
Under consideration for publication in J. Plasma Phys. 1

Wave modes in a cold pair plasma:
the complete phase and group diagram

point-of-view

Rony Keppens1,2† and Hans Goedbloed3

1Yunnan University, Kunming, PR China
2Centre for mathematical Plasma Astrophysics, KU Leuven, Belgium
3DIFFER, TU/e Science Park, 5612AJ Eindhoven, the Netherlands

(Received xx; revised xx; accepted xx)

We present a complete analysis of all wave modes in a cold pair plasma, significantly
extending standard textbook treatments. Instead of identifying the maximal number
of two propagating waves at fixed frequency ω, we introduce a unique labeling of all
5 mode pairs described by the general dispersion relation ω(k), starting from their
natural ordering at small wavenumber k. There, the 5 pairs start off as Alfvén (A), fast
magnetosonic (F), modified electrostatic (M) and electromagnetic O and X branches,
and each ω(k) branch smoothly connects to large wavenumber resonances or limits. For
cold pair plasmas, these 5 branches show avoided crossings, which become true crossings
at exactly parallel or perpendicular orientation. Only for those orientations, we find a
changed connectivity between small and large wavenumber behavior. Analyzing phase
and group diagrams for all 5 wave modes, distinctly different from the Clemmow-Mullaly-
Allis representation, reveals the true anisotropy of the A, M and O branches.

1. Motivation

Since the advent of controlled laboratory experiments on electron-positron
plasmas (Sarri et al. 2015), dispersion relations for waves in a pair plasma became
a diagnostic tool. Pair plasmas are created in pulsar magnetospheres or in the various
flavors of ultrarelativistic astrophysical jets. Pair plasmas are also heavily studied
using kinetic Particle-In-Cell codes, for e.g. reconnection aspects (Zenitani
2018), shocks (Bret & Narayan 2018), and turbulence (Loureiro & Boldyrev
2018). The inherent symmetry in pair plasmas leaves three length scales of interest:
the cyclotron radius Re (if magnetized), the plasma skin depth δ = c/ωp, where
ωp is the combined electron-positron plasma frequency, and the Debye length λD.
Laboratory pair plasmas may not necessarily achieve system sizes exceeding these
wavelengths (Stenson et al. 2017), although most theory starts from spatially uniform
conditions. Standard (Stix 1992; Bittencourt 2004) and modern (Thorne & Blandford
2017) textbooks describe the 2-fluid viewpoint on a uniform, cold electron-ion plasma,
to introduce the more complete kinetic viewpoint. Cold implies a vanishing λD = 0,
and vanishing gyroradii when these are quantified through thermal speeds,
to arrive at zero plasma beta: we ignore all thermal pressure effects. The cold
and 2-fluid electron-ion assumptions imply that at fixed frequency ω, we have at most
two waves that can propagate, and these are categorized as fast or slow, as right (R)
or left (L) polarized, or of ordinary (O) or extraordinary (X) type. The latter two wave
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label pairs (R/L and O/X) relate to properties at ϑ = 0 or ϑ = π/2, respectively, where
ϑ denotes the angle between the uniform magnetic field B and the wavevector k (or unit
vector n̂ = k/k with wavenumber k). For such cold plasmas, the Clemmow-Mullaly-Allis
or CMA diagrams (Clemmow & Mullaly 1955; Stix 1992; Thorne & Blandford 2017)
display the large variety in wave normal surfaces, plotting dimensionless phase velocities
ω/kc versus ϑ, when varying all relevant plasma parameters. In a cold 2-fluid plasma,
parameter space divides into 16 different regions, where either no, a single, or a pair
of topologically distinct wave normal surfaces can be expected. For a cold pair plasma,
this CMA diagram simplifies considerably, leaving only 5 regions to consider, as the
mass symmetry makes various limiting lines coincident. These limiting lines in the
CMA-viewpoint on cold, 2-fluid plasmas correspond to special values, like 0 or ∞,
attained by the remaining dielectric tensor components. Another simplification in the
cold pair plasma case is that R and L labels become obsolete, as they both become

R = L =
ω̄2 − 1− E2

ω̄2 − E2
, (1.1)

where we introduced the dimensionless ω̄ = ω/ωp and E = Ωe/ωp, with Ωe = eB/me

the (positively defined) cyclotron frequency of interest. Despite these simplifications,
the variety of wave modes in a cold pair plasma remains intricate, with O, X and
Alfvén mode types as basic ingredients, together with their resonant (k →∞) or cutoff
(k → 0) behaviour. Waves in equal-mass plasmas were discussed in Stewart &
Laing (1992); Iwamoto (1993); Zank & Greaves (1995), for cold and warm
conditions, but our approach will reveal new aspects of cold pair plasma wave
couplings and anisotropy. Pair plasmas have also been investigated in strongly
magnetized (E � 1) conditions for pulsar magnetospheres (Lyutikov 1999),
extending cold to warm regimes, including kinetic effects, using the usual
approach based on dielectric tensor components. Extensions to account for
different species bulk velocities and thermal effects are discussed in Lyutikov
(1998), where the kinetic treatment reveals the mode susceptibility to e.g.
two-stream cyclotron or firehose instabilities. One may even include vacuum
polarization effects, and obtain a dispersion relation with coupled X and
O branches due to current densities along B and finite charge densities, as
in Arons & Barnard (1986). In our idealized two-fluid view, the X and O
branches decouple, and all kinetic wave damping effects are ignored.

2. Cold pair plasma dispersion relation

Instead of using the dielectric tensor to obtain the dispersion relation, which has the
advantage to remain a three-by-three tensorial description when going to multiple ion-
electron mixtures, the ideal 2-fluid dispersion relation can also be derived from direct
linearization of the equations of mass conservation, motion, and energy conservation per
species, combined with the full set of Maxwell equations (Goedbloed & Poedts 2004).
This leads to 14 degrees of freedom (both time-independent Maxwell equations reduce
the original 16 by two), such that 14 wave modes are expected for any general (warm
or cold) electron-ion mixture. Two of these modes are trivial and at marginal frequency,
and this ω̄2 = 0 pair relates to the single fluid magnetohydrodynamic (MHD) entropy
wave. The remaining 12 can, by a judicious choice of variables, be obtained from the
determinant of a symmetric 6× 6 matrix, where six pairs remain in a dispersion relation
of sixth order in ω̄2 (Goedbloed & Poedts 2004). The symmetry of the matrix ensures that
this is true at every real wavenumber k. For the specific case of a cold pair plasma, this
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dispersion relation further factors out a trivial ω̄2 = 0 pair: the slow magnetosonic MHD
waves, which become marginal at zero temperature. This results in the 5 fundamental
wave pairs discussed below.

Defining k̄ = δk, the dispersion relation becomes a quadratic in k̄2 with three cubic
polynomials in ω̄2, but we will now systematically drop the overbars on ω̄ and k̄. The
final 5 pairs then derive from

k4A(ω2, λ2)− k2ω2B(ω2, λ2) + ω4C(ω2) = 0 , (2.1)

where λ2 = cos2 ϑ, and three 3rd order polynomials in ω2 given by

A = (ω2 − E2)
(
ω4 − ω2(1 + E2) + λ2E2

)
, (2.2)

B = 2ω6 − 4(1 + E2)ω4 +
[
2(1 + E2)2

+(1 + λ2)E2
]
ω2 − E2(1 + E2)(1 + λ2) , (2.3)

C = (ω2 − 1)(ω2 − 1− E2)2 . (2.4)

We adopted a similar (but subtly different) notation as in standard, dielectric tensor-
based treatments (Stix 1992), which opt to rewrite Eq. (2.1) to a quadratic expression in
the squared refractive index n2 = k2/ω2. Expressions (2.2) and (2.4) instantly reveal the
three cut-off limits at k → 0, as C = 0 for ω2 = 1 (the plasma frequency) or ω2 = 1 +E2

(twice). It also allows the resonance limits, computed from A = 0, to be identified as
ω2 = E2, and the pair of solutions

ω2
± = 1

2

[
1 + E2 ±

√
(1 + E2)2 − 4λ2E2

]
. (2.5)

Note that ω2
− decreases from its parallel value min[1, E2], to become 0 at perpendicular

orientation. At the same time, ω2
+ takes on values between max[1, E2] for parallel

propagation, and increases to 1 + E2 for perpendicular (λ = 0).
Identification of the 5 branches at given wavenumber k is aided as we factor Eq. (2.1)

into

ω4 − ω2(1 + E2 + k2) + k2E2 = 0 , (2.6)

which is the X-branch, usually written as n2 = R [this branch has wave electric field
vector perpendicular to B and k, and represents transverse waves, see Stewart
& Laing (1992)], and the O-branch in

λ2E2k2 + ω2k2(ω2 − 1− E2)− ω2(ω2 − 1)(ω2 − 1− E2) = 0 . (2.7)

The polarization angles for the three O-branch solutions are more intricate,
with varying angle between electric field and k, see e.g. Fig. 7 in Stewart
& Laing (1992). Thus far, our Eqns. (2.6)-(2.7) are rewritten expressions, e.g. found
in Lyutikov (1999) [his Eq. (4.1), or in the extended preprint physics/9807022,
his Eqs. (11)-(12)], or in Stewart & Laing (1992) [their Eq. (15)] where they
appear in terms of n2. Their advantage is that they readily display the limits of purely
parallel λ = 1 or perpendicular λ = 0 propagation, where the five branches are easily
factored. Actually, both Eqns. (2.6)-(2.7) can be factored for arbitrary λ, using Cardano’s
formulae for the latter branch, but we will only need their combined expressions.

In conclusion of this section, note that the factorization of the full dispersion Eq. (2.1)
into the sub-systems (2.6) and (2.7) is a fundamental one. As expanded in the following
section, Eq. (2.6) describes the combined extraordinary electromagnetic (X) and fast
magneto-sonic (F) modes, whereas Eq. (2.7) describes the combined ordinary electro-
magnetic (O), modified electrostatic (M) and Alfvén (A) modes.
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3. All waves in pair plasmas

3.1. Group speed expressions

Novel insight is obtained when we analyze the dispersion diagrams ω(k) for a given pa-
rameter E, and use it to quantify the group speed expressions, valid for all wavenumbers
and angles ϑ. From the X-branch in Eq. (2.6), we find two angle-independent solutions

ω2
X,F = 1

2

[
1 + E2 + k2 ±

√
(1 + E2 + k2)2 − 4k2E2

]
, (3.1)

where the plus sign yields the electromagnetic X branch connecting the cut-off 1 +E2 to
light waves as limk→∞ ω2 = k2. The other angle-independent X-branch, which we label
as ωF, has a minus sign before the square root in Eq. (3.1), and is directly linked to
the fast MHD modes, since limk→0 ω

2/k2 = E2/(1 +E2). At (cyclotron) resonance, this
branch has limk→∞ ω2 = E2. For both branches, it is easy to quantify the phasespeed
and group speed for every value of k, and the latter are

∂ω

∂k |X,F

=
kn̂

2ω

[
1± 1− E2 + k2√

(1 + E2 + k2)2 − 4k2E2

]
, (3.2)

with the plus for the electromagnetic X branch ωX(k), and the minus sign for the fast
branch ωF(k). This is an isotropic circle (sphere) at all wavenumbers, and the ωF one has
vanishing radius ∝ 1/k3 as k →∞, while at small wavenumbers, it retrieves the fast part
±En̂/

√
1 + E2 of the well-known MHD Friedrichs diagram showing group speed for all

angles ϑ. The ωX mode also has a circular group diagram, with radius k/(1 + E2)3/2 at
large wavelengths, while tending to the light circle ∂ω/∂k→ ±n̂ at large k, appropriate
for light waves.

We can use Eq. (2.7) to deduce the governing group speed expression on all three other
branches, which we will label as ωO,M,A, written in a manner that aids direct evaluation
for limits towards small and large wavenumber. We use implicit derivation to ∂/∂k,

noting that ∂k2/∂k = 2k and ∂λ2/∂k = 2λ/k[b̂− λn̂] where b̂ = B/B, and write their
group speed as

∂ω

∂k |O,M,A

=
λkE2

[
b̂− λn̂

]
+ kn̂

(
ω2 − ω2

+

) (
ω2 − ω2

−
)

ω [1 + E2 − 2ω2(2 + E2) + 3ω4 + k2(1 + E2 − 2ω2)]
. (3.3)

This general expression can be used to derive all small and large wavenumber limits.
To do so, we note that Eq. (2.7) can be rewritten in terms of refractive index as n2 =
(ω2 − 1)(ω2 − 1 − E2)/[λ2E2 + ω2(ω2 − 1 − E2)]. From this expression, low frequency
limits render us the Alfvén branch where ω2 = λ2k2E2/(1 + E2), while high frequency
behavior becomes electromagnetic, or ω2 ∝ k2. More precisely, the same expression can
be shown to give limk→∞ ω2 = 1 + k2, for the electromagnetic O-branch.

We now analyse Eq. (3.3) in all relevant limits, and find for the behavior as k → 0
while Alfvénic, the familiar

∂ω

∂k |A,k→0

= sgn(λ)
E√

1 + E2
b̂ , (3.4)

which is the purely pointlike group speed of Alfvén waves, also part of the MHD Friedrichs
diagram. Anticipating that this ωA(k, ϑ) branch will transform to resonant behavior and
will normally connect to ω− (see next section), we find at resonance

∂ω

∂k |A,k→∞
=

λE2
[
b̂− λn̂

]
k(ω2

+ − ω2
−)ω−

. (3.5)
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At the branch to the ω+ resonance, which will be labeled as ωM(k, ϑ) as this will modify
the electrostatic cut-off ωM(k → 0) = 1 , we find a similar expression, namely

∂ω

∂k |M,k→∞
=
−λE2

[
b̂− λn̂

]
k(ω2

+ − ω2
−)ω+

. (3.6)

The behavior for the electromagnetic O-branch going as ω2 = 1 + k2 is to leading order
the expected ∂ω/∂k → ±n̂ at large k. At the remaining two cutoffs, we find extreme
anisotropic behavior. For ωM(k → 0) at the plasma frequency cutoff, we find

∂ω

∂k |ω→1,k→0

= ±k(0, sinϑ) , (3.7)

where we used the freedom to take b̂ = (1, 0) and n̂ = (cosϑ, sinϑ). Eq. (3.7) represents
energy transport purely perpendicular to the magnetic field, in the k−B plane. Finally,
for the other cutoff at 1 + E2 which defines the start of the remaining ωO(k, ϑ) branch,
we get

∂ω

∂k |ω2→1+E2,k→0

=
±k

(1 + E2)3/2
(cosϑ, 0) , (3.8)

Eq. (3.8) represents energy transport purely along the magnetic field. We will show later
the visual confirmation of all these limits, at both small and large wavelengths, but the
actual variation implied by Eq. (3.3) is extremely intricate, especially near k ≈ O(1). We
first turn attention to a judicious labeling of branches.

3.2. Avoided crossings of branches

In this section, we discuss the complete dispersion ω(k) diagrams for varying ϑ ∈
[0, π/2]. At λ = 1 or parallel propagation ϑ = 0, the 3 branches mixed up in Eq. (2.7)
are an ωA Alfvénic branch that overlaps with the fast ωF one (hence ωA(k, ϑ = 0) has
the same cyclotron resonant behavior), an electromagnetic ωO one that is identical to
ωX from Eq. (3.1), and the electrostatic ω2 = 1 mode pair. It does seem that only 3
modes are left, but two are doubly degenerate. Also for this parallel case, when E > 1,
the coincident ωA and ωF branches obviously intersect the electrostatic branch, and this
happens at ω2 = 1, k2 = E2/(E2 − 1). This intersection was already noted, albeit in
approximate form for E � 1 only, in Lyutikov (1999) [preprint version, Eq. (15)]. At
exactly perpendicular propagation, a similarly complete factorization of all 5 wave modes
is easily achieved, since now for λ = 0 the Alfvénic branch becomes marginal ω2

A = 0 and
the two branches remaining in Eq. (2.7) become ω2 = 1 + k2 and ω2 = 1 + E2. Clearly,
the latter two branches also intersect, and this for the values ω2 = 1 + E2, k2 = E2.
Hence, the extreme cases of pure parallel or pure perpendicular propagation are exactly
known, and those are typically used to start the subsequent categorization of plasma
wave modes. However, both cases are rather exceptional, as we demonstrate now.

Indeed, drawing and analyzing the dispersion diagrams for all angles 0 < ϑ < π/2, it
is noted that the ordering of all 5 branches is unaltered for all wavenumbers k, and is
such that ωA < ωF < ωM < ωO < ωX, where we labeled the branches as Alfvénic, Fast,
Modified electrostatic, and both O and X electromagnetic types. At all angles except 0
or π/2, branches do not cross, and can be best ordered according to the way in which
their robust small wavenumber behavior (and their associated group speed appearance)
connects to the large wavenumber behavior. In Fig. 1, we show dispersion diagrams
for 4 representative angles for a case with E = 1.5. This E-value is chosen to
show both avoided crossings mentioned (only one appears when E 6 1), and
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Figure 1. The dispersion diagram showing all 5 ω(k) branches for a pair plasma with E = 1.5.
The four panels differ in angle ϑ between wavevector and magnetic field. An animation of
the variation with ϑ is supplementary material and is the movie DispersionRelation.mp4.
The thin dashed line indicates light speed behavior. Insets for near-parallel or perpendicular
angles ϑ illustrate avoided crossings. Branches are colored black (angle-independent ωX(k)),
blue (angle-independent ωF(k)), cyan (ωO(k, ϑ)), purple (ωM(k, ϑ)), and red (ωA(k, ϑ)). The ωX

branch uses dashes, to better distinguish it from the ωO branch which nearly overlaps.

represents a case where one can not rely on approximations using E � 1.
The second diagram of Fig. 1 (taken at ϑ = π/3) shows clearly how (1) the
angle-dependent ωA(k, ϑ) branch connects the Alfvén group diagram at small
k to the ω− resonance, and (2) the angle-independent ωF(k) branch lies above
ωA in frequency, and connects the Fast circular group speed at small k to the
cyclotron ω = E resonance. Above ωF lies the Modified electrostatic branch which
we indicated with ωM(k, ϑ), which connects the lowest cut-off ω = 1 with the highest
resonance ω+. The remaining ωO,X branches both start at the (coincident) cutoff where
ω =
√

1 + E2, and go off to their light speed behavior at small wavelength (large k). The
fact that this happens for all 0 < ϑ < π/2 should be appreciated as avoided crossings
of branches, which is illustrated in Fig. 1 by drawing the dispersion relation also for two
extremely small deviations from parallel (i.e. ϑ = ε) or perpendicular (i.e. ϑ = π/2 − ε)
orientation, where we took ε = 0.002 for illustration purposes. The avoided crossings are
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only clear when zooming in on the regions of interest, i.e. at the values (
√

1 + E2, E)
(for near-perpendicular) and (1,

√
E2/(E2 − 1)) (near-parallel), and these are shown as

figure insets. The latter, near-parallel, behavior is also discussed in Lyutikov (1999), but
this particular avoided crossing is obviously only relevant for cases where E > 1. In that
sense, the avoided crossing between the ωM (purple branch in Fig. 1) and the ωO branch
(cyan in the figure) at near-perpendicular propagation, is more robust, as it occurs at all
values of E > 0.

The near-parallel avoided crossing becomes a true crossing of branches at exactly
parallel propagation, as then the ωA(k, 0) branch suddenly connects to the ω+ resonance,
which coincides with the cyclotron resonance E at this angle. The near-perpendicular
avoided crossing becomes a true crossing at exactly perpendicular propagation, when
this time the ωM(k, π/2) (purple) branch connects to light waves, while the (cyan) ωO

branch becomes the constant frequency
√

1 + E2, which is the ω+ resonance for this
angle. These avoided crossings are related to the observation that the original dispersion
relation is only quadratic in k2, such that at fixed real frequency (i.e. at every horizontal
intersection through our dispersion diagrams), at most two wave modes can be found.
This observation is at the basis of the CMA diagrams, and is embedded in all theory
regarding cold 2-fluid plasma waves, which labels wave types as fast or slow, L/R or X/O
at fixed frequency. However, this accepted naming convention is confusing, since our Fast
ωF branch then changes label from fast when ωF < 1, to slow between 1 < ωF < E, for
the case displayed in Fig. 1. Moreover, the cold assumption got rid of the MHD slow
mode, which enriches the classification when a warm plasma is considered. Finally, even
the Extraordinary (X) versus Ordinary (O) mode label seems misleading, as the X-branch
is not showing any special behavior: both its modes (ωF and ωX) are angle-independent
and do not show any coupling to other branches, in contrast to all 3 mode pairs ωA,M,O

from the O-branch family.

3.3. Phase and group speed diagrams

We now present the complete phase and group speed diagrams, collecting all infor-
mation of the various wave types for all angles and wavenumbers. Figure 2 shows a
representative phase diagram for the case E = 1.5, earlier shown in dispersion diagram
view in Fig. 1. Animating this diagram for varying wavenumber k shows clearly how
the branch exchange witnessed at exactly parallel or perpendicular orientation occurs
when the phase diagrams of two wave modes suddenly coincide at specific k-values. The
diagram shown is for a k value that exactly demonstrates this coincidence of branches
at perpendicular orientation (along the central vertical in the figure). Exchange of wave
mode types at parallel orientation (along the central horizontal in the figure) already
switched an ωA with an ωM mode (hence the purple dots on the red branch, and the red
dots on the purple branch). It is to be noted that these phase diagrams are different from
the ones usually shown as wave normal surfaces in the CMA view: we plot [ω/kc](ϑ) for
fixed k-value, accounting for all 5 wave modes, textbook treatments plot [ω/kc](ϑ) for
fixed frequency ω, and hence mix information from varying wavenumbers (as horizontal
intersections at fixed ω in dispersion views of Fig. 1 show the k values to change with
angle ϑ). The point to note is that k(ω, ϑ), and Eq. (2.1) allows a maximal 2 modes
at fixed ω, while we emphasize one has exactly 5 modes for every real k. Note that
superluminal phase speeds are encountered for solutions ω(k) above the dashed lines in
Fig. 1, or equivalently outside the dashed circle in Fig. 2. Animated views for Fig. 1
are in the movie entitled DispersionRelation.mp4, and for Fig. 2 in the movie
entitled Phasediagram.mp4.

The group speed diagrams for all 5 wave modes can also be computed for every
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Figure 2. A representative phase diagram of all 5 wave modes for all angles, at fixed wavenumber
k̄ = 1.5. The strict ordering of wave frequencies for all angles 0 < ϑ < π/2 ensures these
diagrams to be nested. At the chosen wavenumber, the modified electrostatic ωM (purple) and
the electromagnetic O branch ωO (cyan) coincide at perpendicular orientation, and for larger
k they will have exchanged label for this orientation. Such an exchange already occurred for
parallel orientation between the red (ωA) and purple (ωM) branch. The dashed circle indicates
the light speed. An animation of this variation with wavenumber is provided as supplementary
material in the movie Phasediagram.mp4.

wavenumber k. These diagrams directly enrich the well-known Friedrich diagrams for
MHD (Goedbloed & Poedts 2004), which visually display the extreme anisotropic wave
behavior of slow, Alfvén and fast modes at large wavelengths, low frequencies. In the
cold pair plasma case, the slow pair is marginal, but Alfvén and fast remain, as in
Eqns. (3.4)-(3.2). Figure 3 shows the complete group diagram for E = 1.5, at
k = 1 and k = 2. The true complexity of the variation with wavenumber can
only be appreciated in animated views (provided as supplementary material
in the movie entitle Groupdiagram.mp4), but they correspond to the formulae
in Eqns. (3.2)-(3.3) [with limits as in Eqns. (3.4)-(3.8)]. The animation shows
the intricate reshaping of the group speed curves, especially near the special
values where branches cross (i.e. at k2 = E2 and at k2 = E2/(E2 − 1) when
E > 1). For all three wave modes ωA, ωM and ωO which demonstrate coupling and
exchange of mode limits at small wavelengths, the energy flow as quantified through these
group diagrams is strongly anisotropic, and a proper visualization of their variation with
wavenumber k requires to pay full attention to sudden variations with angle ϑ, especially
at near-parallel or near-perpendicular orientations. Note that, as physically required, all
group speeds are always found within the light circle. Finally, limit cases can now be fully
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Figure 3. Representative group diagrams showing all 5 wave modes for all angles, at fixed
wavenumbers k̄ = 1 and 2 (left to right). The dashed circle indicates light speed. An animation
of this variation with k̄ is provided as supplementary material in the movie Groupdiagram.mp4.

understood as special instances of these 5 wave mode pairs: the unmagnetized (E = 0)
cold pair plasma leaves ωM = 1 as electrostatic modes, both electromagnetic ωO,X pairs
coincide on ω2 = 1+k2, while Alfvénic and fast branches become marginal. The strongly
magnetized E → ∞ case, moves the electromagnetic waves to infinite frequencies, and
keeps the ωM, ωF and ωA branches.

4. Conclusions

Our treatment of all wave mode pairs in a cold pair plasma provides, for the
first time, a complete categorization of all wave anisotropies inherent in cold
pair plasmas. This is best appreciated from our quantification of the phase
and group speed for all 5 mode pairs, at all wavenumbers and angles (i.e.
our Eqns. (3.2)-(3.3) and the animations provided with Figs. 2-3). Rather
than working in terms of the breaking index n2, our starting point was the
general 12th-order dispersion relation for warm plasmas, containing six mode
pair solutions (e.g. Goedbloed & Poedts 2004), which reduce to 5 nontrivial
ω2 solutions in the cold limit. A quantification of the mode polarizations
should best employ the 6 variables used there to obtain a fully symmetric
matrix representation. A completely similar treatment can be done for cold
electron-ion cases (where two parameters will enter, E and its counterpart
for ions I = Ωi/ωp), or for warm plasmas (where also the thermal speeds of
the species come in). Still, the polynomial form of the dispersion relation
renders computing all six ω2 pairs for warm plasmas fairly trivial, and the
quantification of group speeds along all six ω(k, ϑ) branches becomes possible.
For warm plasmas, avoided crossings between several branches may show
up at intermediate angles, instead of at the extremes of purely parallel or
perpendicular orientations as illustrated here. The slow MHD wave will form the
extra ingredient to categorize all 6 wave modes in warm plasmas, starting from their
ordering in frequency as found at large wavelengths. Avoided crossings will cause more
intricate reorderings of branches, as connectivity to small wavelength limits at resonances
or electromagnetic limits can change with angle ϑ.
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Although our discussion is based on an ideal 2-fluid viewpoint, this forms
the basis of more realistic kinetic treatments which all employ the dielectric
tensor formulation. A useful intermediate step would be to incorporate col-
lisional effects, such as done in Stewart & Laing (1992) or in Goedbloed &
Poedts (2004). This would already allow for wave damping, and in warm plas-
mas, handling pressure anisotropy will open the route to firehose instabilities.
Allowing for relative streaming of both species will break the symmetry of the
forward-backward pairs in the fluid limit, a phenomenon known to introduce
fascinating complexities to the MHD wave part of the spectrum (Goedbloed
et al. 2010, 2019).
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