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Abstract 

 

A new approach to calculate the vibrational distribution function of molecules in a medium 

providing energy for vibrational excitation is proposed and demonstrated. The approach is an 

improvement of solution methods based on the drift-diffusion Fokker-Planck (FP) equation for 

a double differentiable function representing the vibrational populations on a continuum 

internal energy scale. A self-consistent numerical solution avoids approximations used in 

previous analytical solutions. The dissociation flux, a key parameter in the FP equation, is fixed 

using the kinetics of molecular dissociation from near-continuum levels, so that the vibrational 

kinetics becomes a functional problem. The approach is demonstrated for the kinetics of 

asymmetric stretching of CO2, showing that it represents an alternative, potentially much 

more efficient in computational terms, to the presently usual state-to-state approach which 

is based on the kinetics of the populations of individual levels, and gives complementary 

insight into the dissociation process. 
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Introduction 

 

The population kinetics of vibrational states of molecules has found many applications in the 

past in fields like catalysis, laser chemistry, plasma (ionized gas) chemistry and chemistry of 

the interstellar medium. The main tool used in vibrational kinetics is the state-to-state (STS) 

finite rate method1 based on the numerical solution of a Master Equation (ME). This last is 

actually a stiff system of non-linear ordinary differential equations, as many as the number of 

vibrational levels. When complex molecules, with thousands of vibrational levels, are involved, 

the pursuit for models of whole reactors including fluid dynamics and other aspects asks for 

alternative methods allowing a significant gain in computational speed. 

The method of calculation proposed and used in this paper is based on the numerical 

integration of the drift-diffusion, or Fokker-Planck (FP) equation for the population of internal 

energy states, in this case vibrational energy. It is an improved version of the drift-diffusion 

approach used sparingly in the 70's and 80's as an alternative to the much more computational 

demanding ME approach.2-6 The difference with respect to previous diffusion approaches is 

the use of a numerical solution which avoids the approximations of the perturbation 

techniques used in the past.3,4 In a previous paper,7 we have solved the Fokker-Planck (FP) 

equation numerically using a Monte Carlo (MC) technique based on the short time Green 

function of the same equation. In this paper, we use a much more effective method and 

analyse the role of the reactive flux J, which equals the dissociation rate per molecule at the 

steady state. We formulate a relaxation method based on the self-consistency of J and the 

dissociation rate. This approach can be used to develop fast algorithms for the solution of 

vibrational kinetics and molecular dissociation problems in gases and gas discharges. To 

demonstrate our approach, we consider the very important test case of CO2 dissociation in a 

low temperature, non-equilibrium plasma produced by an electric discharge. This has been an 

important system in the past for the development of high power CO2 lasers.8,9 In recent years 

much attention has been devoted in particular to low temperature CO2 plasmas produced 

using renewable energy in the context of green chemistry: the key concept is the conversion 

of greenhouse CO2 into more reactive species to be converted into new fuels or useful 

chemicals.10 Even more recent is the idea of using CO2 plasma reactors to produce oxygen 

from CO2 in Mars colonization scenarios.11 
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Computational method 

 

The method proposed is based on the self-consistency of vibrational diffusion and molecular 

dissociation, i.e. the matching of the parameter J in the drift-diffusion problem with the 

dissociation rate along a vibrational coordinate with N+1 bound levels, from v = 0 to v = N, v 

being the vibrational quantum number. The dissociation rate is obtained from chemical 

kinetics based on reactions for the vibrational levels close to the continuum and the concept 

of the pseudo-level, i.e. a vibrational level in the continuum which actually represents the 

dissociated state of the molecules. To this aim, the first necessity is to establish an explicit 

form for the vibrational drift-diffusion, or FP, problem. We use the approach reported in the 

papers by Fridman and co-workers (e.g. Rusanov et al.5) and summarized in the books by the 

same author.3,4,6 The same approach has been considered in our previous paper7 and it is 

based on the drift-diffusion equation for the vibrational distribution f. The vibrational 

distribution in this approach is a doubly differentiable function, defined in such a way to match 

the number density of molecules in a vibrational level n(v) at the corresponding energy ε(v), 

this last measured from the vibrational ground state, i.e. f(ε(v)) = n(v). The drift-diffusion 

equation reads: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= − 𝑑𝑑
𝑑𝑑𝜀𝜀

(𝑎𝑎𝑎𝑎) + 𝑑𝑑
𝑑𝑑𝜀𝜀

(𝑏𝑏 + 𝑐𝑐𝑎𝑎) 𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀

.        (1) 

 

In this equation three transport coefficients a, b and c, which are functions of the vibrational 

energy 𝜀𝜀, are introduced: a is the drift coefficient, b is the linear diffusion coefficient and cf is 

the non-linear diffusion coefficient. These coefficients can be calculated from the same kinetic 

data used in the STS ME by means of known formulas of stochastic processes:12 details of such 

calculations can be found elsewhere4,5,7,12 and are not reported here. Alternatively, the 

transport coefficients can be calculated directly from microscopic models of the energy 

transfer using the formulas reported in Brau:13 this means that in perspective our method is 

not dependent on a previously formulated dataset for an STS model. 

Eq. (1) can be conveniently rewritten in the form 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀 = 0⁄  where J is the total flux given by 

 

𝑑𝑑 = 𝑎𝑎𝑎𝑎 − (𝑏𝑏 + 𝑐𝑐𝑎𝑎) 𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀

.         (2) 
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As a rigorous consequence of the FP equation, J, which is the dissociation rate per molecule 

(in s-1), is constant along the whole vibrational energy axis. In this paper we keep the constant 

J into the solution as a parameter to be fixed. The drift-diffusion equation can be rearranged 

as 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀

= 𝑎𝑎
𝑏𝑏+𝑐𝑐𝑑𝑑

− 𝐽𝐽
(𝑏𝑏+𝑐𝑐𝑑𝑑)𝑑𝑑

          (3) 

 

which can be solved immediately by forward numerical integration from the boundary 

condition at  𝜀𝜀 = 0 although the unknown function f(𝜀𝜀) appears in the right-hand side. Since 

f(0) must equal n(0) and f(𝜀𝜀) is a Boltzmann distribution for small values of 𝜀𝜀, the left boundary 

condition can be written f(0) = ntot/𝑍𝑍𝑣𝑣𝑣𝑣𝑏𝑏, where ntot is the total number density of molecules in 

any state, 𝑍𝑍𝑣𝑣𝑣𝑣𝑏𝑏(𝑇𝑇v) is the vibrational partition function and Tv is the low-energy vibrational 

temperature. The constant J can be determined using its connection to the dissociation rate. 

In fact, dissociation occurs when molecules are excited beyond the dissociation threshold, by 

a pump-up process. Such a reaction has generally the form AB(N) + P  A + B + P where N is 

the last bound level below the continuum and P is a suitable reaction partner. The expression 

for the contribution to the dissociation rate of a suitable p-th process , e.g. 𝑘𝑘𝑝𝑝𝑛𝑛(𝑁𝑁)𝑛𝑛𝑝𝑝, where 

kp is the related rate coefficient and 𝑛𝑛𝑝𝑝 the number density of the reaction partner, can be 

equated to 𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 where 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 is the total number density of AB molecules. Since 

𝑎𝑎(𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚) ~ 𝑛𝑛(𝑁𝑁), where 𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚 is the energy of the last (v = N) bound level, the relation 

between J and 𝑎𝑎(𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚) is found in the form 

 

𝑑𝑑 = 𝑎𝑎(𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚). 1
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡

∑ 𝑘𝑘𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝           (4) 

 

Eq. (4) of course describes a very simple model of depletion by dissociation. In more complex 

chemical networks, sometimes more appropriate, dissociation can occur from states of lower 

energy than the uppermost bound one. For such networks the right-hand side of Eq. (4) is an 

integral operator acting on f. 

This equation is the closure of the vibrational transport problem, linking the mesoscopic 

description provided by f to the microscopic dissociation rate. In this approach, the vibrational 
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kinetics problem becomes a functional one: a global property of the sought function is related 

to a single value of the same solution through a chemically meaningful boundary condition. 

Although a similar problem has been formulated in the past,3,4 the solution proposed was 

approximated: a zero-order solution f0 was calculated assuming J = 0 and then a first order 

one was written in the form 𝑎𝑎0𝐼𝐼 where I is an integral expression providing an estimate of the 

dissociation term based on f0 (Eq. 7.12 in Rusanov and Fridman3 eq. 3-174 and 3-176 in 

Fridman4). This approach was the basis for a few published solutions, but of course modern 

computational techniques allow the direct solution of the functional problem. 

The functional problem is well posed and can be solved after the values of the rate coefficients 

are fixed. Since f appears in the expression of f, the solution must be determined by a 

relaxation method: Eq. (3) is solved for a constant J assumed initially equal to zero. Then J is 

determined from the calculated 𝑎𝑎(𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚) and the solution procedure is repeated, until self-

consistency is obtained. The method is very fast, since only very few iterations are found to 

be necessary in real cases. 

 

Results and discussion 

 

In the case of CO2 molecules, three vibrational modes have to be accounted for: symmetric 

stretching, doubly degenerate bending and asymmetric stretching. In plasma conditions, the 

detailed discussion in Fridman4 (see also Kozák et al.14) shows that the most important 

contribution to dissociation is given by vibrational excitation of the asymmetric stretching 

mode. Therefore, we will focus on the kinetics of this mode only. Usually 21 (22 including the 

ground state) levels are considered for this mode, up to the dissociation energy of 5.5 eV. 

Processes included in the model are summarized in Table 1. Here, following notation in Kozák 

et al.,14 VV1 indicates linear vibration to vibration energy exchanges with the v = 1 level, VVn 

non-linear vibration to vibration energy exchanges, VTa, VTb, VTc vibration to translation 

exchanges of asymmetric mode levels with a, b, c symmetric levels, VV’ vibration to vibration 

exchanges of asymmetric mode levels with symmetric levels, these last considered as 

vibration to translation (VT) processes as also recommended by Kozák et al..14 STS rate 

coefficients need to be interpolated as a function of a continuum vibrational energy to be used 

in the diffusion equation. Details of this process are in Diomede et al..7 A difference here with 

respect to our previous work7 is that the contribution to the diffusion coefficient of the VT 
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processes (bVT) has been included using detailed balance (Eq. (6) in Diomede et al.7), in 

agreement with the theory in Rusanov et al..3 Mathematical expressions for the transport 

coefficients and analytical fits for the STS rate coefficients are reported in Table 2 and 3, 

respectively. Recent works suggest that this model should be completed by a set of detailed 

inter-mode vibrational energy transitions (see e.g. Armenise and Kustova15). However, in this 

paper we will use the kinetic model by Kozák et al.14 to benchmark our approach as we did in 

in our previous paper.7 

Dissociation occurs when molecules are vibrationally excited beyond their last bound level, by 

pump-up processes like, in this particular case, vibrational exchange VV1 and VVn processes in 

Table 1. Here only one quantum processes are assumed, the short discussion following Eq. (4) 

applies otherwise. 

Transport coefficients obtained by applying the equations in Table 2 are shown in Figure 1. 

Several conditions are reported which differ for the values of the vibrational temperature Tv. 

In particular, three values for Tv (for the asymmetric stretching mode), realistic for plasma 

activation reactors have been considered, namely 0.19, 0.22 and 0.25 eV, while the gas 

temperature Tg was held fixed to 300 K, in order to avoid double interpolation (Tv and Tg) of 

reaction kinetics data. Tv can be calculated in plasma conditions as discussed in Capitelli1 but 

here it is considered as a parameter. A notable feature, already discussed in Diomede et al.,7 

is the change of sign of the contribution to the drift coefficient due to VV processes in 

correspondence to the energy of the Treanor minimum given by 𝑥𝑥𝑒𝑒𝜀𝜀1,0𝑇𝑇𝑣𝑣/2𝑇𝑇𝑔𝑔, where 𝑥𝑥𝑒𝑒 is the 

coefficient of anharmonicity, 𝜀𝜀1,0 is the energy difference between the first two vibrational 

levels. This change of sign is essential in producing a characteristic change of trend of the 

solution f to be discussed later. For energies higher than this critical one, the drift values are 

strongly sensitive to the value of the temperature ratio Tv/Tg. 

In our case, the most important dissociation channels are via VV1 processes which lead to 

dissociation when a CO2(1) molecule reacts with a molecule in the last level of the series CO2(v) 

producing CO2(0) and CO2(N+1), N+1 indicating the vibrational pseudo-level,12 and VVn 

processes which lead to dissociation when a CO2(N) molecule reacts with a molecule in the 

last level of the series CO2(v) producing CO2(N-1) and CO2(N+1). Therefore, by applying Eq.(4), 

the following expression for J is obtained: 
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𝑑𝑑 = 𝑘𝑘 𝑁𝑁,𝑁𝑁+1
1,0 𝑒𝑒

−
𝜀𝜀1,0
𝑘𝑘𝑇𝑇𝑣𝑣

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣
𝑎𝑎(𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚) + 𝑘𝑘 𝑁𝑁,𝑁𝑁+1

𝑁𝑁,𝑁𝑁−1𝑎𝑎(𝜀𝜀𝑚𝑚𝑎𝑎𝑚𝑚)2/𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡;     (5) 

 

Here 𝑘𝑘 𝑣𝑣′,𝑗𝑗′
𝑣𝑣,𝑗𝑗  is a VV rate coefficient where (i,j) and (i’,j’) address the initial and final vibrational 

state of the two molecules involved. J, being the flux of dissociating molecules, must be 

consistent with that calculated from finite rate kinetics applied to the levels close to 

continuum. 
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Table 1. Elementary Reactions Used in the Calculations. 

name reaction note 

VV1 CO2(1) + CO2(v)  CO2(0) + CO2(v+1)  

VVn CO2(v) + CO2(v)  CO2(v-1) + CO2(v+1)  

VT CO2(v) + CO2  CO2(v-1) + CO2 
a 

VV' CO2(v) + CO2  CO2(v-1) + CO2 b 

a Sum VTa + VTb + VTc in Kozák et al.14 

b Sum VV'a + VV'b  in Kozák et al.14 

 

Table 2. Mathematical Expressions for Transport Coefficients Reported in Fig. 1. 

𝑏𝑏𝑉𝑉𝑉𝑉1(𝜀𝜀) =
1
2
𝑘𝑘𝑉𝑉𝑉𝑉1(𝜀𝜀)𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡(ħ𝜔𝜔)2

𝑃𝑃1
𝑍𝑍𝑣𝑣𝑣𝑣𝑏𝑏

,  𝑃𝑃1 =
𝑃𝑃(1)
𝑃𝑃(0) = exp �−

𝜀𝜀1,0

𝑇𝑇𝑣𝑣
� 

𝑏𝑏𝑉𝑉𝑉𝑉𝑛𝑛(𝜀𝜀) = 𝑐𝑐𝑉𝑉𝑉𝑉𝑛𝑛(𝜀𝜀)𝑎𝑎(𝜀𝜀), 𝑐𝑐𝑉𝑉𝑉𝑉𝑛𝑛(𝜀𝜀) =
1
2
𝑘𝑘𝑉𝑉𝑉𝑉𝑛𝑛(𝜀𝜀)(ħ𝜔𝜔)2  

𝑎𝑎𝑉𝑉𝑉𝑉(𝜀𝜀) = −(ħ𝜔𝜔)𝑘𝑘𝑉𝑉𝑉𝑉(𝜀𝜀)𝑛𝑛𝑀𝑀 

𝑎𝑎𝑉𝑉𝑉𝑉′(𝜀𝜀) = −(ħ𝜔𝜔)𝑘𝑘𝑉𝑉𝑉𝑉′(𝜀𝜀)𝑛𝑛𝑀𝑀 

𝑎𝑎𝑉𝑉𝑉𝑉(𝜀𝜀) = −(𝑏𝑏𝑉𝑉𝑉𝑉1(𝜀𝜀) + 𝑏𝑏𝑉𝑉𝑉𝑉𝑛𝑛(𝜀𝜀))�
1
𝑇𝑇𝑣𝑣
−

2𝑥𝑥𝑒𝑒𝜀𝜀
𝑇𝑇𝑔𝑔ħ𝜔𝜔

� 

𝑏𝑏𝑉𝑉𝑉𝑉(𝜀𝜀) = (𝑘𝑘𝑉𝑉𝑉𝑉(𝜀𝜀) + 𝑘𝑘𝑉𝑉𝑉𝑉′(𝜀𝜀))𝑛𝑛𝑀𝑀(ħ𝜔𝜔)2 

 

Table 3. Analytical Fits for the STS Rate Coefficients (in m3s-1 with 𝜀𝜀 in eV) (from Kozák et al.,14 for Tg = 

300 K). 

fit c0 c1 c2 c3 c4 note 

𝑘𝑘𝑉𝑉𝑉𝑉1(𝜀𝜀)

= 10−610∑ 𝑐𝑐𝑣𝑣𝜀𝜀𝑣𝑣4
𝑣𝑣=0  

-9.96058 0.51516 -0.38343 0.06286 -0.00407  

𝑘𝑘𝑉𝑉𝑉𝑉𝑛𝑛(𝜀𝜀)

= 10−610∑ 𝑐𝑐𝑣𝑣𝜀𝜀𝑣𝑣4
𝑣𝑣=0  

-10.23249 1.91896 -0.69428 0.13232 -0.00948  

𝑘𝑘𝑉𝑉𝑉𝑉(𝜀𝜀)

= 10−6�𝑐𝑐𝑣𝑣𝜀𝜀𝑣𝑣
4

𝑣𝑣=0

 

1.09698 × 10-

15 

8.98604 × 

10-15 

-3.92225 × 

10-15 

7.48785 × 

10-16 

-4.36492 

× 10-17 

a 

𝑘𝑘𝑉𝑉𝑉𝑉′(𝜀𝜀)

= 10−610∑ 𝑐𝑐𝑣𝑣𝜀𝜀𝑣𝑣4
𝑣𝑣=0  

-14.61444 1.44670 -0.45651 0.09481 -0.00691 b 

 
a Sum VTa + VTb + VTc in Kozák et al.14 
b Sum VV'a + VV'b  in Kozák et al.14  
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Figure 1. Coefficients a and b for different values of the vibrational temperature (Tg = 300 K, 

ntot = 2.33 × 1023 m-3) and flux-matching value of J. 
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Figure 2. Vibrational distribution functions for different values of the vibrational temperature 

and null and non-null flux and including and excluding VVn processes (Same conditions as 

Figure 1). For Tv = 0.19 eV, a comparison with STS results in Figure 7 in Kozák et al.14 (for 30 W 

cm-3 power density and 8 ms) and Monte Carlo simulations results is also shown. Results for J 

= 0 and Tv = 0.19 eV overlap with results for a non-null J and without VVn processes, therefore 

they are not shown. Note that J is different in the cases with and without VVn processes. 
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Figure 3. Vibrational distribution functions for different values of the flux J (in s-1) and 2 values 

of the vibrational temperature: 0.19 eV (top) and 0.25 eV (bottom), with flux-matching value 

of J equal to 1.555 × 10-2 s-1 and 775.71 s-1 respectively. Non-linear VVn processes are included. 

 

In Figure 2 vibrational distribution functions (VDFs) corresponding to the same conditions in 

Figure 1, are shown. The non-linear (including VVn) and linear equations are considered. The 

inclusion of VVn processes increases J leading to a slight depression of the plateau and the 

depletion of the highest levels as discussed later. With regards to the boundary conditions, 

the flux-matched values of J are considered. In the same Figure 2 we have also reported the 

results for the VDF obtained in recent calculations by Kozák et al.14 in order to show how the 

diffusion approach compares to STS calculations. Due to an improved interpolation of kinetics 

data and a few differences in the calculation of transport coefficients (see above), our result 

here is not exactly matching the MC approach in Diomede et al..7 In particular, we obtain here 

somewhat different behaviours of the distribution close to the dissociation threshold. 

Therefore, new MC calculations have been performed with the same set of data used here 
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and results are reported in the same figure. It can be seen in this way that the flux-matching 

approach is in good agreement with the MC method. The residual difference very close to the 

dissociation threshold is due to the limited precision of our MC calculations, using a single 

time step, in the high energy region where the convective transport is fast. The comparison 

with STS is good, some deviations at high energy may be due to the fact that the calculations 

by Kozák et al.14 include a few other processes involving both CO2 and other species. 

Nevertheless, it is shown here that the diffusion approach, which is very fast in producing 

numerical results, represents a very good alternative to STS calculations for full reactors 

models where the computational cost is a critical issue. Results in Figure 2 also show that, 

under conditions of higher vibrational temperature, the appropriate consideration of the 

vibrational flux is a necessity. Results in Figure 2 also illustrate the role played by non-

linearities introduced in the drift-diffusion equation by resonant processes: such processes 

play a small role (and may be neglected) under conditions of low Tv and low J, while, when 

increasing Tv, they must be accounted for. Under such conditions the resonant process 

contributes to the dissociation significantly and should be included in the formulation of the 

boundary conditions. VT processes contribute to both diffusion and drift in the region of high 

energy where their rate becomes important. However they produce a sensible depletion of 

the high energy VDF only at the lowest vibrational temperature 0.19 eV (not shown). 

In order to better illustrate the approach, calculations have been performed by assuming 

different values for J: results are reported in Figure 3. Two realistic values for Tv are selected. 

What can be seen is not only the extreme importance of the selection of a correct value for J, 

but also the extreme sensitivity of the results to J. Furthermore, since a different value of J 

amounts to a different relation between f and its gradient df/dε at the boundary ε = εdiss, this 

result confirms the findings in our previous paper7 that boundary conditions play a 

fundamental role in continuum formulations of the vibrational kinetics. In agreement with the 

findings of our previous paper,7 in Figure 3 (bottom) the assumption of a null flux J produces 

a distribution very close to Treanor. A change in the VDF trend occurs, as previously 

anticipated, in correspondence to the minimum of this Treanor distribution. For the flux-

matched solution this change leads to a plateau extending almost to the dissociation 

threshold: this is explained as the result of an essentially convective transport. Different curves 

are obtained by changing the reactive processes included in the high energy region. For 

example, the lowest curves corresponding to high J require reactive channels to remove 
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molecules at relative low energy. The curve with negative J requires a recombination channel, 

which populates the VDF close to the dissociation limit and is consistent with the negative 

flux: this last result also shows that our approach can be applied also in a recombination 

regime. 

In a comparison with other methods of solutions, it must be remarked that the solution of the 

transport equation using the numerical integration of Eq. (2) has a very low computational 

cost, and the flux matching approach requires just a few iterations of the process. 

Furthermore, future implementations could be much less dependent on rate coefficients 

calculated for STS codes: it is in fact well known that many essential coefficients can be 

calculated reliably by using classical methods like molecular dynamics, and in the past Brau13 

has shown that the two coefficients a and b can be determined directly from such calculations, 

without artificially separating the results into discrete vibrational levels. Therefore, the 

approach presented in this paper is very promising for the development of complete models 

of plasma systems to be employed in concrete applications. 

 

Conclusions 

 

In conclusion, an improved diffusion approach is developed and demonstrated for the kinetics 

of the asymmetric vibrational mode in CO2 molecules. While the basic ideas of the drift-

diffusion approach are well established in the literature, the approach is made of practical use 

by employing numerical techniques, to consider in full extent the effect of the reactive flux J 

and non-linear processes. The vibrational kinetics is therefore formulated as a functional 

problem based on the consistency of the VDF with the microscopic formulation of the reactive 

flux. In this way, a general, new technique is obtained which is a valid alternative to the 

presently widespread and much actively investigated STS approach and allows concretely to 

solve the vibrational problem with very low computational cost, as requested in multi-physical 

models of plasma reactors. In terms of added insight for chemical kinetics, this approach sets 

the vibrational kinetics into the field of transport processes, allowing to employ well 

developed concepts and mathematical techniques of the latter. In view of its simplicity and 

low computational cost, this approach may find application in any field where vibrational 

kinetics plays a role, thereby in catalysis, space chemistry, laser chemistry, plasma processes, 

and many others. 
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