid lines represent the
amplitude of the noiseless transfer functions G (ω, χ).

of the two transfer functions, which again implies that
it is difficult to distinguish between different values of
χ. Hence, somewhere in between these regions lies the
optimal modulation frequency, which we will derive in
this paper.

B. Defining the information of an experiment

In the previous example it is was intuitively shown
that certain choices of modulation frequency facilitate
the distinction between different diffusion coefficients.
Two important properties that influence this choice
are the noise distribution and the sensitivity of the
model output with respect to the diffusion coefficient.
Mathematically these factors can be taken into account

through the use of the Fisher information matrix Fi [27]

Fi(θ0) = E

{(
∂ln(fz)

∂θ

)T (
∂ln(fz)

∂θ

)}∣∣∣∣∣
θ=θ0

, (4)

where fz stands for the probability distribution of the
measurement vector z which contains all the measure-
ment data (e.g. the measured temperatures), θ repre-
sents the parameters (e.g. diffusion coefficient), θ0 rep-
resents the true value of the parameters, and where the
expected value E {·} is taken with respect to measure-
ment vector z. Notice that the expected value ensures
that the Fisher information matrix is independent of
the actual measured samples and thus can be computed
prior to the experiment.

The importance of the Fisher information matrix fol-
lows from the Cramer-Rao lower bound [16]. In the ab-
sence of a systematic error, this bound states that the
inverse of the Fisher information matrix is the lower
bound on the uncertainty of the estimated parameters.
If the estimation of the parameters is also minimum vari-
ance (which is often the case for maximum likelihood
estimations) then the inverse of the Fisher information
matrix asymptotically approximates the estimation un-
certainty [16]. Under these assumptions, the Fisher in-
formation matrix allows us to asses the quality of the
estimation.

The goal of optimal experiment design is to choose
the experiment setting, e.g. the modulation frequency,
for which the Fisher information matrix is maximized
since this minimizes the uncertainty on the estimated
parameters. Finding the largest positive definite matrix
is not a straightforward task, since a matrix is a higher
dimensional object. To resolve this issue, a scalar func-
tion of the Fisher information matrix is optimized in-
stead. Examples of such functions are the determinant,
trace, or smallest eigenvalue of the Fisher information
matrix. Each choice for the scalar function corresponds
to a different information criterion. The value of this
criterion is called the information of the experiment. A
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more detailed discussion of the different information cri-
teria is given in Sec. VI.

The computation of the Fisher information matrix
and thus the information criterion often requires the
knowledge of the true system parameters. This implies
that in order to estimate the parameters in the most op-
timal way, the parameters themselves need to be known
a priori. This chicken and egg problem is a well-known
problem in the field of optimal input design. Different
strategies have been followed to circumvent this problem
in practice.

• Nominal input design: During nominal input de-
sign, good initial estimates of the parameters are
used instead of the true parameters to evaluate the
Fisher information matrix. This approach only
works well if the initial parameter values are al-
ready close to the true values [7, 8].

• Robust input design: Robust input design tries
to circumvent the shortcomings of nominal design
through the use of a robust version of the infor-
mation criterion, for example the expected value
of the information criterion over the distribution
of possible parameter values is used [28–30].

• Iterative input design: An iterative or sequential
input design consists of an alternation between an
estimation step and a design step. In each design
step the current best estimation of the parameters
is used [7, 30, 31].

It is important to realize that both the robust input
design and the iterative design are based on nominal
designs. Therefore, a nominal design is always the first
step when exploring new optimal input design problems.
In this paper, we will assume that the true system pa-
rameters are known.

C. Evaluating the Fisher information matrix

In order to use the Fisher information matrix to asses
the quality of the estimation, equation (4) needs to be
expanded in more detail. This is done by explicitly fill-
ing in the distribution of the measurement vector. To
simplify the computation of the Fisher information ma-
trix, it is assumed that only the output measurement
(y) is corrupted by noise which is Gaussian distributed
with known covariance Cy. This implies that the mea-
surement vector contains only the samples of the output
signal. The Gaussian distribution of these samples is
given by

fz ≡ fy(y|u, θ0, Cy) =
1√

(2π)n det(Cy)

exp
(
− (y − yp (θ))

T
C−1y (y − yp (θ))

)
, (5)

in which Cy is the covariance matrix of the noise, yp
is a vector with the deterministic part of the output

determined by the plasma transport properties such as
the transport coefficients θ, y is the vector containing
the measured output samples and n is the number of
collected samples. Inserting the distribution in (4) and
taking the expected value leads to the following expres-
sion for the Fisher information matrix

Fi(θ0) =

{(
∂yp
∂θ

)T
C−1y

(
∂yp
∂θ

)}∣∣∣∣∣
θ=θ0

, (6)

where ∂yp/∂θ is a vector containing the partial deriva-
tives of yp with respect to the parameters. These deriva-
tives can be computed based on (1) which describes the
physics of the system. Notice that equation (6) is in
accordance with the intuition obtained in Sec. III A.
The derivatives represent the sensitivity of the output
with respect to the parameters, while the covariance ex-
presses the uncertainty introduced by the noise.

Alternatively, we can also work in the frequency do-
main, the measured time domain samples are trans-
formed to complex spectra using the discrete Fourier
transform. This transform can be represented through
a linear mapping.

Y = ADFT y, y = AHDFTY , (7)

with Y the complex spectrum of the measured out-
put, and ADFT is the discrete Fourier transform matrix.
Substituting this expression in (6) allows us to reformu-
late the equation of the Fisher information matrix as a
function of the complex quantities. This results in the
following alternative expression [16],

Fi(θ0) =

{(
∂Yp
∂θ

)H
C−1Y

(
∂Yp
∂θ

)}∣∣∣∣∣
θ=θ0

, (8)

where Yp contains the complex spectra of the true out-
put, and CY is the complex covariance matrix of Y .
Notice that the Fisher information matrix still remains
a real valued positive definite matrix.

Since we consider perturbative experiments induced
by forced perturbations such as ECH, we opt to continue
the computations of the Fisher information matrix in
the frequency domain. Under the assumption that the
system is linear, the true output of the system can be
described by using the transfer function

Yp(ωk) = G(ωk, θ0)Up(ωk), (9)

in which Up is the true input spectrum, YP is the true
output spectrum, andG is the transfer function dictated
by the ODE or PDE describing the relation between
input and output.

To better illustrate this equation consider again the
example of Sec. III A, in that case Yp (ωk) = Θ (ωk, x2),
is the output, Up (ωk) = Θ (ωk, x1), is the input,
and G (ω, θ) = exp

(
−
√
iω/χ (x2 − x1)

)
is the transfer
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function. Using this insight and our previous assump-
tions to compute the Fisher information matrix leads
to

Fi(θ0) = UHp

(
∂G

∂θ

)H
C−1Y

(
∂G

∂θ

)
Up. (10)

The ∂G/∂θ is a matrix containing the partial derivatives
of the transfer function with respect to each of estimated
parameters, U contains the complex spectrum of the
input which is considered noise free, and where CY is
the covariance matrix of the measured output spectrum.

In the case only one parameter needs to be optimized
and assuming that CY is a diagonal matrix with σ2

Y (ωk)
k = 1, . . . , F on the diagonal, where the variance can
change with frequency, as diagonal elements, the above
equation reduces to

Fi(θ0) =

F∑
k=1

1

σ2
Y (ωk)

∣∣∣∣∣∣∂G (ωk, θ)

∂θ

∣∣∣∣∣
2

θ=θ0

∣∣∣∣∣∣
2

|Up (ωk)|2 ,

(11)
where F corresponds to the number of frequency compo-
nents in the input signal. This expression for the Fisher
information matrix will be used in the remainder of the
paper to derive the optimal frequency to estimate the
transport coefficients.

IV. OPTIMIZING THE MODULATION
FREQUENCY FOR SLAB DIFFUSION

ESTIMATES

This section shows how to optimize the modulation
frequency such that the diffusion coefficient can be es-
timated with minimum uncertainty. First, the analyti-
cal calculation is given based on an ordinary differential
equation (ODE), which is basically the upper bound on
the modulation frequency. Then, the full partial differ-
ential equation (PDE) solution is given showing that for
PDEs the optimal excitation frequency becomes signif-
icantly lower.

A. Optimizing the boundary input

Reconsider the example in (3). The transfer function
can be split in its amplitude and phase contribution

G (ω, χ) = exp

(
−
√

ω

2χ
∆x

)
exp

(
−
√

ω

2χ
∆x · i

)
.

(12)

By using the general expression in (11), the Fisher infor-
mation can be calculated with respect to the diffusion

coefficient, i.e., θ = χ. This results in

Fi (χ) =

F∑
k=1

∆x2

2χ3

ωk
σ2
1 (ωk)

exp

(
−
√

2ωk
χ

∆x

)
|Θ (ωk, x1)|2 ,

(13)

for an arbitrary modulation. For simplicity, a single fre-
quency is used (sinusoidal, F = 1) instead of the typical
block waves. This will still give an accurate estimate for
symmetric block waves as most of their energy is con-
tained in the first harmonic anyway. Considering, only
one frequency component means that (13) simplifies to

Fi (χ) =
∆x2

2σ2χ3
ω exp

(
−
√

2ω

χ
∆x

)
|Θ (ω, x1)|2 . (14)

Ignoring for a moment the dependence of Θ (ω, x1) on
ω, the maximum of (14) is found by taking its derivative
and setting it to zero. This results in an optimal exci-
tation frequency ωopt as function of χ and the sensor
distance ∆x

ωopt =
2χ

(∆x)
2 . (15)

As we will show later, this is the absolute upper bound
on the modulation frequency.

In Fig. 3, the frequency dependence of F−1i (χ), which
corresponds to the variance of the estimate, is plotted
for three different diffusion coefficients. The minima of
these curves, which are marked by a black asterix, cor-
respond to the (sinusoidal) optimal excitation frequency
ωopt = 2πfopt. The decrease of fopt with decreasing χ is
in accordance with our intuition, since with decreasing
χ the transport is suppressed which holds also for the
input signal. However, what is not so intuitive is that
the uncertainty increases significantly for higher than
optimal frequencies, whereas for lower than optimal fre-
quencies the increase in uncertainty is more modest. In
other words, based on this model it is better to choose a
low modulation frequency when the diffusion coefficient
is unknown.

B. Validation of approach

The Fisher information Fi (χ) predicts the confidence
of the estimate of the diffusion coefficient χ. Therefore,
to validate the Fisher information matrix approach a
Monte-Carlo analysis is used to validate the statistical
outcome. Therefore, the diffusion coefficient is 10000
times estimated in the case there is (dominant) mea-
surement noise at the output temperature. The result
is shown in Fig. 4, where the only difference is the mod-
ulation frequency, optimal versus a standard frequency.
The results show that the confidence of the estimate of
χ for the optimal modulation frequency is significantly
smaller as is predicted (here more than a factor 4). This
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Figure 3. Inverse Fisher information matrix based on (3)
assuming a sinusoidal boundary input as a function of fre-
quency for three different values of χ for the semi-infinite
domain. The ∗ give the minima of Fi with respect to fre-
quency.
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Figure 4. Histograms of 10000 estimations of the diffusion
coefficient based on (3) where the optimal modulation fre-
quency is used and a non-optimal frequency is used. Input
of the simulation is χ = 1 and a noise level of σ = 0.01 for
Θ (ω, xx) used to avoid estimates of χ around 0. The opti-
mal modulation frequency is invariant for a change in σ in
the case of only input or output noise.

validates the Fisher information matrix approach, which
has also been validated in much more complicated cases
[7, 32, 33].

C. Optimizing the source perturbation

In the previous section it was assumed that Θ (ω, x1)
can be directly controlled both in amplitude and fre-
quency. However, in a real transport experiments
Θ (ω, x1) cannot be controlled directly, but depends on

the transport over the entire domain and the source.
This dependence should be included in the optimization
of the optimal modulation frequency.

Hence in this section, the whole PDE in (1) is taken
into account including the boundary conditions, which
also reintroduces the source term including key parame-
ters such as xdep and a. Its transfer function can also be
calculated analytically (or numerically) for constant pa-
rameters and is given in the appendix. Here the transfer
function from the source to x1 is shortened to

Θ (ω, x1) = Gp (ω, χ, x1, xdep, a)P (ω) , (16)

with P (ω) = F (p (t)) in (2). This model is graphically
depicted in Fig. 1, where it is shown that Gp describes
the model over the entire domain till the location x1
and G describes a local domain between x1 and x2 in
which we are interested to estimate the diffusion coef-
ficient. Another modification is the introduction of a
more realistic boundary condition. Instead of assum-
ing a semi-infinite domain, the following boundary con-
dition is used Te (xe = 2.2) = 0. This is because an
semi-infinite domain has an unrealistic impact on the
modulation frequency, which will be explained later.

Next, there are two approaches which can be chosen:

A) The semi-infinite domain approach in which an ap-
proximation of the transfer function is used for the
domain on which the transport coefficients need
to be determined in combination with the transfer
function Gp between the input power and the tem-
perature at the spatial location x1 (semi-infinite +
source).

B) The (numerical) transfer function approach which
calculates the actual transfer function between x1
and x2 in combination with the transfer function
Gp between the input power and the temperature
at the spatial location x1 (full numerical solution).

In approach A) only the input power |Θ (ω, x1)|2 be-
comes ω dependent through Gp, i.e.,

Fi (χ) =

F∑
k=1

∆x2

2σ2
1 (ωk)χ3

ωk exp

(
−
√

2ωk
χ

∆x

)
|Gp (x1, ωk)|2 |P (ωk)|2 , (17)

which needs to be optimized. In approach B) the whole
transfer function ( i.e. combined effect of Gp and G) and
its derivatives are numerically approximated using finite
difference scheme. Note that in both cases the standard
deviation of the estimated parameter scales reciprocally
with the amount of modulation power. Hence, increas-
ing the modulation power or reducing noise is the most
straightforward approach to increase SNR.

Again considering a sinusoidal input, the resulting op-
timal modulation frequency is shown in Fig. 5. In case of
approach A) this yields an optimal excitation frequency
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Figure 5. Inverse Fisher information matrix based on (3)
assuming a sinusoidal boundary input, a sinusoidal source
input, as function of frequency for three different values of
χ. The ∗ give the minima of Fi with respect to frequency
as were shown in Fig. 3. The dashed lines with minima ×
are the results for F−1

i using approach A) as defined in (3).
The full lines with minima ◦ give the results for F−1

i using
approach B).

which is slightly higher than the solution found in case
of approach B). Both approaches find an optimal modu-
lation frequency (the crosses and circles) which is signif-
icantly lower compared to our previous solution (black
asterix) where we do not consider the entire domain.
This can be explained by the fact that the amplitude of
Θ (ω, x1) decreases with increasing ω.

Based on the difference between the full and dashed
lines, it becomes apparent that the semi-infinite domain
approximation (A) diverges from the numerical solu-
tion (B) for low frequencies. This should be taken into
account when using this approximation during the es-
timation of the transport coefficients. The deviation
for higher frequencies can be explained by the fact that
a small part of the heating was applied inside the do-
main to illustrate the effect of the source on the model.
In other words, the existence of a source term on the
domain results in differences between both methods at
high frequencies.

D. Qualitative explanation

To validate our explanation for the decrease in
optimal modulation frequency, the perturbation at
|Θ (ω, x1)| was simulated for asymmetric block-waves
with different modulation frequencies. In Fig. 6 the re-
sults of this simulation is shown. This plot clearly shows
that the amplitude of the perturbation at Θ (ω, x1) is
significantly larger at frequency fopt = 0.74Hz com-
pared to fopt = 12.04Hz. This difference between the
modulation amplitudes immediately explains why this
low-frequent modulation is more optimal.

0 1 2 3 4 5
time [s]

-10

0

10

T
re
l(
t)

[k
eV

]

xdep = 0.2, a = 0.05, x1 = 0.3, xe = 2.2, χ = 10

f = 0.74 [Hz] f = 12.04 [Hz]

10-4 10-2 100 102

Frequency [Hz]

10-4
10-2
100
102
104

‖Θ
(x

1
)/
P
(x

d
ep
)‖

xe = 2.2 xe = 1.0 xe = 100

Figure 6. Time evolution at Te (t, x1) for a symmetric block-
wave with frequency 0.74 Hz and 12.04 Hz for the full nu-
merical case B).

To understand why the modulation frequency should
not be reduced indefinitely, the amplitude of the trans-
fer function Gp is plotted for different locations of the
bounding conditions (xe) in Fig. 6. From these plots
it can be observed that the amplitude Gp flattens for
the lower frequencies. This means that lowering the
frequency below a certain value no longer leads to an
increased amplitude of the modulation. However, the
sensitivity of the transfer function G with respect to
the diffusion coefficient still decreases for lower frequen-
cies. This explains why frequencies below the optimal
modulation frequency are less optimal.

When comparing the shape of Gp for different values
of xe it becomes apparent that the frequency where the
flattening of Gp starts, becomes increasingly smaller for
larger values of xe and the gain is reduced due to the
boundary condition. If one would decrease χ, the length
scale decreases, as such this can also be seen as xe in-
creasing and as such also the flattening is reduced and
the gain increases (not shown). This explains why us-
ing the semi-infinite domain approximation (xe →∞) is
not accurate as it results in unrealistically low optimal
modulation signal.

Note that when optimizing the modulation frequency
in a distributed context the influence of ∆x on the op-
timal frequency is strongly diminished. This stands in
contrast with (15). The reason for this is that Gp has
a significant impact on the modulation frequency, but
does not depend on ∆x. This, in combination with the
fact that fopt is reduced significantly, explains why ∆x
has little influence (if ω → 0, then the impact of ∆x
through G becomes zero). On the other hand, Gp does
depend on χ and as such its impact of the diffusion co-
efficient remains strong.
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Figure 7. Comparison inverse Fisher information matrices
for sinusoidal modulation waveforms and block waveforms
in a cylindrical domain calculated numerically using a finite
difference approximation.

V. OPTIMIZING THE MODULATION
FREQUENCY FOR CYLINDRICAL ESTIMATES

In the previous sections, we have calculated the Fisher
information matrix based on sinusoidal perturbations
and slab geometry. However, generally block-wave mod-
ulations are used in cylindrical like geometry. Hence,
the Fisher information matrix is calculated numerically
using a finite difference approximation of

∂

∂t
(neTe) =

1

r

∂

∂r

(
neρχ

∂Te
∂r

)
+ pech (t, r) , (18)

using both (11) and (16) in terms of cylindrical geome-
try.

A. From ideal sinusoidal slab geometry
approximations to cylindrical block wave solutions

The resulting Fisher information matrix is shown in
Fig. 7 for a block-wave modulation in cylindrical geom-
etry with a duty-cycle of 50% and 75% in terms of the
fundamental frequency of the waveform. The cylindri-
cal geometry has not such a large impact as it slightly
increases the optimal modulation frequency due to the
enhanced suppression towards small radii. This also
means that as r1 or ∆r are becoming small this effect
is enhanced.

Fig. 7 shows there is a quantitative difference between
the optimal frequency for block-waves and sinusoidal
waves. However, the evolution of the inverse Fisher in-
formation matrix has qualitatively the same behavior
for both the sinusoidal and block wave types. There-
fore, it can be concluded that it suffices to use the op-
timization for sinusoidal waves, as it is sufficiently close
to the optimal fundamental frequency of the block wave

modulation. The reason is that even in the case of a
block-wave most energy is contained in the first few har-
monic components. Moreover, higher harmonic compo-
nents are suppressed by transport, which reduces their
amount of information. Hence, for the identification of
the diffusion coefficient a block-wave is not so beneficial.
Of course, if one wants to compare harmonic compo-
nents for validation, then extra harmonic components
are desirable.

B. Cylindrical block wave solutions with a broad
deposition profiles

In the previous section, we have shown the behavior
of the Fisher information matrix for block-wave modu-
lation in cylindrical geometry. As this approach is based
on numerical evaluation of the partial differential equa-
tions using finite difference, extensions in which the de-
position profiles encompass the estimation domain or
an off-axis deposition can also be simulated. This is
shown in Fig. 8 for two broad deposition profiles. The
figures show that in this case the optimal modulation
frequency does not change significantly. However, as
phase and amplitude differences between spatial loca-
tions decrease when there is a source on the domain the
confidence of the estimates will go down. The example
where the modulation source extends over the estima-
tion domain shows that this method can be applied to
other transport channels such as neutral beam injection
where source free domains do not exist unlike ECRH.

C. Impact of other transport contributions

In real experiments it is possible that transport con-
tributions other than diffusive contributions are also rel-
evant. The presence of these contributions will of course
alter the optimal modulation frequency. To investigate
the effect of different transport contributions on the op-
timal modulation frequency the following PDE is con-
sidered

∂

∂t
(neTe) =

1

r

∂

∂r

(
neρχ

∂Te
∂r

+ nerV Te

)
− neτinvTe + pech (t, r) , (19)

which is the result of linearizing the coupled PDE of
mass and electron thermal transport [34]. In (19), V
is the convective velocity of the heat pinch, τinv is the
damping (τinv = 1/τ). The optimal modulation fre-
quency is computed for different values of V and τinv
with the same method as before.

The evolution of the inverse Fisher information ma-
trix with the modulation frequency is plotted in Fig. 9.
Initially each of the three transport coefficients is es-
timated independently while the other coefficients are
considered to be known. In Fig. 9 the black curves cor-
respond to an estimation of the diffusion coefficient, the
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Figure 8. Deposition profiles (right), inverse of the Fisher information matrix for a deposition profile encompassing the
estimation domain (middle) and an off-axis modulation (right). Note that only the deposition profile has changes also with
respect to Fig. 7.

magenta curves correspond to an estimation of V and
the cyan curves correspond to an estimation of τinv.

For the estimation of χ the presence of a convective
velocity and damping term result in a slightly lower op-
timal modulation frequency. However, if we try to es-
timate instead V or τinv, then the optimal modulation
frequency drops significantly. Moreover, as the gain fac-
tor is different, i.e., convergence of the ratio is no-longer
one (ω → 0, |G (ω, χ, V )| 6= 1), extreme low frequencies
also perform well to identify V . However, extreme low
frequencies give rise to large amplitudes which may lead
to non-linearities. Therefore, it is undesirable to go as
low as suggested by the calculations.

D. Overview plot of the optimal frequency

Fig. 10 shows the relation between the optimal mod-
ulation frequency and diffusion coefficient for various
domains (i.e. different values of x1). Based on this
overview graph, it becomes clear that x1 seems to have
little influence on the optimal frequency, with exception
of small radii (red curve) since there the impact of the
cylindricity is strong.

It is clear from this figure that mainly the diffusion co-
efficient determines the optimal modulation frequency.
As explained before ∆x has little influence as such the
graphs only show the change in diffusion coefficient χ.

As explained this optimization does not take non-
linearities into account. The calculated optimal modula-
tion frequency leads to large amplitudes (see Fig. 6) and
as such is more prone to exciting non-linearities. Con-
sequently, this calculated optimal modulation frequency
should be seen as a lower bound on the modulation fre-
quency when the regime has non-linear dependencies.
The upper bound is shown by the dashed lines and fol-
lows from the slab optimization under ideal conditions
given by (15).

VI. FURTHER EXTENSIONS

In the previous sections, we have introduced specific
descriptions for the Fisher information matrix for trans-
port models commonly used in the fusion community
when optimizing the modulation frequencies in pertur-
bation experiments. In this section two possible exten-
sions of the method are further discussed. First, find-
ing the optimal modulation frequency in case multiple
transport coefficients are estimated and secondly how
to handle non-linearities.

A. Simultaneous estimation of multiple transport
coefficients

Uptill now we have always optimized the modula-
tion frequency for the estimation of one transport co-
efficient. However, in many experiments there are mul-
tiple transport coefficients which need to be estimated.
Consequently, the Fisher information matrix will be a
(positive definite) matrix instead of a scalar, which is
not always comparable on a matrix level [35]. Hence,
the Fisher information matrix needs to be reduced to a
scalar information criterium again allowing the selection
of an optimal modulation frequency or an alternative
quantity which needs to be optimized in the experiment.

Deciding which information criterion to use, is
strongly related to the envisioned purpose of the model
[32]. Since the estimated parameters have a physical
interpretation, it is sensible to use an information cri-
terion that is related to uncertainty in the estimated
parameters. Three common information criteria used
for accurate parameter estimates are [33]:

• A-optimality: An A-optimal input minimizes the
trace of the inverse of the Fisher information ma-
trix. Geometrically this corresponds to minimiz-
ing the sum of edges of the bounding box sur-
rounding the uncertainty region of the estimated
parameters [36]. Note that scaling of the units
transport coefficients influences the optimality.
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Figure 10. Optimal modulation frequency versus diffusion
coefficient for various values of x1. In addition, the slab
geometry approximation is shown by the dashed line, which
is independent of x1.

• D-optimality: A D-optimal input maximizes the
determinant of the Fisher information matrix. Ge-
ometrically this corresponds to minimizing the un-
certainty volume of the estimated parameters [37].

• E-optimality: An E-optimal input maximizes the
smallest eigenvalue of the Fisher information ma-
trix. Geometrically this corresponds to minimiz-
ing the largest axis of the uncertainty ellipse [38].
Note that scaling of the units transport coefficients
influences the optimality.

For a more in-depth study of the difference between
these criteria the reader is referred to [39].

The A-optimality and D-optimality criteria are ap-
plied to the problem in (19) where both the diffusion
coefficient χ and the convective velocity V need to be
estimated. The resulting contour plots of the optimal
modulation frequency for various values of χ and V are
shown in Fig. 11.

Both show that when V is small, the optimal modu-
lation frequency is quite similar for both criteria. How-
ever, if V becomes negative the two criteria start to
diverge significantly. In the top left corner, the convec-
tive term dominates over the diffusion and as such is
complicated to estimate, this is reflected by the optimal
modulation frequency changing quickly here.

B. Finding the minimum frequency modulation
and avoiding non-linearities

In the previous sections, it is shown that in a purely
linear experiment the modulation frequency is small
compared to what is expected in real experiments. The
reason is that in real experiments the transport depends
non-linearily on the perturbation. On the other hand,
the transport coefficients such as the diffusion coefficient
are based on the linearized transport models. Hence,
we want to estimate the transport coefficients generally
in the linear regime. Therefore, the perturbative ex-
periment has another constraint and that is that the
perturbation should be sufficiently small such that the
transport coefficients can be estimated. However, this
constraint is not in the linear model and as such in the
optimization of the excitation signal. Moreover, the rea-
son why small frequencies were optimal in the linear case
is due to the perturbation becoming very large as heat
is accumulated in the system (see Sec. IVD and specif-
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ically Fig. 6). Hence, in reality the optimal modulation
frequency should be higher such that the perturbation
is sufficiently small for the temperature perturbation to
stay in the linear regime. Hence, there are two methods
to take this extra constrained into account, i.e., to avoid
non-linearities in the optimization

• Optimize the Fisher information matrix for the
underlying non-linear model.

• Verify in the experiment (or in full simulation)
if non-linearities occur at a certain amplitude in
combination with modulation frequency.

The first option is still a field of research and is beyond
the scope of this paper. Moreover, it is unclear what
non-linear model should be used. The reader interested
in the optimal input designs for non-linear models is re-
ferred to [10–12, 40–42]. Alternatively, we can verify in
simulation (or experimentally) when we enter the non-
linear regime. This can be done in the frequency domain
by analyzing the nonlinear components (i.e. higher har-
monics) of the output spectrum as is shown in Fig. 12.
For more details we refer to [16, Chapter 3].

The amplitude of the signals show that in the case
of non-linear response new harmonic components ap-
pear at multiples of the ground harmonic components
and inter-modulation harmonic components [43]. When
these extra harmonics are at the same level as the noise,
then we consider the experiment as linear. Therefore,
the optimized modulation frequency must simultane-
ously fulfill this condition. This test has also been ex-
perimentally applied and can be found in [21]. There,
it is shown that indeed if the perturbation is chosen
relatively small even for a small perturbation one can
observe non-linear components. The experiment being
non-linear can be caused by various non-linear depen-
dencies such as χ (T,∇T ) or we can have a non-linear
boundary condition. In the latter case, we want to avoid

that we are modulating the boundary too strongly. As
a simple approximation, we could say for on-axis mod-
ulation that the perturbation should be optimal for the
interval till the wall. In that case in (15), ∆x must be
replaced by the minor radius a such that

ωmin =
2χ

a2
←→ fmod ∼

χ

λ2
. (20)

Then, we see that the result is closely linked to fmod
in Sec. II, the standard measure of choosing the mod-
ulation frequency. This clearly shows the link between
classic interpretation and the systematic optimization
performed in this paper.

C. Optimization for non-linear dependencies

Non-linear dependencies are rarely estimated directly
in perturbative fusion experiments, but are mapped out
through the use of a number of linearizations for a set of
operating points. These are coupled together to acquire
a non-linear model description. Hence, for every oper-
ating point the optimization of the modulation signal
is exactly done as described in this paper. In case of a
critical gradient model at the threshold the diffusion co-
efficient can change significantly. Hence, depending on
the operating point the diffusion coefficient is different
and also the optimal modulation frequency. As Fig. 4
shows, using a too low modulation frequency gives a sig-
nificantly better result than using a too high modulation
frequency when remaining in the linear regime. Hence,
if it is unclear in which transport regime the experiment
is performed one should choose an optimal frequency
which is towards the transport coefficient belonging to
the regime with the lower optimal frequency.
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Figure 12. Graphical representation of two perturbation: 1) signals sinusoidal with a frequency of 1 Hz (top) and 2) sum
of two block-wave modulations with frequencies 1 Hz and 9/7 Hz (bottom). In blue the linear response is shown and in
red the non-linear response. On the right are the corresponding amplitudes of the Fourier transformed time signals with
corresponding colors.

D. Perturbative transport problems in general

The method to optimize perturbation experiments de-
scribed in this paper can be applied, in principle, to
every linear perturbation experiment. The extensions
proposed in this manuscript, with regard to standard
linear experimental optimization theory [44], are on the
distributed character of transport experiments. This
means that for modulated neutral beam injection and
modulated ion cyclotron resonance heating the same
technique can be applied. After all, the partial dif-
ferential equation models are very similar for all these
problems. In case of, for instance gas-puffing, the opti-
mization can be further simplified because the perturba-
tion is applied on the boundary of the domain. This is
described in Sec. IVA where the frequency dependent
perturbation amplitude does not play a role. This is
the mathematical part of the optimization. Of course,
in practice, gas-puffing is much more complicated due
to its lack of symmetry in its propagation and the in-
teraction with other gasses. Nevertheless, the method
presented in this paper is applicable to the optimization
of any perturbation problem as long as the response to
the perturbation remains linear.

VII. CONCLUSION AND SUMMARY

In this paper, we discuss how the design of an op-
timal modulation experiment based on the concept of
the Fisher information matrix. First, this method was
used to determine analytical expression for the optimal
modulation frequency under simplifying assumptions. It
turned out this solution forms an upper bound for the
optimal modulation frequency. Later, we showed how
more realistic conditions can be incorporate into the
optimization, which lead to a decrease of the optimal
frequency. To conclude it was explained how the com-
putation of the optimal modulation frequency could be
extended in the case of simultaneous estimation of mul-
tiple transport coefficients and waveforms with tunable
power spectrum.

Special attention went to understanding the quali-
tative reasoning behind a low optimal modulation fre-
quency. We showed that the optimal frequency of the
source depends both on the amplitude and the modu-
lation frequency of the perturbation at the boundary
x1. Decreasing the modulation frequency increases the
amplitude and as such has a favorable impact on the
signal-to-noise ratio. This leads to very small optimal
modulation frequencies when assuming a linear model.

In reality perturbative experiments with large am-
plitudes are more likely to induce non-linear effects.
Hence, an experiment with a very low modulation fre-
quency may violate the linear assumptions that were
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made during the design. To resolve this issue it is the-
oretically possible to directly optimize the non-linear
experiment, assuming non-linear models are available.
However, such optimization scheme’s are significantly
more involved than the ones discussed here. Alterna-
tively the validity of the linear conditions could be eval-
uated experimentally or through simulation of a non-
linear transport model. Hence, the final conlusion of
the paper is

• Absolute upper bound for the modulation fre-
quency is given by the diffusion coefficient divided
by π times the distance squared between the mea-
surement points one wants to estimate.

• Absolute lower bound on modulation frequency is
given by the combination of non-linearity avoid-
ance and perturbation size, which both implicitly
depends on the frequency.

As a final remark optimization of experiments can be
considered a so-called chicken-and-egg problem. If one
knows the transport coefficient exactly, then there is
no need to do an experiment (except for conformation
perhaps). On the other hand, if one has absolutely no
idea of the transport coefficient, then any modulation
frequency could be optimal. The methodology gives in-
sight if one has some idea of the transport coefficient.
The range of the modulation frequency to be used de-
pends on the range of the transport coefficient a priori
known. Hence, as a first experiment one applies a wide
band modulation signal, with a number of frequency
components in the region of interest. The transport co-
efficient can be identified with some accuracy reducing
the range of possible transport coefficients significantly.
Redesigning the band or making an improved choice of
the modulation frequency reduces the uncertainty on
the transport coefficients even further until a desired ac-
curacy is achieved or the absolute highest limit of accu-
racy theoretical possible is reached (Cramer-Rao lower
bound). Consequently, the methods described in this
paper give the best result if used in a recursive fashion.
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APPENDIX: ANALYTIC SOLUTION FOR A
SLAB GEOMETRY WITH GAUSSIAN SOURCE

This appendix presents the analytical solutions for
the transfer function Gp in case of slab geometry and a
Gaussian deposition profile used for the analytical opti-
mization of the modulations frequency. Consider again
the slab geometry solution with constant density and
constant diffusion coefficient, i.e.,

ne
∂Te
∂t

= neχ
∂2Te
∂x2

+ pech (t, x) , (21)

with a source of the form

pech (t, x) = p (t)
1

a
√
π

exp

(
− (x− xdep)2

a2

)
(22)

and boundary conditions: ∂Te/∂x (x = 0) = 0 and
Te (xend) = 0. This is transformed to the Fourier do-
main, which results in

neiωΘ = neχ
∂2Θ

∂x2
+ Pech (ω, x) , (23)

with Θ (ω, x) = F (Te (t, x)) and Pech (ω, x) =
F (p (t, x)). This can be solved analytically

Θ (ω, x) = c1e
x
√
iω
χ +c2e

−x
√
iω
χ +Gp (ω, x)P (ω) , (24)

where P (ω) = F (p (t))

Gp (ω, x) = αe
(x−xdep)

√
iω
χ erf

(
a

2

√
iω

χ
+
x− xdep

a

)

+ αe
(xdep−x)

√
iω
χ erf

(
a

2

√
iω

χ
+
xdep − x

a

)
(25)

with α = i
√
iπ

4n
√
χω exp

(
ia2ω
4χ

)
. Boundary conditions

∂Te (x = 0) /∂x = 0 and Te (x = xend) = 0, which trans-
lates to ∂Θ (x = 0) /∂x = 0 and Θ (x = xend) = 0 and
results in

c1 =
e
xend

√
iω
χ Gp (ω, xend) +

√
χ
iω
∂Gp(ω,x=0)

∂x

1 + e
2xend

√
iω
χ

P (ω)

(26)
and

c2 = P (ω) ·exend
√
iω
χ Gp (ω, xend) +

√
χ
iω
∂Gp(ω,0)

∂x

1 + e
2xend

√
iω
χ

−
√

χ

iω

∂Gp (ω, 0)

∂x

 .

(27)
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