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Abstract

Inside a toroidal nuclear fusion reactor, unstable plasma modes driven by a radial ion temperature gradient (ITG)
can be stabilized by rotational flow shear. In this study, these rotational modes are solved from the linear gyrokinetic
equations and scrutinized in ballooning space. The effect of flow shear is immediately apparent in ballooning space,
as is the difference in stabilization between kinetic and adiabatic electron calculations at low magnetic shear ŝ (mode
quench occurs at much lower flow shear in the adiabatic case). Modes consistently equilibrate to some shape in
ballooning space, even when they exhibit Floquet fluctuations in time. To gain physical insight into the mechanics
of flow-shear stabilization and Floquet fluctuations, a toy model is created. The full rotational ITG solution is
decomposed into shearless modes and flow-shear modifications. The model reproduces mode structures in ballooning
space, Floquet fluctuations and the stabilizing impact of flow shear.

1 Introduction

Turbulent transport is the primary mechanism which
limits plasma core confinement in tokamaks [1].
Among the main instability branches which drive
the turbulence are ion-temperature-gradient (ITG)
modes [2, 3]. These linear modes are characterized
by a critical threshold in ion temperature gradient.
At higher amplitudes the modes nonlinearly couple
and eventually saturate in a quasi-stationary state.
However, in the transport driving spatial scales, the
linear characteristics of these modes are still evident
in the nonlinear state, e.g. see [4, 5] and references
therein. Thus, correct evaluation of linear mode char-
acteristics is experimentally relevant and vital for the

validity of quasilinear transport models.

Confinement improvement through turbulent
transport reduction would allow smaller fusion reac-
tors to be built for the same output fusion power.
One method to mitigate or weaken the impact of ITG
modes is through plasma rotation flow shear. This
has been widely studied experimentally, analytically,
and computationally [6, 7, 8, 9, 10, 11, 12].

In this work we investigate unstable linear ITG
modes in ballooning space [13, 14], through local
(flux-tube) gyrokinetic simulations with GENE [15].
The implementation of perpendicular flow shear in
GENE is through time dependent shifts in radial
wavenumber [16]. We focus on how this provides
the stabilising effect of flow shear, reproduces Flo-
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quet fluctuations in the ITG growth rates, and a
strikingly different stabilisation at low magnetic shear
(ŝ) when either kinetic or adiabatic electrons are ap-
plied. Finally, we attempt to capture these effects in
a toy model, aiming towards implementation within
reduced quasilinear transport models.

In section 2 we describe the necessary background
formalism and in section 3 a novel growth rate calcu-
lation method is oulined. In section 4 the results of
simulations of this study are shown. In section 5 the
toy model is presented.

2 Background Theory

We describe a circular tokamak with coordinates x
(radial), y (binormal), z (parallel). In this work, we
use the linearized gyrokinetic framework [19] to find
eigenmode solutions Φ. The electrostatic potential
ϕ associated with the ITG instability has a distinc-
tive spatial structure, which is continuously deformed
in the presence of flow shear. Using the ballooning
transformation, one may write

Φ(kx, θb) =

∞∑
m=−∞

∫
dx

∫
dy

∫
dz ϕ(x, y, z)

ei
[
m(θb−z)−kxx+Cyky(y−q(x)θ0)

]
. (1)

Here θ0 is the ballooning angle of a mode Φ, the
ballooning coordinate θb ∈ (−∞,∞) spans balloon-
ing space, q is the safety factor, Cy = εt/q is a
geometric constant (with εt = r/R the inverse as-
pect ratio at the radial location r of the chosen flux
tube, with R the tokamak’s major axis), and the sum
is over all integers m. The ballooning angle and
wavenumbers k are related by kx = −ky ŝθ0, where
the magnetic shear ŝ = (r/q)∂q/∂r. The parallel
boundary condition in these coordinates states that
each value of kx can be written as kx = k′x + 2πŝky
[20]. Finally, in Gene, rotational flow shear (defined
as γE = (x/q)∂vtor/∂x with vtor the toroidal plasma
velocity) is implemented by shifting the kx grid in
time: kx = CykyγEt/q. By these relations, when
ŝ 6= 0 and γE 6= 0, the quantities t, kx and θ0 can be
translated into each other when considering a mode

Φ. Because of the finite number of radial modes simu-
lated in a numerical system, the kx shifts are discrete,
even though t is a continuous variable.

From the perturbed particle distribution function
f1,i of species i, the perturbed plasma density is ob-
tained by n1,i =

∫
d3vf1,i. The growth rate γ in a

time interval ∆t is then defined by
n1,i(t+∆t)
n1,i(t)

= eγ∆t,

where the ky dependency was omitted and an aver-
age is taken over kx values. As such, a mode’s growth
rate can be obtained from Gene simulations at each
time step. A mode Φ is considered unstable if its
growth rate γ > 0. Without flow shear, growth rates
converge after some time. With flow shear, under
certain circumstances, so-called Floquet fluctuations
occur: the growth rate fluctuates periodically in time
around some average.

3 Growth rates: τAC method

It is often observed in the literature that linear
growth rates in the presence of flow shear are cal-
culated from an average of the fluctuating Floquet
mode (we call this the γavg method). However, the
timescale of this averaging is much greater than the
non-linear decorrelation time, which raises doubts
whether this averaging leads to a physically rele-
vant quantity. In this work, we therefore use the
τAC method, similar to that proposed in [21, 22].
This approach assumes that the relevant timescale
for growth rate calculations is the non-linear decor-
relation time. Next, it is assumed that this timescale
at a given spatial scale is given by 1/γk, where γk
is the growth rate of the most unstable mode at the
respective spatial scale. As such, the time scale in-
deed corresponds to the growth time needed to enter
a nonlinear regime. It was shown that this assump-
tion is works well at low values of ky such as used
in this work [23]. The proposed method is to iter-
atively calculate the growth rate using an adaptive
time window until the width of the time window con-
verges to the inverse growth rate calculated. This is
illustrated in Fig. 1, where a mode amplitude time-
trace is shown for a Cyclone Base Case (CBC) lin-
ear simulation with kinetic electrons, γE = 0.3, and
ky = 0.3. CBC parameters are circular geometry,
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ŝ/q = 0.8/1.4, εt = 0.18, R/Ln = 2.2, R/LT = 6.75,
(where Ln and LT are the length scales correspond-
ing to the plasma density and temperature gradients,
respectively). An automated routine is written in
which a time window scans over the amplitude time-
trace. At each point in the scan growth rates are
defined as γk(t1,∆t) = ln

[
n(t1 + ∆t)/n(t1)

]
/∆t, in

which t1 is the starting point of the time window, ∆t
is the time window width, and n is the plasma den-
sity (other fields and moments can be chosen here;
all converge to the same growth rate). For a given
∆t, the averaged growth rate γk(∆t) is then defined
as an average over the γk(t1,∆t) peaks in the t1 scan
over the timetrace, which smooths out any variations
in the peaks which may arise due to the discrete kx
shifts present in the implementation of the flow shear
in Gene [16].

The assumption that the physical growth rate
value is weighted towards the peak growth rates over
a Floquet cycle is not fully justified in this work, but
it is based on the following intuition: the injected en-
ergy into the system from the original instability is
with θ0, due to the typical maximum growth rate at
kx = 0 of these modes. If the short nonlinear decor-
relation time (itself assumed to be 1/γk) is then short
enough for a mode not to traverse a full Floquet cy-
cle, then it is logical that the effective growth rate is
still weighted towards the kx = 0 values.

The final γk is then obtained by iterating this pro-
cedure and adapting ∆t, until convergence is achieved
when |1 − γk∆t| < δ. The convergence criterion has
been chosen as δ = 0.02 for this work. The time win-
dow displayed in Fig. 1(a) (bounded by the red lines)
is at a position corresponding to the first γk(t1,∆t)
peak in the t1 scan for the converged ∆t for this par-
ticular case.

Growth rate calculations using the τAC method are
displayed in Fig. 2 at R/LT i = 8.75 and for both adi-
abatic and kinetic electrons. In the kinetic electron
case, R/LT e = 4, such that we avoid a sub-dominant
electron mode which masks the ITG quenching at
high γE . For both adiabatic and kinetic electrons,
the fundamental quench behavior is very similar, with
the quench occurring at γE ≈ 2γ0, where γ0 is the
static growth rate. However, for low γE the initial
sharp drop in growth rate previously seen is now not
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Fig. 1: (a) Mode amplitude timetrace, with growth
rates analyzed between the black lines and
the calculated converged time window width
∆t = 1/γk between red lines.
(b) Corresponding local growth rates
γk(t1,∆t). The resulting final growth rate is
the peak average γ = 0.33.

so apparent, and much smoother profiles result. At
higher γE , the growth rates are sufficiently low that
the time window in the τAC method averages over a
number of cycles, and is effectively equivalent to a
long time-scale averaging (γavg) method.

The τAC method can be applied for calculating ef-
fective growth rates in the presence of flow shear, of
the form γeff = γ − αγE , e.g. as in [17]. Multiple
linear gyrokinetic runs with the τAC method can be
applied to calculate the parameter dependencies of
the α factor in setting γeff, potentially leading to a
simple but accurate method for setting the flow-shear
impact in quasilinear transport models. This will be
explored in future work.

For quenched modes (γavg < 0), there are often
no clear converged or periodic growth rates, so that
the τAC method cannot be used. An approximate
average growth rate is then obtained by using the
γavg method.
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Fig. 2: Comparison of growth rates with the γavg and
the τAC method with R/LT e = 4 for kinetic
electrons, R/LT e = 8.75 for adiabatic elec-
trons and R/LT i = 8.75 for both cases.

4 Simulations

Simulations are always carried out at Cyclone Base
Case (CBC) parameters with modified temperature
gradients. Typical grid sizes are 90 for kx, 24 for z,
32 for v‖ and 8 for µ. Typically, ∆kx ≈ 0.1. This
small kx step size is necessary in the presence of flow
shear, to make the jumps in the kx grid small enough.
Certainly, ∆kx must be smaller than the distance be-
tween modes that are coupled by the parallel bound-
ary condition. Convergence is checked by decreasing
grid sizes until growth rates start to change signifi-
cantly, and then simulating well above these thresh-
olds.

Shown in Fig. 3 is the averaged growth rate of lin-
ear ITG modes vs. flow shear, at several values of
magnetic shear ŝ. This is done using either kinetic
electrons with R/LTi

= 6.75 or adiabatic electrons
with R/LTi

= 10, where the temperature gradient is
chosen differently to match rotationless growth rates.
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Fig. 3: Growth rates of ITG modes at various values

of ŝ, for kinetic electrons (solid) with R/LT i =
6.75 and adiabatic electrons (dashed) with
R/LT i = 10.

At high ŝ = 0.8 the reduction of unstable growth
rates is similar between the two cases, but at low
ŝ = 0.1 the ITG modes are quenched at much lower
flow shear when adiabatic electrons are used. This
may impact previous research done under these cir-
cumstances (low ŝ, adiabatic electrons) [18, 12]. To
investigate the origin of this difference, we visualize
ITG modes at both high and low magnetic shear.

In Fig. 4, we show ITG modes in ballooning space
for several values of flow shear. An unexpected fea-
ture of these visualizations is that modes equilibrate
to some shape in ballooning space; they do not shift
around but merely grow and/or shrink maintaining
practically the same shape, even when large Floquet
fluctuating are present. This is shown in Fig. 6.
Shapes are seen to jump in time by the discrete na-
ture of the Gene flow shear implementation, but
this effect is not physical; the jumps decrease when
smaller kx step sizes are chosen.

When ŝ = 0.8 (Fig. 4(a)), structures are sharply
peaked around θb = 0. Growth rates are gradually
reduced as flow shear increases. There is little dif-
ference between kinetic and adiabatic electron simu-
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Fig. 4: Impact of flow shear on ITG modes in ballooning space, for (a) ŝ = 0.8 and b ŝ = 0.1. Solid lines
correspond to kinetic electrons and dashed lines to adiabatic electrons.
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Fig. 6: Floquet modes in ITG growth with γE = 0.1
(left), and normalized mode structures in bal-
looning space at several times (right). The
mode structures are measured at the times of
the colored dots in the left pane, indicating
the preservation of their shape.

lations, except that at large θb, adiabatic modes |Φ|

drop to values several orders of magnitude smaller
values than kinetic modes. This slight difference is
consistently observed throughout all simulations in
this work. At ŝ = 0.1 (Fig. 4(b)), structures are
more spread out over ballooning space, since, with
our definitions, at low ŝ the same coverage in kx space
(compared to high ŝ) corresponds to a larger range
in ballooning space. As flow shear is increased, the
distribution widens further and shifts towards nega-
tive ballooning space (by continuous shifting of the
kx grid), without being quenched as in the high ŝ
case. Also, in the shift we observe a clear difference
between kinetic and adiabatic electron simulations:
adiabatic modes experience a shift to negative bal-
looning space by flow shear much quicker than ki-
netic modes. At these higher ballooning coordinates
(thus higher radial wavenumbers) the modes are con-
sequently quenched more, in line with the findings of
Fig. 3.

As outlined before, ITG modes |Φ| are continuously
shifted over the kx grid (thus also through balloon-
ing space) by flow shear. Alternatively, we can take
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Fig. 5: Impact of shifted ballooning angle on rotationless ITG modes φn, for (a) ŝ = 0.8 and b ŝ = 0.1.
Solid lines correspond to kinetic electrons and dashed lines to adiabatic electrons.

a mode without flow shear and let it evolve at a fixed
shifted kx grid (=shifted ballooning angle). Such
modes we call φn, where n denotes the mode’s bal-
looning angle, defined via θ0 = −πn/8. In Fig. 5 we
simulate modes φn for n ∈ [0, 8], such that we cover
ballooning angles θ0 ∈ [−π, 0]. By parallel symmetry
these are equal to the mirror images of the modes
with θ0 ∈ [0, π]. In Fig. 5(a) these modes are shown
for ŝ = 0.8. Structures are again sharply peaked
around θb = 0, until the mode’s ballooning angle is
shifted sufficiently (around θ0 = π/2) to quench the
mode, after which only noise is visible. Differences
between kinetic and adiabatic modes are minor. At
ŝ = 0.1 (Fig. 5(b)), we again observe wider distribu-
tions in ballooning space. There is a clear distinction
in these distributions between kinetic and adiabatic
electron simulations. Shifting the ballooning angle
merely distorts this distribution rather than quench-
ing the mode. This is in line with the observations
of the sheared case, where modes at ŝ = 0.1 could
be shifted to high ballooning angles without being

completely quenched, since large shifts in ballooning
space correspond to comparatively low shifts in kx.
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Fig. 7: Growth rate vs. ballooning angle for ŝ = 0.8
and ŝ = 0.1. The gray area is inaccessible by
Gene simulations. Rotationless radial growth
rates are conjectured in that region.
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There is another difference between the sheared
and unseared case. Gene’s initial value solver only
finds the most unstable mode at some radial length
scale. In the unsheared φn case this most unstable
mode always has θ0 ∈ [−π, π]. Higher kx modes are
coupled to these most unstable modes by the par-
allel boundary condition. Thus, by utilizing the φn
method, modes left to grow at high ballooning angles
always couple back to a more unstable connection
with low θ0, and as such are overwhelmed. Their
structure and growth rate then can not be deter-
mined. On the other hand, these high θ0 modes are
accessible when a mode is continually sheared. The
parallel boundary condition still couples these high
θ0 modes to those with low θ0, but those connections
may be quenched by the effects of flow shear. Thus,
if flow shear shifts modes to high θ0 faster than the
quenched modes at low θ0 can grow, the initial value
solver indeed yields these high θ0 modes.

The restriction on modes with the φn method is
clear in Fig. 7. This figure shows the growth rate γn
of a mode φn vs. its ballooning angle. With the ini-
tial value solver (eigenvalue calculations are problem-
atic in the presence of flow shear), we can only access
growth rates of modes with θ0 ∈ [−π, π] (white area).
The rest of the distribution (gray area) is guessed,
based on two observations. First, it is known that
in general modes become stable at higher balloon-
ing angles, even reaching negative growth rates (re-
producing the precise damping rate of the system at
large ballooning angles is outside of the scope of this
work). Then, the data in the white region suggests
a wider distribution at low ŝ than at high ŝ. Sim-
ple distributions obeying these two observations are
utilized in the following toy model.

5 Toy Model

Many of the shown effects of flow shear on ITG modes
are generally known, but not much is understood of
their causes. To identify the key relations causing
these effects, we now attempt capture as much of the
effects as possible in a toy model. We particularly
focus on reproducing mode quench, Floquet fluctu-
ations and kinetic/adiabatic differences at high and

low ŝ.

We intialize our toy model with the structures of
modes φn throughout ballooning space. But as men-
tioned, modes at high θ0 cannot be found with the
φn method, so an assumption must be made on their
shape. In this work we assume a connection be-
tween mode shape and ballooning angle, so that all
φn structures periodically have the same shape as
those at low θ0, i.e. |φn(θb) = φn+p(θb + 2π)|, where
φn = |φn|eγnt and |...| indicates structures normal-
ized to 1 (in this work p = 16 because of the step size
choice of θ0 = −πn/8).

The structures φn throughout ballooning space
thus have periodically the same shape but different
growth rates γn; as shown in Fig. 7. A shifted Gaus-
sian distribution is chosen which is narrow at high
ŝ and wide at low ŝ and drops to negative values at
large θ0, i.e.:

γn = c0e
−c1n2

− c2, (2)

where an overview of constants cj as used in the
model is given in Table 1. There is litte sensitiv-
ity in the model to the precise choice of distribution
function (e.g. shifted Bessel functions have been tried
with similar results).

The model assumes that a dynamically sheared
ITG solution Φ can be decomposed into the shear-
less modes φn, so that Φ(θb, t) =

∑∞
−n=∞ φn(θb, t).

At this point we have a model decomposition without
flow shear; it only exhibits exponential growth. This
is illustrated in Fig. 8.

Next these shearless modes must be coupled by
some implementation of flow shear. In Gene, flow
shear is implemented by shifting Φ(θb, t) over the kx
grid continuously in time. In our model, at each time
step, the components φn are evolved according to:

φn(t+ ∆t) = eγn∆t×(
φn(t)−On(t)φn(t) +On+1(t)φn+1(t)

)
, (3)

where On signifies the the overlap between neighbor-
ing modes (i.e., of subsequent n):
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ors) are initialized at every multiple of 2π.
The modes then grow according to the cho-
sen radial distribution function of γn.

On(t) = c6

∫
dθb min[φn(θb), φn−1(θb)]∫
dθb max[φn(θb), φn−1(θb)]

+ c5.

(4)

Thus at each time step a mode φn obtains two
terms: it yields a portion of its structure to its right
neighbor and receives a fraction from its left neighbor
(the asymmetry here stems from the positively chosen
flow shear direction; of course this can be inverted).
In essence, modes are thus slowly transformed into
their neighbors at negative kx and a general shift of
the total structure towards negative ballooning space
results. To speed up the calculations, these shifts do
not occur at each time step, but only at each interval
of τs = c3/γE−c4 > 0, so that the shift rate increases

with higher flow shear. This mechanism is illustrated
in Fig. 9.

|φ|

θb

θb

θb

Fig. 9: Implementation of flow shear in the model:
mode φn receives part of its left neighbor and
gives a part of itself to its right neigbor.

One key feature of this model is that the fraction of
a given mode shifted to its neighbor depends on their
mutual overlap in ballooning space. When this over-
lap is large, the transformation by flow shear becomes
more efficient. In real space, this overlap corresponds
to modes which balloon at different angles, while hav-
ing similar amounts of energy stored at the same ra-
dial wavelengths. Flow shear then causes energy of
all wavenumbers kx to be shifted to new ballooning
angles. This process is more efficient when there is
already a similar amount of energy present at those
wavenumbers at the target ballooning angle. A phys-
ical motivation for this mechanism will be explored
iin future work.

In Fig. 10 results of this toy model are compared to
linear Gene simulations. Perturbed plasma density
and corresponding growth rates are shown for sev-
eral values of flow shear, at both high and low ŝ. At
ŝ = 0.8, the toy model qualitatively produces all the
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Fig. 10: Time evolution of log(n1) and corresponding growth rates at several values of flow shear, for (a)
ŝ = 0.8 and (b) ŝ = 0.1. Blue lines are Gene simulations and red lines results of the presented toy
model. Solid lines correspond to kinetic electrons and dashed lines adiabatic electrons.

features that were aimed for: flow shear causes large
Floquet fluctuations, and as it is increased the Flo-
quet frequency rises and growth rates gradually drop,
until at some point the mode is stabilized. Quanti-
tatively, Floquet amplitudes and frequencies do not
match; they are very sensitive to the precise com-
bination of model parameters used. There is no ki-
netic/adiabatic difference. At ŝ = 0.1, general be-

havior is also reproduced well. The model yields no
Floquet fluctuations and again a mode Φ is gradually
quenched by flow shear. However, the difference be-
tween kinetic and adiabatic electron simulation that
was so prevalent in Gene simulations is not captured.
A more advanced model may be able to achieve this;
possibly be expanding the coupling between modes
(e.g., periodic coupling by the parallel boundary con-
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dition instead of just nearest neighbors). This was
quickly looked at but without results; more effort is
needed to explore this option. With more advanced
coupling it might be that the differences found in
rotationless modes φn between kinetic and adiabatic
mode structures could have a larger effect on the final
modes Φ.

With this toy model, Floquet fluctuations can be
explained by the following. All modes φn grow and
receive a portion of their structure from their left
neighbor φn−1. At some locations, overlap between
two modes is very small and shifts between them
thus negligible; we call this a bottleneck location.
Consider such a location between φn and φn+1 with
γn+1 < γn. This difference in growth may be large
at ŝ = 0.8 because the γn radial distribution is very
peaked. As such, on the left side of the bottleneck,
φn+1 will slowly start to grow by accumulated shifts
which are not transfered to φn, while on the right
side, φn grows quickly but also loses much of its
structure (in total, there is little growth and we are
at the bottom of a Floquet cycle). At some point,
φn+1 is so large that the small fraction it gives to φn
is nonetheless substantial. From this point onward
overlap between the modes increases and the bot-
tleneck is removed in a snowball effect that highly
boosts φn, which has a large growth rate by itself
(this moment corresponds to a peak in the Floquet
cycle). However, φn+1 is now completely depleted,
recreating the original bottleneck. One Floquet cy-
cle has been completed. At low ŝ, growth rates be-
tween neighbors are rather similar, and mode struc-
tures are wider by nature. By these two properties,
bottlenecks are not as pronounced and no Floquet
fluctuations occur. For physical interpretation, the
analogies of mode overlap and shifts were given in
the previous paragraph. Next, there is the quench-
ing impact of flow shear. This can be understood
by considering the most unstable modes φn (which
live around θ0 = 0). These will outgrow all other
modes, and as such (on average) always yield more
to their right neighbor than what they receive from
the left. Modes are thus depleted proportionally to
their growth rate. As flow shear is increased, shifts
occur more frequently and this effect is enhanced.

Tab. 1: Declaration of constants as used in the model
described in Sec. 5. The values are chosen
once and kept constant throughout the sim-
ulations of this work.

Constant Values Relevance

n [-240,240] simulation box

(so θ0 ∈ [−15π, 15π]) and mode spacing

∆t 1/8 time step

c0 1 (ŝ = 0.1) base growth rate

1.3 (ŝ = 0.8)

c1 0.001 (ŝ = 0.1) radial width of γn

0.3 (ŝ = 0.8)

c2 0.3 γn lower bound

c3 0.4 (ŝ = 0.1) rate of mode

0.6 (ŝ = 0.8) shifts by γE

c4 0.3 (ŝ = 0.1) offset of

0.7 (ŝ = 0.8) γE-time relation

c5 0.015 offset of On

c6 0.75 mode shift amplitude

6 Summary

In this work, the ITG instability was investigated at
both high and low background magnetic shear ŝ. The
impact of flow shear is clearly visible there, with no-
table features being structures equilibrating to some
shape in ballooning space (while growing/shrinking
in time) and a clear difference in mode stabilization
by flow shear between kinetic and adiabatic electron
simulations. Next, a toy model was created, decom-
posing a given sheared mode Φ into shearless modes
φn. The effects of flow shear are introduced by adding
shifts between neighboring modes, with shift magni-
tude depending on the mode overlap in ballooning
space. Floquet fluctuations and mode stabilization
are reproduced at the appropiate scales and param-
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eter ranges; indeed, it is the first time that Floquet
fluctuations have been reproduced using a kx-shift
approach. However, kinetic/adiabatic electron differ-
ences are not captured.

Modeling the reduction of turbulent fluxes as a con-
sequence of quenched linear growth rates has been
validated by nonlinear simulations [10]. Furthermore,
the presented toy model may provide the basis for
improved quasilinear models. The QuaLiKiz [24][25]
model calculates a shifted Gaussian mode structure
in the presence of flow shear, which then leads to a
reduction in code speed due to a loss of integration
symmetry in the dispersion relation. It will be ex-
plored whether the model presented here can provide
a speedup compared to the current QuaLiKiz imple-
mentation. Note that the shifted Gaussian in Qua-
LiKiz is necessary for momentum transport, which is
not captured by this model.

However, the model is not yet ripe for such quan-
titative applications. It should first be expanded to
yield more precise growth rates and Floquet frequen-
cies, and then generalized to a wider parameter space
(e.g., under varying q, εt, R/LT i). Finally, the model
would be more powerful if it captured the difference
between kinetic and adiabatic electron modes at low
ŝ.
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