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Abstract 

This study compares thermal decomposition of pure and transition metal-doped (Fe, Co, Ni, Cu, 

Zn) calcium carbonate samples under ~0.1 mbar of Ar, H2O, and H2 in order to evaluate the 

effects of doping on CO2 release and conversion. 

All samples were synthesized via precipitation methods at room temperature from calcium 

chloride and sodium carbonate precursors, with additional doping of the relevant transition 

metal chloride. Structural and compositional analysis of the as-prepared and calcined materials 

is presented. TM-doping results in an earlier onset of CO2 release as compared to Pure CaCO3 

irrespective of calcination gas. Cu-doping induced the largest temperature reduction. 

Calcination in H2O produces an additional lowering of the release temperature, as compared 

with calcination in Ar, with the Zn-doped sample exhibiting the largest enhancement. During 

calcination in H2, the Ni-, Co- and Fe-doped samples produce a significant enhancement of CO2 

to CO conversion, while the overall conversion by the Cu- and Zn-doped samples remained 

comparable to that of Pure CaCO3. The Ni-doped samples, which produced the highest CO2 

conversion, showed the largest relative enhancement when the calcination gas was changed to 

H2.  

https://doi.org/10.1016/j.jcou.2019.03.006
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1. Introduction 

Combustion of fossil fuels to meet energy demands results in large quantities of CO2 being 

released into the atmosphere, leading to adverse effects on the global climate [1]. In order to 

ensure both a sustainable environment and economy, transitioning from fossil fuels to renewable 

energy sources is necessary. However, given their current scale of usage, fossils fuel will remain 

a substantial component of the energy mix in the near-term [2], [3]. Thus, in light of ambitions of 

limiting the global average surface temperature rise relative to pre-industrial levels, deployment 

of carbon capture processes to counteract industrial emissions may be crucial. CO2 captured from 

industrial plants can be subsequently stored in geological formations or may be used as a 

feedstock for the chemical and other industries. This approach can assist in reducing emission in 

the short-to-medium term, thereby facilitating a smooth transition to a long-term sustainable 

energy system. 

A relatively cost effective and well-established technology for CO2 capture is the Calcium Looping 

(CaL) process [4]–[7] first proposed by Shimizu et al.[8] This cycle uses low cost and abundant 

calcium carbonate (CaCO3) as the base material to capture CO2 in a solid-sorbent cycle [4], [9]. It 

is described by the reversible reaction: 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠) + 𝐶𝐶𝐶𝐶2(𝑔𝑔)  ⇔ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 (𝑠𝑠) ∆𝐻𝐻298𝐾𝐾 = ±178𝐾𝐾𝐾𝐾/𝑚𝑚𝑚𝑚𝑚𝑚  (1) 

In the forward reaction, referred to as carbonation, CO2 from flue gas reacts with CaO. Although 

this is an exothermic reaction, it is typically performed at a temperature in the 600-650°C range 

in order to accelerate the reaction kinetics [4], [8]. The reverse reaction to yield a nearly pure CO2 

stream, referred to as calcination, is typically performed in the temperature range 850-950°C [5], 

[6], [10]. Calcium looping has potential to contribute to de-carbonization of industrial plants (gas- 

https://doi.org/10.1016/j.jcou.2019.03.006
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and coal-fired power plants, biomass power plants, and cement and steel manufacturers) [11]–

[14]. The main drawbacks of the process are the energy penalties associated with the elevated 

temperature required for both the capture and the release components of the cycle, and a 

decreasing CO2 carrying-capacity over repeated adsorption-desorption cycles due to thermally-

induced sintering and pore closure of the material [4], [15]. 

Improving the performance of the CaL cycle has become an important research goal over recent 

decades. The selective addition of water (steam) at different points in the cycle has been 

demonstrated to have a beneficial effect on the overall performance [16], [17]. For instance, 

Manovic et al. [18] evaluated carbonation of CaO obtained through calcination of limestones from 

different geographical origins in 20% steam and improved the cyclability of CaO for CO2 

absorption. Lin et al. [19] reported an increase of 30% in adsorption capacity in 60% steam at 

920°C relative to adsorption in pure CO2 at 1020°C. 

An interesting observation, first reported by Reller et al. [20], is that thermal decomposition of 

CaCO3 in 1.0 bar of H2 resulted in both a reduction in the decomposition temperature and in the 

direct production of CO. This and a follow-up report (Padeste et al. [21]) also demonstrated that 

the inclusion of transition metal (TM) additives in calcium carbonate could either enhance the 

selectivity toward CO production (Fe, Cu, Ag), or result in direct CH4 formation with high selectivity 

(Ni, Ru, Rh). The fact that H2 is consumed in this process is obviously an issue from any application 

perspective since it is a valuable energy carrier in its own right. Additionally, it is not readily 

available in large volumes from sustainable sources. However, direct conversion of CO2 during 

the calcination step is an interesting prospect from the perspective of CO2 utilization. The 

https://doi.org/10.1016/j.jcou.2019.03.006
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simultaneous lowering of the carbonate decomposition temperature is highly desirable since it 

reduces the associated energy penalty and potentially reduces the rate of sintering. 

The reports on CaCO3 decomposition under hydrogen stimulated us to initiate research on the 

effects of decomposing CaCO3 while exposing the material to a water plasma. The rationale is that 

the reported positive effects of water addition to the CaL cycle might be further enhanced by 

plasma excitation of the water molecules. Furthermore, since plasma formation can provide “on-

demand” in-situ production of H2, the prospect of inducing direct conversion similar to that 

observed when decomposing under pure H2 arises. From an application perspective, H2 would in 

this case be derived from H2O using renewable electrical energy as an input. As a first step in this 

on-going research, the objective of the current paper is to present an evaluation of the effects 

that transition metal dopants (Fe, Co, Ni, Cu, and Zn) have on the reactivity and thermal 

decomposition of CaCO3. Plasma exposures do not form part of this paper, but the decomposition 

reactor and the typical decomposition conditions used (~0.1 mbar Ar, H2O, and H2) are 

comparable to the conditions used during our plasma exposures. Although this paper is intended 

to provide a reference point for subsequent work, the effects of TM-doping are interesting in their 

own right. Most notably, the TM additives induce earlier release of CO2 relative to the pure CaCO3 

irrespective of the chemical nature of the calcining environment. The CO2 conversion 

performance of the different dopants in the presence of H2 is evaluated. 

 

https://doi.org/10.1016/j.jcou.2019.03.006
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2. Experimental Methods 

2.1. Sample Synthesis 

All CaCO3 samples were prepared in-house by precipitation methods. Precipitation of inorganic 

salt from a homogeneous solution of two or more soluble salts is one of the trivial methods by 

which ions in a liquid solution transforms to crystalline particles. Analytical grade commercial 

precursors CaCl2•2H2O, Na2CO3, CoCl2•6H2O; FeCl3•6H2O; NiCl2•6H2O; CuCl2•2H2O; and ZnCl2 

(Sigma-Aldrich, Germany) were used as the synthesis precursors. Pure CaCO3 was prepared by 

mixing 0.8 M CaCl2•2H2O solution and 0.8 M Na2CO3 solution [22] at room temperature (20-23°C). 

For the synthesis of the Co, Ni, and Fe-doped samples, the relevant TM chloride amounting to 

2.5wt.% of the CaCl2•2H2O was added to the initial chloride solution (see Table 1 for an overview 

of synthesis solution compositions). To initiate precipitation, the chloride-containing solution was 

poured with continuous stirring into a beaker containing the carbonate solution. The inception of 

carbonate precipitation was immediate in all cases. The mixed solution was stirred for 10-

15 minutes to stimulated complete precipitation. 

Attempts to precipitate the Cu- and Zn-doped carbonates from solution in a similar manner were 

unsuccessful. Precipitation was not observed even after prolonged stirring and increasing the 

temperature to 60°C in an effort to stimulate particle growth. UV-Visible spectroscopy tests 

performed after 2 hours to detect evidence of particle growth exhibited no absorbance peaks. 

The presence of foreign ions or other substances can change the precipitation rate of CaCO3 [23] 

and in the case of Zn and Cu the effect is inhibitive. Trace amounts of zinc(II) and copper(II) are 

used to control CaCO3 scale deposition in water supply pipes and heat exchangers [24]. 

Zeppenfeld reported that the presence of Cu and Zn species inhibit calcite growth by blocking 

https://doi.org/10.1016/j.jcou.2019.03.006
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active growth sites [24]. As a consequence, the Cu- and Zn-doped CaCO3 samples were prepared 

by fast mixing of separately prepared pure TM- and pure Ca-carbonate precipitation solutions. 

Table 2 gives an overview of the precursor solutions used to synthesize these samples. The two 

carbonate solutions were combined within 10 seconds of their individual mixing in order to 

minimize separate growth of CaCO3 and TMCO3 particles. The combined carbonate solutions were 

stirred for 30 minutes to stimulate complete precipitation. 

Following precipitation, all solutions were filtered through filter paper (Whatman) with a pore 

size of 25 µm and the solids were washed repeatedly with deionized-water. The samples were 

then dried in an oven for several hours at 65-150°C. 

 

Table 1: Molar concentrations (M) and volume of di-water (ml) of the precursor solutions Pure, Fe-, Co- and Ni-doped CaCO3 
synthesis. 

 

Table 2: Molar concentrations (M) and volume of di-water (ml) of the precursor solutions Cu- and Zn-doped CaCO3 synthesis. 

CaCO3 
sample 

Chloride solutions 
Carbonate solutions 

Na2CO3 
TM:Ca 

molar ratio 
CaCl2.2H2O TM chloride 

Pure 0.8M [250ml] - 0.8M [250ml] - 

Fe-doped 0.81M [150ml] FeCl3•6H2O - 0.08M [25ml] 0.83M [150ml] 0.014 

Co-doped 0.8M [150ml] CoCl2•6H2O - 0.08M [25ml] 0.83M [150ml] 0.016 

Ni-doped 1.22M [200ml] NiCl2•6H2O - 0.08M [50ml] 1.25M [200ml] 0.015 

CaCO3  
Sample 

Calcium carbonate solutions TM carbonate solutions 
TM:Ca  

molar ratio 
CaCl2.2H2O Na2CO3 TM chloride Na2CO3 

Cu-doped 0.73M [100ml] 0.72M [100ml] CuCl2•2H2O - 0.075M [25ml] 0.1 M [25ml] 0.022 

Zn-doped 0.97M [150ml] 0.96M [150ml] ZnCl2 - 0.16M [25ml] 0.21M [25ml] 0.027 

https://doi.org/10.1016/j.jcou.2019.03.006
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2.2. Experimental setup 

Thermal decomposition of the carbonate samples was performed in a vacuum vessel as depicted 

in Figure 1. It consists of three sections with different operating pressures. Section 1 is the sample 

compartment (base pressure ~10-4 mbar; working pressures up to ~10 mbar) containing a 

commercial resistive heating stage with a 25.4 mm diameter silicon carbide heating element 

(UHV-design). The sample is held above the heating element in a circular tray made of Titanium-

Zirconium-Molybdenum (TZM) alloy. Ar or H2 could be introduced to this section by means of a 

flow controller. Water vapour was introduced via a needle valve from a stainless steel reservoir 

to achieve the desired target pressure (typically ~0.1 mbar). The deionized water in this reservoir 

was degassed via several freeze-pump-thaw cycles before use. To maintain a constant pressure 

of water vapour from the reservoir, it was stabilized at 26°C using a water bath (PolyScience). 

 Section 2 has a base pressure of ~10-8 mbar. It is separated from the sample section by a 200 μm 

aperture and could be fully isolated by means of a pneumatic valve. This section acts as a gas 

buffer chamber between Sections 1 and 3. Section 3 (base pressure ~10-9 mbar) is separated from 

Section 2 by a 2 mm aperture. It contains a Quadrupole Mass Spectrometer (QMS Hiden Analytical 

Figure 1: Experimental setup used for calcination of CaCO3 samples. The graph illustrates a measured CO2 release 
profile in response to an applied heating profile. 

https://doi.org/10.1016/j.jcou.2019.03.006
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HALO). When the pneumatic valve is open, the ionizer of the QMS is in direct line-of-sight of 

Section 1 via the two apertures. The QMS is used to monitor the time evolution of selected gases 

(both introduced and evolved from the sample) during decomposition. In the current work the 

most relevant masses tracked correspond to those of H2, H2O, CO, CO2 and Ar. 

2.3. Calcination and Characterization 

Typically, 150±1.0 mg of synthesized sample was used in each calcination test. Decompositions 

were performed by ramping the temperature linearly to 1200 K at a rate of 1 K/s followed by 

holding at 1200 K for 3 minutes. The temperature is measured by a K-type thermocouple mounted 

in a fixed position near the sample tray. It is controlled by a custom-built controller with a PID 

feedback system. As-prepared and calcined samples were characterized by: 

X-ray diffraction (XRD): (D8 advance Eco, Bruker, Karlsruhe, Germany) Cu-Kα radiation source 

(𝜆𝜆=1.5406 Å) at 40 keV and 25 mA was used. Diffraction patterns were collected in Bragg-

Brentano θ/2θ geometry in the range of 20°≤2θ≤60°, with scanning step of 0.02°. Qualitative 

identification of phases was performed using Match! software (Crystal Impact, Bonn, Germany) 

and quantitative analysis (amount of different phases) by running Rietveld refinements from 

within Match!, with the actual calculations being automatically performed using the program 

FullProf [25] in the background. Prior to phase identification, Kα2 stripping correction and peak 

fitting to a pseudo-Voigt function was performed. To identify the phase of the samples, 

experimental data profile fitting calculations were performed using the peak data as a parameter 

in constrained least-squares refinement. Finally, the entries from Crystallography Open Database 

(COD) matching the profile were selected. 

https://doi.org/10.1016/j.jcou.2019.03.006
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Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): A VERTEX 70 FTIR 

Spectrometer (Bruker, Karlsruhe, Germany) equipped with Praying Mantis DRIFTS cell (Harrick 

Scientific Corp.) reaction chamber with ZnSe windows was used. The spectrometer has a liquid 

nitrogen cooled Hg-Cd-Te (MCT) detector. The sample chamber and interferometer were purged 

with nitrogen to suppress the contribution from atmospheric water vapour and CO2. The reaction 

chamber “dome” was pumped to remove CO2 and H2O, since it is isolated from the nitrogen 

purging. The DRIFTS technique offers the potential for non-destructive, simultaneous and real-

time measurements of gases and solids. Spectra were collected at room temperature with a 

resolution of 4 cm-1 in the range of 6000-400 cm-1. Each spectrum was averaged over 120 scans. 

The IR spectra were recorded and stored using OPUS 7.5.18 (Bruker Optics Inc.) spectroscopic 

software. Prior to measurements, a background spectrum was collected on KBr powder, and all 

spectra were recorded against this background.  

X-Ray Photoelectron Spectroscopy (XPS): A K-Alpha (Thermo Scientific) with Al Kα monochromatic 

1486.6 eV X-ray source was used. The measurements were performed on pressed pellets of 2 cm 

in diameter and quantification was performed by CasaXPS commercial software in which the 2p 

peaks of TMs are quantified relative to Ca from the same sample. 

  

https://doi.org/10.1016/j.jcou.2019.03.006
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3. Results and Discussion 

3.1. As-prepared samples 

Calcium carbonate exists as a various  polymorphs: amorphous calcium carbonate (ACC), calcium 

carbonate hexahydrate, calcium carbonate monohydrate, vaterite, aragonite, and calcite [26]–

[30]. Of these, calcite is thermodynamically the most stable [31], [32]. Vaterite and aragonite are 

the next most stable phases [33], [34]. Calcite, aragonite, and vaterite have a different 

arrangement of CO3
2- groups, and atoms producing trigonal, orthorhombic, and hexagonal crystal 

structures, respectively [32], [33], [35], [36]. 

Figure 2 shows XRD patterns measured from the as-prepared samples used in this study. The 

patterns reveal the presence of both calcite [as compared with Markgraf et al. [37] (space group 

R-3c, I/IC=3.7)], and vaterite [as compared with Le bail et al. [33] (space group P63/mmc, 

I/IC=1.59)] polymorphs. No evidence of aragonite phase was observed in these samples. 

Precipitation of aragonite typically requires conditions (temperature; mole fraction) different 

from those used in the current preparation procedures. Chang et al.[38] and Padeste et al.[21] 

reported precipitation of the aragonite phase at synthesis temperatures of 60-80°C. An 

experimental study by Wada et al. [39] on the effects of divalent cations (Fe2+, Ni2+, Co2+, Zn2+ and 

Cu2+) upon nucleation, and growth reported that the formation of aragonite phase is favoured by 

higher molar ratios of divalent cations. Even though the Cu- and Zn-doped samples were prepared 

by mixing of the separately prepared individual carbonate solutions, there is no indication of 

https://doi.org/10.1016/j.jcou.2019.03.006
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peaks due CuCO3 or ZnCO3 in the XRD patterns. Given the low fractional content of TMs in the 

precursor solutions, it is unlikely that pure TM carbonate would be formed in quantities sufficient 

to rise above the limit-of-detection. 

The diffraction patterns were imported to the Match! software to obtain peaks parameters 

through profile fitting as outlined in the experimental section. Prior to crystallite size calculation, 

an instrumental standard was created in order to account for and separate the contribution of 

instrumental peak broadening to the measured peaks. For this the powder diffraction pattern of 

a corundum (a crystalline form of aluminium oxide) sample was used. The software uses the 

Scherrer formula [40] (Eq. 2) to calculate the actual crystallite size of selected peaks of interest. 

𝐿𝐿 =  
𝐾𝐾𝜆𝜆

𝛽𝛽(2𝜃𝜃)𝐶𝐶𝑚𝑚𝑠𝑠(𝜃𝜃)  (2) 

Where L is crystallite sizes, K is Scherrer constant (0.94), 𝜆𝜆 is the wavelength (Cu-Kα) (1.5406 Å), 

β is broadening of the diffraction line at half of the maximum intensity, and θ is the Bragg angle. 

Therefore, βsample = (FWHM)experimental -(FWHM)instrument was used by the software. The overall 

Figure 2: XRD patterns of as-prepared CaCO3 samples: a) Pure, Fe-, and Co-doped, b) Zn-, Cu-, and Ni-doped. 
Vaterite and calcite peaks are indicated by * and +, respectively. 
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average crystallite size was estimated based on the full XRD pattern. The calcite and vaterite 

average crystallite size were obtained by selecting the respective phase peaks. The resultant 

determination of the percentage of each phase and of their average crystallite sizes are presented 

in Table 3. 

Vaterite was the dominant phase in the samples co-precipitated with Zn, Cu and Ni, with the Ni-

doped sample being almost entirely vaterite. The two phases were approximately equal in the 

Co-doped sample, while pure and Fe-doped CaCO3 had slightly higher fractions of calcite phase. 

The average size of calcite crystallites is significantly larger in the samples that are majority calcite 

(pure and Fe-doped). The average vaterite crystal size does not appear to be dependent on the 

vaterite crystalline fraction. 

Table 3: Percentage and crystallite sizes of calcite and vaterite phases present in the as-prepared samples 
based upon analysis of XRD spectra. 

 

DRIFTS spectra of the synthesized samples obtained following precipitation and drying are depicted in 

Figure 3. The measurements confirm the presence of the calcite and vaterite phases as indicated 

by the XRD patterns. The main vibrational modes observed in the low wavenumber region are 

assigned as indicated in Table 4. The ν1, ν2, and ν3 values in this work agree to within ±2 cm-1 of 

the values reported in the cited references. Nakamoto et al. [41] reports that the mid-infrared 

spectrum of free carbonate ion has four normal vibrational modes namely, symmetric C-O 

Precipitated 
samples 

Average 
crystallite size 

(nm) 

Calcite phase Vaterite phase 

% Average crystallite 
size (nm) % Average crystallite 

size (nm) 
pure 95.2 53.5 129.6 46.5 63.7 

Fe-doped 116.3 56.3 190.5 43.7 33.8 
Co-doped 59.3 48.4 68.7 51.6 50.0 
Zn-doped 41.1 27.0 54.5 73.0 35.5 
Cu-doped 55.9 23.7 68.3 76.3 44.4 
Ni-doped 57.5 6.2 63.6 93.8 54.9 

https://doi.org/10.1016/j.jcou.2019.03.006
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stretching mode (ν1), CO3 out-of-plane stretching mode (ν2), doubly generate asymmetric C=O 

stretching mode (ν3), and doubly degenerate OCO in-plane bending mode (ν4). In calcite, the ν1 is 

infrared inactive. 

Table 4: Observed vibrational frequencies (cm-1) and associated crystalline phases of CaCO3. 

vibrational modes Wavenumber (cm-1) Phases References 

ν1 ~1088-1090 Vaterite [27], [42] 

ν2 
~850 Calcite; Vaterite [26], [27], [36] 
~877 Calcite; Vaterite [28], [43], [44] 

ν4 
~714 Calcite [27], [28], [31], [42] 
~746-750 Vaterite [27], [31], [42] 

  

Figure 3: DRIFTS spectra of as-prepared CaCO3 samples: a) pure, Fe- and Co-doped. b) Zn-, Cu- and Ni-
doped. 
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The extremely strong and broad peak observed from 1700-1400 cm-1 is C=O asymmetric 

stretching mode (ν3) of calcite and vaterite; the values are subject to some uncertainty [27]. 

Flemming et al. [42] reported contribution due to the superposition of different modes (ν1 and 

ν4) with lattice modes in this frequency range. The absorption at 1797 cm-1 and 1838 cm-1 are 

overtones band (ν4+ν1). The bands around ~2985-2875 cm-1 and 2505-2513 cm-1 are harmonic 

vibrations of C-O bonds [44]. The broad bands in the range of 3700-3000 cm-1 are attributed to 

O-H symmetric stretching and asymmetric stretching of H-O-H from water molecule [43], [45], 

[46]. The as-prepared Ni-doped sample is noteworthy as being the sole sample that did not exhibit 

a significant absorbance due to incorporated water. 

Some of the as-prepared Pure sample was incrementally heated in a tube furnace to set 

temperatures in the range from 100-400⁰C for 1 hour in order to induces the transformation of 

vaterite to calcite. Vaterite peaks remained evident in the XRD patterns of samples that were 

Figure 4: Phase transition of Pure sample from mixed vaterite+calcite to calcite. a) XRD of a sample before (top) and 
after phase transition (bottom); b) DRIFTS spectra of the sample before (top) and after (bottom) phase transition. 
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heated up to 325°C. Complete phase transition to calcite was observed in samples after heating 

to at least 350°C, as illustrated in Figure 4a. The transition temperature observed for our sample 

is consistent with that of Andrew and Brown, who reported the vaterite-to-calcite phase 

transition in the range 350-400°C [30]. In Figure 4b, the DRIFTS spectrum of a sample after heating 

above 350 °C no longer exhibits the vaterite peaks at ~748 cm-1 and ~1090 cm-1. Heating also 

results in removal of the OH vibration band due to adsorbed water molecules (~3700-3000 cm-1). 

Figures 5 and 6 show SEM images of Pure and TM-doped CaCO3 samples. Figure 5a and b shows 

as-prepared Pure and Cu-doped CaCO3 samples after drying at 100°C, respectively. Figure 6a 

shows Pure CaCO3 after drying at 350°C. The effect of the temperature-induced phase transition 

from mixed calcite+vaterite to pure calcite phase can be seen by comparing Figure 5a (before) 

and Figure 6a (after). The transition is accompanied by a pronounced morphological change with 

agglomeration, neck formation and the appearance a smoother and more closed surface.   

Figures 6b-d show Co-, Fe- and Ni-doped samples after drying at 100-150°C. The presence of TM 

doping influences the structure and morphology of the precipitated particles. Cu-doping (Figure 

Figure 5: SEM micrograph of as-prepared CaCO3 samples: a) Pure dried at 100°C, b) Cu-doped dried at 
100°C 
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5b) appears to increase the occurrence of cubic structures. The Co-doped sample (Figure 6b) 

exhibits evidence of a layered growth mechanism and a micro-structuring of the more spherical 

particles. Morphological modification is observed in a number of published works [47]–[49] which 

suggest that the incorporation of foreign ions during precipitation processes changes the 

characteristics of different crystallographic phases. 

 

3.2. Sample calcination 

Thermal decomposition of ~150 mg of synthesized samples was carried out in the reactor shown 

in Figure 1 under argon, water vapour and hydrogen gas flows. In all cases the initial pressure in 

the sample region was ~0.1 mbar. Freshly introduced samples were heated to 1200 K at a rate of 

Figure 6: SEM micrograph of as-prepared CaCO3 samples: a) Pure dried at 350°C, b) Co-doped dried at 
150°C, c) Fe-doped dried at 150°C, d) Ni-doped dried at 100°C. 
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1 K/s and then held at this temperature for 180 s. During calcination heat transfer from the heater   

to the CaCO3 surface through the sample holder initiates CO2 release leaving a porous layer of 

CaO behind. The reaction interface of CaO/CaCO3 moves toward the centre of the particles while 

CO2 leave the reaction zone [50]. Heat flow to and CO2 diffusion from the reaction zone 

respectively determine the calcination progress [34], [51]. These successive processes result in 

decomposition of carbonates and formation of CaO particles. 

3.2.1. Calcination in argon: Calcination in ~0.1 mbar Ar is a representative case for an 

unreactive gas. In this case, differences between the decomposition profiles of the various 

samples can be attributed exclusively to the effects of the TM-additives. Figure 7a shows the CO2 

signal measured during decomposition. In this and subsequent figures, evolved gases are 

typically plotted against both time (bottom axis) and temperature (top axis). The temperature 

values used are those recorded from the K-type thermocouple, mounted near the sample tray, 

that is used to control the heating profile as outlined in the Experimental section. 

Figure 7: Pure and TM-doped CaCO3 during calcination in ~0.1 mbar Ar atmosphere: a) CO2 released, b) 
incorporated H2O released from each sample. The shaded regions indicate the temperature plateau of 1200 K. 
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In all cases the CO2 evolution increases with temperature, passes through a peak before the 

maximum sample temperature is reached and then decreases. The decrease in CO2 evolution 

while the temperature is still increasing is indicative of the point at which the sample starts to 

exhibit depletion of CO2. At this point the combination of remaining CO2 content, sample 

structure, and CO2 diffusion is no longer sufficient to maintain an increasing evolution with 

increasing temperature. The rate of decrease during the plateau phase (1200-1380 s) and the 

CO2 level when heating power is removed (time=1380s) reflect the release rate and final level of 

depletion of the various samples. Thus, the pure CaCO3 retains the highest level of CO2 evolution 

at the completion of the thermal cycle, implying lower fractional conversion to oxide as 

compared to the TM-doped samples. The Cu-doped sample exhibits the highest conversion to 

CaO at the end of the heating cycle. The other TM-doped samples are clustered at a roughly 

equivalent intermediate level.   

In the case of some of the TM-doped samples there is a small evolution of CO2 at somewhat lower 

temperature prior to the onset of the main CO2 desorption peak (650-800 K). This was most 

evident in the case of the Cu- and Zn-doped samples. It is attributed to decomposition of small 

fractions of pure TM carbonates within these samples. In both cases this early release 

represented ~1% of the total CO2 released during the thermal cycle. As outlined above, the Cu- 

and Zn-doped samples were prepared by mixing of separately prepared carbonate precipitation 

solutions corresponding to pure CaCO3 and the relevant TMCO3. Consequently, crystallites of the 

pure TM carbonate have more opportunity to form in the case of these samples. This release was 

the only direct experimental indication of the possible presence of pure TMCO3 phases. 
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Comparing the traces shown in Figure 7a, the addition of TM dopants aids the release of CO2 in 

all cases. This is evident both from the earlier onset of desorption and from the lowering of the 

peak-evolution temperature. In general, the order of enhancement is Cu>Zn>Co>Ni>Fe>Pure, 

although this varies for specific indicators. For instance, Zn-doped CaCO3 shows the earliest onset 

of the main CO2 desorption peak, but it is subsequently overtaken by the Cu-doped sample, which 

exhibits a faster rate of release with increasing temperature. The CO2 release from the Fe-doped 

sample is the closest to that of pure CaCO3. The main difference is that at higher temperature 

(>1000 K) the doped sample is better able to sustain an increasing rate of CO2 evolution with 

increasing temperature. 

Figure 7b shows high temperature evolution of water from the different samples during the 

thermal cycle. The samples exhibit different levels of hydration, with the Cu- and Zn-doped 

samples evolving the highest amount. The fact that the Cu- and Zn-doped samples had the highest 

water-content may also be related to the different preparation method required to precipitate 

these samples. The Ni-doped sample is notable for not releasing a significant amount of water 

during the heating cycle. This is consistent with the infra-red spectrum shown in Figure 3, in which 

the Ni sample does not exhibit significant OH-related absorption in the 3600-3200 cm-1 region. 

The Pure sample released a comparatively small amount of water in the 400-600 K range. 

Compared to that sample, the release from the TM-doped samples is generally larger and at a 

higher temperature. 

The earlier and more efficient CO2 release profiles exhibited by all TM-doped samples suggests 

that the doping promotes a more open material structure as compared with the pure sample. 

Incorporated TM dopants may act to destabilize the carbonate lattice. A study conducted by 
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Reeder et al. [52] indicates that divalent transition metal ions occupy six-fold coordinated 

octahedral sites in the structure of carbonate solids. Trace concentration of divalent Co and Zn in 

calcite analysed by X-ray absorption fine structure (XAFS) confirmed their substitution in the 

sixfold coordinated Ca site triggering local distortion [52]. A complete contraction of the structure 

around Co2+ and Zn2+ was observed. The incorporation of transition metals into calcium carbonate 

plays an important role in affecting both thermodynamics and kinetics [49]. 

3.2.2. Calcination in water vapour: Calcination in H2O is also a non-reactive system in terms 

of CaCO3, although reaction with CaO to form Ca(OH)2 is favoured at lower temperatures [53]. 

Profiles of CO2 released from the samples upon calcination in ~0.1 mbar water vapour are plotted 

in Figure 8. In all cases decomposition under water vapour exhibits improvement relative to 

decomposition under Ar. In the case of the TM-doped samples, the onset of CO2 release was ~50 K 

lower as compared with release in Ar. The effect of water vapour is less pronounced in the case 

of the pure CaCO3 sample. The initial onset and subsequent temperature-dependent release rate 

from pure CaCO3 in water vapour is identical to that in Ar. However, once the temperature 

exceeds ~960 K the rate of release under water vapour exceeds that under Ar. At ~1025 K there 

Figure 8: Instantaneous CO2 released from Pure and TM-doped CaCO3 calcined at 1200 K in 
~0.1 mbar water vapour. The shaded region indicates the temperature plateau of 1200 K. 
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is an interruption with a small decrease in the rate of CO2 release after which the rate of release 

increases again. Hence the interruption is not the result of the onset of the CO2-depletion phase. 

It may be due to a shift to a diffusion-limited release rate from the sample. Such a switch is not 

evident during decomposition under Ar, suggesting that its appearance is due to a water-induced 

acceleration of CO2 release during the early phase of decomposition is occurring. None of the TM-

doped samples exhibit a similar transition during thermal composition. This indicates that the TM 

doping facilitates CO2 release over the entire thermal cycle, including enhancing release during 

the diffusion-limited phase. 

Water is known to have a beneficial influence on the calcination of CaCO3 and on the CaL cycle 

overall. Mclntosh et al. [54] reported the presence of water vapour during calcination competes 

with CO2 for active sites and improve the reaction rate. Similarly Wang et al.[55] studied the 

effects of water vapour and CO2 on the rates of calcite decomposition by using dynamic X-ray 

diffraction (DXRD) and claimed absorption of water on the active sites (CaCO3*=CaO.CO2) increase 

decomposition rate by weakening the bond between CaO and CO2. The effect increases with 

increasing pressure, but was essentially saturated above ~50 mbar. 

3.2.3. Calcination in hydrogen: As first reported by Reller et al. [20] and confirmed by 

subsequent studies [21], [56], decomposition of (TM-doped) CaCO3 in H2 results in the formation 

of CO and/or CH4. The studies indicate good selectivity for methane (Ni, Co) or carbon monoxide 

(Fe, Cu) production. In addition, a reduction in decomposition temperature is reported. We 

performed calcination in ~0.1 mbar of H2 as a comparative benchmark of the reactivity of our 

sample. Calcination in H2 was observed to produce H2O and CO from the reaction of H2 and CO2 

as shown in Figure 9a and b. The formation of CH4 was not observed from our samples under the 
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current conditions. This is attributed to the low working pressure used, which is not sufficient to 

allow significant production of CH4 and thus favours CO formation. CH4 formation consistent with 

the earlier reports has been observed from our samples, most notably from the Ni- and Co-doped 

samples, during thermo-gravimetric analysis under higher partial pressures (~600 mbar) of 

hydrogen (measurements not shown). 

The CO traces shown in Figure 9a have been corrected to remove the contribution from cracking 

of CO2 in the mass spectrometer ionizer. All samples, including the pure carbonate, produced CO 

to some extent. In terms of promoting conversion under the current conditions, Ni-doping was 

by far the most effective, followed by Co. The effectiveness of production of CO follows the order 

Ni>Co>Fe. In the case of H2O traces shown in Figure 9b some of the measured traces have a 

double peak structure.  The lower temperature peaks seen in the 600-900 K region are due to 

Figure 9: Instantaneous gases evolved from Pure and TM-doped CaCO3 during calcination in ~0.1 mbar 
H2. a) CO produced, b) H2O produced from the reaction of H2 and CO2, c) total CO2 released. The shaded 

regions indicate the temperature plateau of 1200 K. 
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direct water release from the samples. These H2O desorption peaks are equivalent to those 

shown in Figure 7b for calcination in Ar. The higher temperature water peak is the product of the 

reaction of H2 and CO2. 

Figure 9c shows the total CO2 released from the different samples as a function of time 

(temperature). These traces are obtained by adding the measured CO and CO2 traces after 

accounting for the contribution of CO2 cracking in the QMS ionizer to the CO response and after 

correcting for the measured difference in relative sensitivity of the CO and CO2 mass spectrometer 

response. The release profiles measured from Cu, Zn, Ni, and Co are notable more similar than 

was the case for calcination under Ar or H2O. Release from the Fe-doped sample is delayed 

relative to the other TM-doped samples, but earlier than from the Pure sample. This difference is 

more clear-cut than was the case for calcination under Ar and H2O where there was greater 

similarity between the Pure and Fe-doped samples. 

Various studies [20], [21], [57], [58] illustrate the potential of transition metals to act as 

reduction/hydrogenation catalysts. Accordingly, transition metals mixed in the samples clearly 

showed their role as internal catalysts during calcination in a hydrogen atmosphere. Thermal 

decomposition of metal carbonates at high pressures of hydrogen is complex. As illustrated by 

Reller et al. [32], the solid products formed can be metal oxides, mixtures of metal oxides with 

different oxidation states or elemental transition metals in which the overall reaction could can 

be written as: 

 𝑀𝑀𝐶𝐶𝐶𝐶3(𝑠𝑠) + (𝑥𝑥 + 𝑦𝑦 + 4𝑧𝑧)𝐻𝐻2(𝑔𝑔)

⟶𝑀𝑀𝐶𝐶1−𝑥𝑥(𝑠𝑠) + (1 − 𝑦𝑦 − 𝑧𝑧)𝐶𝐶𝐶𝐶2(𝑔𝑔) + 𝑦𝑦𝐶𝐶𝐶𝐶(𝑔𝑔) + 𝑧𝑧𝐶𝐶𝐻𝐻4(𝑔𝑔) + (𝑥𝑥 + 𝑦𝑦 + 2𝑧𝑧)𝐻𝐻2𝐶𝐶 

(3) 

Since CH4 is not formed in the current study, z=0 and the equation simplifies to: 

https://doi.org/10.1016/j.jcou.2019.03.006
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𝑀𝑀𝐶𝐶𝐶𝐶3(𝑠𝑠)  + (𝑥𝑥 + 𝑦𝑦)𝐻𝐻2(𝑔𝑔) ⟶𝑀𝑀𝐶𝐶1−𝑥𝑥(𝑠𝑠)  + (1 − 𝑦𝑦)𝐶𝐶𝐶𝐶2(𝑔𝑔) + 𝑦𝑦𝐶𝐶𝐶𝐶(𝑔𝑔) + (𝑥𝑥 + 𝑦𝑦)𝐻𝐻2𝐶𝐶 (4) 

This formula has two extrema: x=0 represents the formation of metal oxide: 

𝑀𝑀𝐶𝐶𝐶𝐶3(𝑠𝑠)  + 𝑦𝑦𝐻𝐻2(𝑔𝑔) ⟶𝑀𝑀𝐶𝐶(𝑠𝑠)  + (1− 𝑦𝑦)𝐶𝐶𝐶𝐶2(𝑔𝑔) + 𝑦𝑦𝐶𝐶𝐶𝐶(𝑔𝑔) + 𝑦𝑦𝐻𝐻2𝐶𝐶 (5) 

and x=1 represent the formation of atomic metal: 

𝑀𝑀𝐶𝐶𝐶𝐶3(𝑠𝑠)  + (1 + 𝑦𝑦)𝐻𝐻2(𝑔𝑔) ⟶𝑀𝑀(𝑠𝑠)  + (1 − 𝑦𝑦)𝐶𝐶𝐶𝐶2(𝑔𝑔) + 𝑦𝑦𝐶𝐶𝐶𝐶(𝑔𝑔) + (1 + 𝑦𝑦)𝐻𝐻2𝐶𝐶 (6) 

Reaction 5 can be followed by a direct reduction: 

𝑀𝑀𝐶𝐶(𝑠𝑠) +𝐻𝐻2(𝑔𝑔) ⟶𝑀𝑀(𝑠𝑠) + 𝐻𝐻2𝐶𝐶 (7) 

Reactions 5 and 7 combined leads to the same net outcome as Reaction 6. The oxide reduction in 

Reactions 6 and 7 result in more H2O than CO formation. If Reaction 5 occurs without subsequent 

reduction, then the two species are produced in equal amounts.  

Figure 10 shows CO:H2O production ratios from the pure and TM-doped CaCO3 samples. The CO 

intensity was corrected for the contribution from cracking in the QMS. In the case of H2O, the 

Figure 10: CO:H2O production ratios as a function of time for the Pure and TM-doped CaCO3 samples. 
during calcination in ~0.1 mbar H2. The shaded region indicates the temperature plateau of 1200 K. 
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traces measured from the Ar-calcined samples were used to correct the H2-calcined dataset for 

the contribution from incorporated water. Neither trace was adjusted for the QMS relative 

sensitivity factor prior to calculating the CO:H2O ratio. The ratio traces have been truncated to 

coincide with the approximate onset of CO release 

In an ideal reaction scenario, where the only net reaction is CO2+H2→CO+H2O, the comparison 

shown in Figure 10 would be expected to show a straight line of slope=0. While we presume that 

the Pure sample should be closest to this ideal, it none-the-less shows a slight negative slope. This 

can be attributed to differences in the system residence time of the evolved gases during 

calcination. Specifically, an accumulation of H2O relative to CO will result in a negative slope as a 

function of time. 

Comparing the TM-doped ratios to that of the Pure sample, there are differences in all case, which 

points to a more complex reaction sequence. The Fe-doped sample has a significantly higher 

CO:H2O ratio during the temperature ramp phase. Hence less H2O than CO is being evolved. This 

can be accounted for if there is additional oxide formation associated with the Fe-doping while 

CO is being released. The ratio drops quickly and converges to that of the other TM-doped 

samples toward the end of the plateau phase. The CO:H2 ratios of the other TM-doped samples 

are generally in close agreement with each other and are consistently lower than that of the Pure 

sample. This indicates extra H2O evolution relative to CO and may be accounted for by additional 

TM-induced oxide reduction under a H2 atmosphere (Reaction (7)). 

The fractional conversion of CO2 to CO is derived from the ratio of the CO produced to the CO2 

released. Figure 11a shows plots of the instantaneous fraction of CO2 that is converted to CO over 

the course of the calcination. The Ni-doped sample exhibits significant activity over the full 
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thermal cycle. It produced ~20% conversion at a temperature of 900 K, increasing to~38% at 

1200 K. In contract, the activity of the Co-doped sample is initially low but increases rapidly as the 

calcination proceeds. Conversion increased smoothly from zero to ~30% at 1200 K. The Cu-CaCO3 

sample exhibits the third best conversion efficiency at lower temperatures. However, its 

conversion has a relatively weak dependence on temperature and during the plateau phase of 

the thermal cycle, it becomes the lowest of all sample. 

An estimate of the fractional conversion of carbonate to oxide can be derived from the integrated 

total released CO2 traces. This was done on the basis of the Cu-CaCO3 sample and an assumption 

of 99% conversion at the end of the temperature plateau. Figure 11b illustrates how the CO2 

conversion fraction varies versus the oxide fraction formed. In this case, the transition from the 

temperature ramp to the temperature plateau is indicated by the change from a solid to a dashed 

line. In all cases, ~85% oxide formation coincides with a significant increase in the rate of 

Figure 11: Fraction of CO2 converted to CO versus a) time and b) fraction of oxide formed during 
calcination of Pure and TM-doped CaCO3 in ~0.1 mbar H2. The shaded region and dashed line 
segments indicate the temperature plateau of 1200 K. The inset in panel b) shows the overall 

conversion percentage after calcination. 
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conversion. For the Ni- and Co-doped samples, in particular, this transition coincides with a 

pronounced increase in the fractional conversion. 

The inset in Figure 11b shows the cumulative CO2-to-CO conversion percentages over the 

complete calcination. The most active samples, in decreasing order, were the Ni-, Co- and Fe- 

doped. Notably, the Cu- and Zn- doped samples performed no better than the Pure sample in 

terms of overall CO production under the current calcination conditions, although they do 

perform better at lower temperature. 

3.2.4. Calcination cross-comparison: Figure 12 compares the decomposition of the five TM-

doped samples relative to the pure sample for calcination under (a) Ar, (b) H2O, and (c) H2. This is 

done on the basis of the temperature required to achieve a comparable fractional amount of 

oxide formation. Consequently, the temperature difference (∆T) values plotted on figure 12 relate 

only to the ramping phase of the calcination. A negative ∆T indicates that a given oxide fraction 

Figure 12: Comparison of the influence of calcination environment (Ar, H2O and H2) on the fractional 
oxide formation during decomposition of the six carbonate samples. 
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is achieve at a lower temperature relative to the Pure sample under the same calcination gas. TM 

doping improved the performance in all case, with Cu having the greatest effect and Fe the least. 

In general, when calcined under Ar the performance improves with increasing degree of oxide 

formation for all dopants. In the case of H2O the ∆T variation as a function of oxide fraction is 

more varied, while for H2 it is comparatively constant. The Ni-doped sample performs better 

under H2 than H2O, while the Zn-doped sample performs worse. The performances of the other 

three dopants under the two gases is roughly equivalent. 

Figure 13 illustrated the influence calcination gas on the temperature required to achieve a given 

oxide fraction. As for Figures 11 and 12, the fractional oxide formation is based on (and is 

analogous to) integration of the total CO2 released, with the release from the Cu-doped samples 

Figure 13: Comparison of the influence of TM-doping on the fractional oxide formation during decomposition 
under Ar, H2O and H2. 

0.2 0.4 0.6

-20.0

-10.0

0.0

10.0

20.0

30.0
∆

T 
(K

)

 Pure
 Fe-doped
 Co-doped
 Zn-doped
 Cu-doped
 Ni-doped

(a) H2O relative to Ar

0.2 0.4 0.6

Oxide Fraction

(b) H2 relative to Ar

https://doi.org/10.1016/j.jcou.2019.03.006


“Effects of transition metal dopants on the calcination of CaCO3 under Ar, H2O and H2.” 
T.T. Belete, M.C.M van de Sanden and M.A. Gleeson. Journal of CO₂ Utilization 31 (2019) 152–166 

https://doi.org/10.1016/j.jcou.2019.03.006  

29 
 

at t=1380s in a given atmosphere being assumed to represent 99% conversion. Figure 13a 

illustrated the performance for H2O relative to Ar, and Figure 13b shows a similar plot for H2 

relative to Ar. When Ar is replaced by H2O, all sample show a decrease in the calcination 

temperature on the order of ~15-20K. Zn-doping is the most improved by the switch to H2O while 

the Pure sample is the least affected. In the case of switching from Ar to H2, the outcome is more 

mixed. In this case the performance of the Zn-doped sample is significantly worse. All samples 

perform less well under H2 during the early stage of the calcination but all improve at higher oxide 

fraction/higher temperature. This improvement is most pronounced in the case of the Pure and 

Fe-doped samples. 

It is evident from the comparisons shown in Figures 12 and 13 that, under current conditions, TM 

doping has the most significant and consistent impact on calcination performance irrespective of 

the ambient gas. Of the five TM dopants tested, doping with Cu has the largest impact on 

calcination as compared with the pure sample. Although the influence is smaller, use of H2O does 

improve calcination relative the Ar case. Calcination in H2O reduces the decomposition time 

(temperature) required to produce a given fractional oxide conversion in all cases. The effect is 

most pronounced for the Zn-doped sample. Calcination in H2 is generally inferior to calcination in 

Ar during the early stages of the thermal cycle, particularly in the cases of the Zn-doped and pure 

samples. However, in the later stages (higher temperature), calcination in H2 is superior to Ar both 

in terms of producing a higher conversion at a given temperature and in the final overall 

conversion fraction achieved. Compared to H2O, calcination in H2 is significantly less effective in 

the case of Zn- and Cu-doping. It is only in the case of Fe-doping, and to a lesser extent Ni-doping, 
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that calcination in H2 shows a small improvement over calcination in H2O. The relatively weak 

effects observed in the current study, compared to the much strong influence of calcination in H2 

seen in previous reports, can again be attributed to the low working pressure. 

 

3.3. Post-calcination characterization 

Figure 14 shows XRD patterns of the samples after calcination under water vapour taken shortly 

after removal from the thermal reactor. The pattern is predominantly CaO in all cases. The most 

prominent peak position at 2θ=37.34° is correlated to (2 0 0) hkl indices cubic structure of CaO, 

space group Fm-3m (a=4.815A� , density 3.337 g/cm3). The three main reflections with hkl indices 

of (1 1 1), (2 0 0) and (2 0 2) were used to calculate the crystallite size. Phase analysis and 

quantification indicate the percentage of CaO formed upon calcination of each sample and the 

results are shown in Table 5. The XRD patterns confirm that the pure sample has higher CaCO3 

(peaks indicated by +) content compared to TM-doped samples calcined under similar 

experimental conditions. The crystalline phase of the pure sample was ~70%, whereas it was 

Figure 14: XRD patterns of Pure and TM-doped samples after calcination in ~0.1 mbar H2O at 1200 K. a) 
Pure, Fe- and Co-doped samples. b) Zn-, Cu- and Ni-doped samples. 
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greater the 90% for all of the TM doped samples. Increasing crystallite size of the calcined samples 

correlates with higher fractional vaterite content in the original samples. None of the samples 

exhibited evidence of peaks due to pure TM oxide crystallites. 

Table 5: Percentage CaO phase formed and average crystallite sizes from samples after calcination in H2O at 1200 K. 
The crystallite sizes of the main peaks of CaO in hkl indices of [111], [200] and [202] are also listed. 

Calcined Samples CaO phase 
quantity (%) 

Average CaO 
crystallite 
size (nm) 

Crystallite dimension of the main peaks 

d111 (nm) d200 (nm) d202 (nm) 
Pure 69.3 60.9 63.4 59.4 56 

Fe-doped 93.7 52.1 55.4 54.3 46.8 
Co-doped 98.7 70.8 77.5 65.0 69.0 
Zn-doped 97.2 79.6 83.2 71.3 84.4 
Cu-doped 98.8 78.2 77.3 62.0 95.3 
Ni-doped 98.5 106.7 106.4 98.2 115.5 

 

Upon exposure to air, the calcined samples begin to convert to hydroxide form. This 

transformation occurs on the timescale of hours as is illustrated by the XRD spectra shown in 

Figure 15. Hydroxide formation was progressive, as illustrated for the Ni-doped sample in 

Figure 15a. After 45 hours of exposure the hydroxide crystal line fraction was ~63%. Figure 15b 

shows Ca(OH)2-related XRD peaks measured from pure, Fe- and Ni-doped samples after ~5 hours 

Figure 15:XRD patterns illustrating formation of hydroxide phase through absorption of water vapour 
from air. a) Time-evolution of Ni-doped sample. b) Pure, Fe and Ni-doped samples after 5 hours. 
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of exposure to atmosphere. The hydroxide crystallite fraction was estimated as ~10.7%, ~13%, 

and ~4.3%, respectively. Similarly, the Co-doped sample exhibited ~13% hydroxide fraction after 

~21 hours of exposure, while the Cu-doped samples had a ~4% fraction after 11 hours. Thus, the 

TM-dopant has a significant impact on the rate of hydroxide formation under ambient 

atmospheric conditions.  

DRIFTS spectra of the samples after decomposition under ~ 0.1 mbar H2O are shown in Figure 16. 

The sharp absorption bands at ~3645-3647 cm-1 are the stretching mode of O-H bond in Ca(OH)2 

[45], [59], due to atmospheric exposure. Overtone bands observed at 2875 and 2983 cm-1 confirm 

the presence of residual bulk carbonate species in the Pure and Fe-doped samples. The 

Figure 16:DRIFTS spectra of the post calcined samples in ~0.1mbar H2O at 1200 K: a) Pure, Fe-, and 
Co-doped. b) Zn-, Cu- and Ni-doped. 
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absorption band at ~2511 cm-1 is also related to C-O bonds from carbonate, while the band at 

1795 cm-1 is due C=O carbonate bond. Broad and strong absorption at ~1500 cm-1 corresponds to 

stretching mode (ν3) of the CO3
-2 group. The bands at 1066-1070 cm-1 are attributed to symmetric 

CO stretching, while the bands at 872-881 cm-1 corresponds to Ca-O bond [45], [46]. Additionally, 

the 1774-1795 cm-1 bands are attributable to C=O bonds from carbonate. The strong 

contributions from C-O related bonds in all samples is indicative of surface carbonation after 

exposure to air. 

Figure 17 shows SEM images taken from the Pure and the Co-, Fe- and Ni-doped samples after 

calcination in water vapour. The pure sample exhibited a globular-type structures with a 

Figure 17: SEM micrograph of samples calcined in ~0.1 mbar H2O at 1200 K. a) Pure, b) Co-doped c) Fe-
doped, d) Ni-doped. 
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comparatively smooth surface. In comparison, the structures of the TM-doped samples after 

calcination are significantly more open and there is more micro-structuring of the material. 

Figure 18 shows corresponding SEM images from these samples after calcination in hydrogen. 

Structurally, the Co and Ni-doped samples are reasonably similar in the two cases. The biggest 

differences between decomposition in H2O and H2 are in the case of the pure sample, where 

calcination in H2 produces a significantly rougher, micro-structured morphology and the Fe-doped 

sample which exhibits a more “fuzzy” surface structure. 

Figure 18: SEM micrograph of samples calcined in ~0.1 mbar H2 at 1200 K. a) Pure CaCO3, b) Co-doped, c) Fe-
doped, d) Ni-doped. 

https://doi.org/10.1016/j.jcou.2019.03.006


“Effects of transition metal dopants on the calcination of CaCO3 under Ar, H2O and H2.” 
T.T. Belete, M.C.M van de Sanden and M.A. Gleeson. Journal of CO₂ Utilization 31 (2019) 152–166 

https://doi.org/10.1016/j.jcou.2019.03.006  

35 
 

3.4. Composition analysis 

X-Ray Photoelectron Spectroscopy measurements were performed to determine the near-

surface TM atomic concentration of the as-prepared and Ar-calcined samples. The quantification 

is based on comparison of the 2p core level peak of the relevant TM to that of Ca from the same 

sample since the content and distribution of the latter is not expected to be affected by the 

calcination process. The results are shown in Table 6. These indicate a significant surface 

enrichment in the case of the as-prepared Cu- and Zn- doped samples. This enrichment is 

dramatically reduced by the calcination process. In most cases the surface concentration of TM is 

significantly reduced after calcination. The notable exception is the Co-doped sample, which 

exhibits a small surface enrichment after calcination. 

Table 6: Atomic concentration of transition metals in as-prepared samples and after calcination in Ar, based on XPS 
analysis. 

Sample Peak analysed Binding Energy 
(eV) 

TM Concentration 
As-prepared (at. %) 

TM Concentration 
Calcined (at. %) 

Fe-doped Fe 2p3/2 710 6.5 1.9 
Co-doped Co 2p3/2 782 1.3 2.1 
Zn-doped Zn 2p3/2 1022 9.6 1.4 
Cu-doped Cu 2p3/2 934 14.0 2.8 
Ni-doped Ni 2p3/2 854 4.3 0.2 

 

Figure 19: ICP-OES determination of TM content of doped samples (a)TM wt.% of as-prepared and H2-calcined 
samples. (b) TM wt.% ratio of H2-calcined to as-prepared samples. 
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The bulk composition of TM in the as-prepared and H2-calcined samples was analysed by 

Inductively Coupled Plasma Optical Emission Spectrometer (SPECTRO Analytical Instruments 

GmbH, Germany). Figure 19a shows the resultant TM wt.% in the as-prepared sample and after 

H2-calcination. The wt.% values are generally higher in the calcined samples. This is a natural 

consequence of the release of CO2 from the sample. Figure 19b shows the ratio of the TM wt.% 

in the H2-calcined sample to that of the as-prepared samples. The exact chemical composition of 

the calcined sample is unclear due to hydroxide formation upon exposure to air. However, we 

can define two extremes: purely CaO and purely Ca(OH)2. If the content of TM in the sample is 

unaffected by calcination, then the ratio of the wt.% values should fall between 1.78 (purely CaO) 

and 1.35 (Pure Ca(OH)2) as indicated on Figure 19b. We discount any contribution from 

incorporated H2O in the as-prepared samples and from incomplete calcination or natural CO2 

uptake from air by the calcined sample. For the Fe-, Co-, Ni-, and Cu-doped samples, the post-

calcination TM contents are not inconsistent with an unaltered sample content. However, the 

ratio of the Zn-doped sample indicates a significant decrease after H2-calcination suggesting loss 

due to evaporation during the calcination process. Although ZnO is stable up to ~2247K, atomic 

Zn has much lower melting (~693K) and boiling (~1180K) points than the other transition metals 

tested. Hence, chemical reduction in the presence of H2 can account for the observed loss of Zn. 

This may contribute to the comparatively poor performance of the Zn-doped samples during 

calcination under H2. 
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4. Conclusion 

Realising direct conversion of CO2 during calcination is attractive in terms of process 

intensification and CO2 utilization and could simultaneously contribute to improving the calcium 

looping cycle. To be practical it would require a reliable and sustainable source of H2, which could 

in principle be sourced from plasma-dissociated water. As part of evaluating such an approach, 

we have presented a cross-comparison of the effects of TM-doping on calcium carbonate 

precipitation and subsequent calcination under low pressure (~0.1 mbar) of Ar, H2O and H2. 

The addition of TM dopants reduces the decomposition temperature and increases the rate of 

calcination in all cases. Cu-doping was most effective in this regard while the Fe-doped sample 

was closest to the pure CaCO3. Reduction of the calcination temperature is desirable in the 

context of maximizing the efficiency of the calcium looping cycle. It remains to be seen if the 

performance of doped samples can be maintained over repeated material cycling. 

The impact of changing the calcining gas was smaller compared to that of TM doping. Calcining in 

H2O improved the performance relative to calcining in Ar in all cases. The largest effect was 

observed for Zn-doping. Compared to Ar, calcining in H2 had more mixed results in terms of CO2 

release. It was notably worse in the case of Zn-doping and somewhat better for the Ni-doped 

sample. The performance under H2 relative to Ar improved in all cases as the over the course of 

the calcination. 

Direct conversion of CO2 to CO during calcination under H2 was enhanced, in order of decreasing 

effectiveness, by Ni-, Co- and Fe-doping. Cu- and Zn-doping resulted in increased conversion at 

lower temperature, but did not produce more integrated conversion than the Pure sample. No 

CH4 production was observed due to the low working pressure. The measurements indicate that 
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there is significant additional oxide formation during the early stage calcination of the Fe-doped 

sample in H2. Evidence of TM-induced oxide reduction was found for the other samples. The Zn-

doped sample showed evidence of TM-loss during calcination under H2.  
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