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Abstract

This paper outlines an approach towards improved
rigour in tokamak turbulence transport model vali-
dation within integrated modelling. Gaussian process
regression (GPR) techniques were applied for profile
fitting during the preparation of integrated modelling
simulations allowing for rigourous sensitivity tests of
prescribed initial and boundary conditions as both
fit and derivative uncertainties are provided. This
was demonstrated by a JETTO integrated modelling
simulation of the JET ITER-like-wall H-mode base-
line discharge #92436 with the QuaLiKiz quasilinear
turbulent transport model, which is the subject of
extrapolation towards a deuterium-tritium plasma.
The simulation simultaneously evaluates the time
evolution of heat, particle, and momentum fluxes over
∼10 confinement times, with a simulation boundary
condition at ρtor = 0.85. Routine inclusion of mo-
mentum transport prediction in multi-channel flux-
driven transport modelling is not standard and is fa-
cilitated here by recent developments within the Qua-
LiKiz model. Excellent agreement was achieved be-
tween the fitted and simulated profiles for ne, Te, Ti,
and Ωtor within 2σ, but the simulation underpredicts

the mid-radius Ti and overpredicts the core ne and Te
profiles for this discharge. Despite this, it was shown
that this approach is capable of deriving reasonable
inputs, including derivative quantities, to tokamak
models from experimental data. Furthermore, mul-
tiple figures-of-merit were defined to quantitatively
assess the agreement of integrated modelling predic-
tions to experimental data within the GPR profile
fitting framework.

1 Introduction

To have confidence in the predictions of any given
model in unproven conditions, it must first be
rigourously tested to show it behaves as expected and
to understand its range of validity, through a process
called model verification and validation (V&V) [1].
However, with a complex non-linear system, such as
a tokamak plasma device, the interpretation of ex-
perimental data and the verification and validation
of any resulting models becomes increasingly diffi-
cult [2], though no less important.

This paper outlines a rigourous and automat-
able approach to data processing and profile fit-

1



ting, through the use of Gaussian process regression
(GPR) techniques [3, 4], and the consequent improve-
ments to V&V within the field of nuclear fusion re-
search, as applied to the JETTO transport code [5,
6], coupled with the QuaLiKiz quasilinear turbulent
transport code [7, 8]. While Bayesian techniques
have been applied to experimental data from toka-
maks before [9–12], including the implementation of
GPR techniques [13], the novelty of this work lies
in its extension into validation efforts for integrated
models. The simulated results and distributions from
Monte Carlo studies are compared against the GPR
fit distributions, themselves being determined based
on experimental data from the JET tokamak. Specif-
ically, this paper applies it to JET discharge #92436,
a JET-ILW baseline discharge with plasma parame-
ters BT = 2.77 T, Ip = 2.98 MA, and 33 MW of input
heating power, 28 MW from neutral beam injection
(NBI) and 5 MW from ion cyclotron (IC) heating.
This discharge was selected as it recorded the high-
est experimental D-D neutron rate to date at JET
and is also the subject of extrapolation towards a D-
T plasma. In order to proceed with the proposed
V&V procedure, the experimental data needs to first
be processed into the appropriate inputs for the code.

For the combined JETTO + QuaLiKiz transport
code, the primary quantities under investigation are
the simultaneous time evolution of the following
plasma kinetic profiles:

• main ion density, ni,

• electron temperature, Te,

• ion temperature, Ti,

• and toroidal flow angular frequency, Ωtor.

Note that the current density, j, and densities of the
primary impurity ions, nimp, within the discharge are
also self-consistently evolved in time for complete-
ness, although these results are not validated in this
study due to the lack of experimental measurements
of these quantities. However, JETTO combines the
main ion and impurity ion densities, along with their
respective charges, to form the electron density pro-
file, ne, for which experimental data exists. The pro-
files are evaluated by the simulation over a sufficient
number of confinement times to reach steady state,

due to the high sensitivity of the simulation on these
quantities at the simulation boundary, especially on
the ratio Ti/Te [14]. These inputs are typically ex-
pressed on the square-root normalized toroidal flux
coordinate, or simply toroidal rho, ρtor, defined as
follows:

ρtor =

√
ψtor

ψtor, LCFS
(1)

where ψtor is the toroidal magnetic flux associated
with the radial point in the plasma and LCFS is the
last-closed-flux-surface. The advantage of using GPR
for profile fitting is the estimation of both the fit un-
certainty based on the measurement uncertainties, as
well as the analytical calculation of the fit derivative
and its uncertainty as well. This additional infor-
mation allows for statistically rigourous sensitivity
studies regarding the impact of the boundary condi-
tions of the simulation, set at ρtor = 0.85 within the
simulations performed in this study, as well as an im-
proved measure of the agreement of and confidence in
the transport model when compared to experimental
data.

As the quantities of interest, ne, Te, Ti,Ωtor, are
also inputs in the calculation of the heat sources,
Qe, Qi, the particle sources, Si, and the fast ion popu-
lation quantities, nfast, Efast, from the various plasma
heating devices, it is in principle possible to propa-
gate these uncertainties through these calculations as
well. However, this particular application is outside
the scope of this study. Additional measurements,
such as the effective ion charge, Zeff, neutron rate,
N , total diamagnetic energy, Wtot, total radiated
power, Prad and normalized internal inductance, li,
were used to adjust and filter the measurement data
and constrain the fits further, via an automatised
data processing algorithm.

Section 2 outlines the specific measurement data in
the JET database used to generate these profiles, as
well as briefly discussing the pre-processing steps re-
quired in order to automate this procedure, highlight-
ing the generality inherent in the GPR techniques for
profile fitting. Section 3 introduces the novel figures-
of-merit (FOM) used in this study, discussing their
application and interpretation. Section 4 discusses
the sensitivity and consequent validation studies per-
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formed, highlights their implications, and showcases
the statistical rigour and validation metrics made
possible with GPR profile fitting. Finally, a summary
and future outlook is provided in Section 5.

2 JET data extraction and processing

In general, the raw measurement signals from the
diagnostic devices have already been converted into
the physical quantities and profiles. Although this
process accrues its own errors, it is assumed that
the reported measurement uncertainties associated
with the processed data sufficiently capture these ef-
fects and that they do not warrant further discus-
sion. To that effect, this paper refers to these con-
verted measurement signals as the raw data. This
section discusses the GPR fitting algorithm and the
pre-processing done to the raw data at JET.

2.1 Data processing and profile fitting

Table 1 shows the primary data fields in the pub-
lic JET experimental data storage system, and their
corresponding diagnostic devices, from which the raw
profile data was derived from. Due to the potential
presence of erroneous data as a result of drifting di-
agnostic calibrations or data processing faults within
this database, a workflow was devised to filter out
any non-physical data points in a broad and generic
fashion. These filters were designed to be generic
in nature such that they may be applied to any ap-
propriate raw data, regardless of the origin of that
data, such that the resulting workflow can be used
for large-scale automation of data extraction and pro-
file fitting. This level of automation was desired to
support the collection of a JET 1D profile database,
for purpose of sampling QuaLiKiz inputs for creat-
ing neural network training sets to extend previous
work [15]. Figure 1 shows the developed workflow
and outlines the various criteria determined to pro-
duce sufficiently reasonable profile fits from a wide
variety of discharges.

The basic requirements of the workflow are the ex-
istence of electron density, ne, and electron temper-
ature, Te, measurements, along with the magnetic
geometry / equilibrium in order to define the radial

Table 1: List of diagnostics used for most crucial
physical quantities

Quantity Diagnostic Type

ne Thomson scattering
Te Thomson scattering

Electron cyclotron emission
Ti Charge exchange spectroscopy
Ωtor Charge exchange spectroscopy

coordinate systems on which the profiles are to be
mapped. If additional diagnostics or post-processed
results are available, such as the ion temperature, Ti,
toroidal angular frequency, Ωtor, and impurity den-
sities, nimp, measurements, these are also extracted.
A number of basic data filters are then applied to
the data, such as the removal of corrupted or missing
data and non-physical values1.

Then, a number of data points are added to the
raw data to enforce a small positive boundary con-
straint at the separatrix, due to known behaviours
from scrape-off layer modelling, and a zero derivative
constraint is applied at the magnetic axis, due to the
assumed symmetry across the magnetic axis. Note
that the boundary value constraint for the Ωtor profile
is a linearly extrapolated value as the rotation pro-
file can switch signs in the separatrix region. Finally,
the data is organized into a standardised format and
the appropriate kernels are selected according to ap-
proximate properties of the filtered profile data. This
standardised structure is passed to the newly-created
“GPR1D” Python package2 to perform the GPR fits.

The GPR algorithm is derived by applying
Bayesian statistical principles to the mathematics of
regression modelling, with the assumption that the

1Due to the identified discrepancies in the equilibrium re-
construction for this discharge, the mid-plane major radius
vector of the equilibrium was shifted by ∼ 5 cm inwards be-
fore remapping the raw data to ρtor and applying the GPR.
This shift was calculated by applying a least-squares tanh fit
to the temperature pedestal data and setting the separatrix at
the location where Te = 100 eV, as is understood to be the Te
boundary condition for H-mode plasmas from scrape-off layer
modelling results.

2An open-source one-dimensional GPR algorithm, available
on GitLab at https://gitlab.com/aaronkho/GPR1D.git
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Figure 1: Workflow diagram of the filters and consistency checks applied to the raw data in order to ensure an adequate level
of data quality for the fitting algorithm to produce useful profiles.

input noise is described by Gaussian probability dis-
tribution functions [3, 13]. The resulting algorithm
effectively performs the regression using an infinite
set of basis functions, represented by a careful choice
of the covariance function, or kernel function, of the
underlying model. This theoretically gives it the ca-
pability of a universal function estimator. However,
as this section will discuss, the exact details of its
implementation and usage often enforce some con-
straints on this capability.

The algorithm calculates the mean fit profile and
its error through the following predictive equations [3,

16]:

K
(
X,X ′

)
= k

(
x, x′, θ

)
|x=X,x′=X′

R
(
X,X ′

)
= r(x) r

(
x′
)
δ
(
x− x′

)
|x=X,x′=X′

Y∗ = K(X∗, X)L−1 Y

σ2
Y∗ = L∗ −K(X∗, X)L−1K(X,X∗)

(2)

where θ represents the hyperparameters of the cho-
sen kernel function, k, the lower-case and upper-case
variables denote continuous functions and discrete
data points, respectively, (X,Y ) represents the in-
put data points, (X∗, Y∗) represents the points at
which the model is evaluated, and the short-hand
K = K(X,X), R = R(X,X), K∗ = K(X∗, X∗),
R∗ = R(X∗, X∗), L = K + R, and L∗ = K∗ + R∗
was used to improve readability. Due to the numeri-
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cal details of the GPR implementation, it is assumed
and advised to select the prediction points such that
X∗ /∈ X. The resulting regression fit distribution for
each point is then Gaussian-distributed, or normally
distributed, by the definition of the GPR procedure,
which is a probability distribution described by the
following expression:

N
(
Y∗, σ

2
Y∗

)
≡ 1√

2πσ2
Y∗

exp

(
− (y − Y∗)2

2σ2
Y∗

)
(3)

where y is the variable coordinate corresponding to
the input data, Y .

Within the GPR framework, the hyperparameters
of the chosen kernel, θ, act as the free variables
which can be adjusted to fine-tune the resulting fit.
One optimization technique for these hyperparam-
eters maximizes the log-marginal-likelihood (LML),
ln p(Y |X, θ), through the use of its derivative with
respect to each of the hyperparameters, θj , which is
expressed as follows [3]:

∂ ln p(Y |X, θ)
∂θj

=
1

2
Y TL−1 ∂K

∂θj
L−1Y − λ

2
tr

(
L−1 ∂K

∂θj

)
(4)

where the hyperparameter-dependence is also present
in L ≡ L(θ) and λ is the regularization parameter,
used to control the degree of complexity in the model.
This optimization scheme assumes that an analytical
form, or a sufficiently accurate numerical approxima-
tion, exists for the derivative of the kernel function
with respect to these hyperparameters and attempts
to find the model that maximizes the probability for
observing the experimental data. However, it pro-
vides no guarantee that the chosen model accurately
depicts the physical process which produced the in-
put data.

The desired optimized solution will then be the
combination of hyperparameters, θ, which satisfy the
following criteria:

∇θ ln p(Y |X) = 0 (5)

However, since Equation (4) typically forms a non-
linear system of equations for the set of θ, it is difficult
to calculate the solution explicitly. Thus, an iterative
method, such as a gradient-based optimization algo-
rithm, is used to find the closest desired solution.

The primary advantage of the GPR technique, over
other common fitting techniques such as spline fit-
ting, is that it provides statistically rigourous uncer-
tainties of the fit, including the fit derivatives, based
on the input measurement errors. More information
about the theory and terminology behind the GPR
can be found in Appendix A and in Ref. [3].

A common issue with current fitting practices is
that, when a pedestal is present within the profile,
it is normally difficult to accurately fit both the core
and pedestal regions. This is typically due to the
dramatic difference in properties between these two
neighbouring regions. The GPR methodology offers
a potential solution to this without modifying the
radial coordinate space through the use of a Gibbs
kernel, mathematically as such [3]:

k
(
x, x′

)
= σ2

√
2l(x) l(x′)

l2(x) + l2(x′)
exp

(
(x− x′)2

l2(x) + l2(x′)

)
(6)

where l(x), known as a warping function, is chosen
based on the desired behaviour of the length scale
of the fit. The hyperparameters of this kernel are
θ = {σ,Θ}, where Θ represents the set of additional
hyperparameters introduced by the chosen warping
function. In order to obtain the required behaviour
of the length scale for capturing the pedestal, an in-
verted Gaussian warping function was selected, ex-
pressed as follows:

l(x) = l0 − l1 exp

(
(x− µ)2

2σ2
l

)
(7)

where the additional hyperparameters are Θ =
{l0, l1, µ, σl}. The ability to avoid the modification of
the coordinate space is desired, as it would introduce
an interpretation bias in the data which is inconsis-
tent towards the Bayesian treatment and eliminates
the need for complex data processing algorithms to
handle this in an automated fashion. When a large
jump in the data is detected within ρ > 0.8, for any of
the kinetic profiles, which is indicative of the forma-
tion of an H-mode pedestal, the workflow attempts
to fit the data using this Gibbs kernel.

When a potential pedestal is not detected in the
profile data, the Gibbs kernel is entirely replaced with
the more basic rational quadratic (RQ) kernel, as it
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is generally more stable and yields sufficiently rea-
sonable results in these cases. The RQ kernel can be
expressed mathematically as follows [3]:

k
(
x, x′

)
= σ2

(
1 +

(x− x′)2

2αl2

)−α
(8)

where the hyperparameters are given by θ = {σ, α, l}.
The noise function required by the GPR algorithm,

r(x), is generated by applying a separate GPR on the
measurement uncertainties, also using the RQ kernel.
Typically, a large regularization parameter (λ ≥ 10)
is applied to the fitting of the measurement errors,
due to the overprediction of the fit derivative uncer-
tainties as a direct result of steep gradients in the
noise function.

The profile fitting routine is designed to execute the
GPR a number of times per physical quantity, first
using a defined initial guess and afterwards with a
number of randomized guesses within set boundaries,
in order to ensure that the hyperparameter optimiza-
tion routine does not fall into a local maximum. If
a pedestal is detected in the profile data and all the
attempts to perform a fit using a Gibbs kernel fail,
then the workflow reverts to using the RQ kernel into
order to provide a reasonable estimate, albeit with a
lower fit quality. In practice, this is a rare occurance
since the algorithm is more likely to overfit if a rea-
sonable solution cannot be found, wherein the algo-
rithm converges on a solution which does not model
the underlying smooth structure but the radial vari-
ation due to noise instead.

Overfitting is a common problem with GPR fit-
ting, especially if the initial guess is too far from the
optimal spot, and typically results in a poor quality
profile fit which varies erratically in the radial coor-
dinate. To remedy this, the regularization parame-
ter of the fit itself can also be increased, which then
applies a greater penalty to erratic fits. Another so-
lution to this problem within this profile fitting rou-
tine is to increase the number of random hyperpa-
rameter restarts, which can significantly increase the
amount of time required to fit each profile, and may
reduce the efficacy of the algorithm in capturing the
behaviour of the pedestal.
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Figure 2: Profiles for JET #92436, averaged over a 0.5 s time
window, from 9.75 s – 10.25 s, with ∼ 50 ms data resolu-
tion. Left: Electron (green line) and ion (red line) densities
with experimental data (black points), showing good fitting of
pedestal shoulder for use as the boundary condition for core
transport modelling, ni estimated using ne, Zeff. Right: Nor-
malized logarithmic gradients for ne and ni, only shown for
ρtor ≤ 0.8. All errors are depicted as ±2σ, corresponding to a
confidence interval of ∼95% within Gaussian statistics.

2.2 Application of data extraction process

A demonstration of the GPR profile fitting routine
was performed on JET-ILW discharge #92436, a
high-power H-mode baseline scenario plasma with
BT = 2.73 T, Ip = 2.98 MA, and 28 MW neutral
beam injection (NBI) and 5 MW ion cyclotron (IC)
auxiliary heating applied. This discharge is of partic-
ular interest as it is the JET-ILW baseline with the
highest measured neutron rate to date at JET and is
the subject of extrapolation towards a D-T plasma.
The input data used to generate these fits were aver-
aged over a 0.5 s time window, specifically from 9.75 s
– 10.25 s, after all the discussed filters were applied
to the raw data. The results of these fits are shown
in Figures 2, 3 and 43, showing reasonable fits and
error estimates, including good performance over the
pedestal region and even in the absence of inner core
data, as seen in the Ti fit.

With the selection of an appropriate kernel and op-
timizer, a single profile fit can be performed in ∼10 s
on a single processor. This means that a single dis-
charge time window can be processed in 1 – 3 min-
utes, depending on the amount of raw data available.

3An error in the radial coordinate specification for the
Thomson scattering diagnostic, HRTS, has been discovered
inside the data extraction routine after the completion of this
study. However, it does not change the data extraction and
profile fitting methodology and a sensitivity scan shows there
is little impact on the simulation results.
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Figure 3: Profiles for JET #92436, averaged over a 0.5 s time
window, from 9.75 s – 10.25 s, with ∼ 50 ms data resolution.
Left: Electron and ion temperatures with experimental data,
with assumption that Ti = Timp. Impurity ion temperature
measurements concatenated over three charge exchange diag-
nostics: one core diagnostic and two edge diagnostics. Right:
Normalized logarithmic gradients for Te and Ti, only shown
for ρtor ≤ 0.8. All errors are depicted as ±2σ, corresponding
to a confidence interval of ∼95% within Gaussian statistics.
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Figure 4: Profiles for JET #92436, averaged over a 0.5 s time
window, from 9.75 s – 10.25 s, with ∼ 50 ms data resolution.
Left: Toroidal flow angular frequency with experimental data.
Toroidal flow measurements concatenated over three charge
exchange diagnostics: one core diagnostic and two edge di-
agnostics. Right: Normalized toroidal flow shear. All errors
are depicted as ±2σ, corresponding to a confidence interval of
∼95% within Gaussian statistics.

A significant portion of this time is spent extracting
data from the storage system and performing the pre-
processing required such that the fit procedure can be
automated. While this demonstration is limited to a
single discharge, profiles from 13000 time windows
from over 2000 different JET discharges have been
processed for the aforementioned purpose of sampling
QuaLiKiz inputs for creating neural network training
sets. This will be the subject of a future publication.

3 Validation metrics

To improve the validation efforts of plasma kinetic
profiles predicted by these complex transport codes,

validation metrics need to be developed from which
the model results can be compared to experimental
data. These metrics typically require a degree of gen-
erality such that they can be applied across a large
range of foreseen scenarios, but also retain enough in-
formation as to provide a proper quantification of any
agreement between the model and experiment [1]. Al-
though many different validation metrics have been
previously formulated for fusion data [1, 2], their ap-
plicability is normally problem-dependent. This sec-
tion outlines two figure-of-merits (FOM), which are
intended to be applied specifically to the compari-
son of kinetic profiles with Gaussian-distributed un-
certainties, such as those provided by GPR fitting.
The first is for comparing profiles without any known
uncertainty estimate to the GPR fit uncertainties
and the second is for comparing other profiles with
Gaussian-distributed uncertainties to the GPR fit un-
certainties.

3.1 Point-distribution comparisons

In the cases where an estimate of the output uncer-
tainty is unavailable, an analysis of statistical agree-
ment can be performed by evaluating the probability
density function of the experimental distribution at
the point of the simulation output value, as a function
of space. As the GPR technique necessarily provides
fit uncertainties with a normal distribution, the de-
gree of trust that can be placed on these output pro-
files given the input distributions can be calculated
simply by evaluating a modified form of Equation (3),
which is as follows:

S ≡ exp

(
− ln(2)

2

(yo − µi)2

2σ2
i

)
(9)

where yo is the simulation output value, and µi and
σi are the mean and standard deviation of the exper-
imental fit distribution, respectively. The normalis-
ing prefactor of Equation (3) was removed such that
S = 1 indicates a perfect match, and the additional
factor in the exponent was added such that S = 0.5
when the simulation output is at the ±2σ bound-
ary of the GPR uncertainty. In principle, an evalu-
ation of the agreement between simulation and ex-
perimental fit via this methodology does not strictly
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require the assumption of Gaussian-distributed un-
certainties. Thus, its application is not exclusive to
the GPR fit methodology but is demonstrated in this
paper using the GPR fit uncertainties.

3.2 Distribution-distribution comparisons

On the other hand, if an estimate of the output un-
certainty is provided and assumed to be Gaussian-
distributed and denoted as N

(
µo, σ

2
o

)
, as defined in

Equation (3), a comparison can be made between the
input and output distributions based solely on their
statistical properties,

(
µi, σ

2
i

)
and

(
µo, σ

2
o

)
, respec-

tively. The proposed FOM developed in this work,
denoted as M , accounts both the difference of the dis-
tribution means in relation to their widths and the
ratio of the distribution widths in relation to their
means, expressed as follows:

M = APi Po

= exp

(
− (µi − µo)2

2 (σ2
i + σ2

o)
− (3σi)

2

µ2
i

− (3σo)
2

µ2
o

) (10)

where A represents the accuracy of the output dis-
tribution compared to the input distribution, and Pi

and Po represent the individual precision of the input
and output distributions, respectively. These compo-
nents can then be expanded further into the desired
terms as a function of µ and σ using logical consid-
erations.

The accuracy component can be derived by calcu-
lating the area under the product of the two distri-
butions, expressed as follows:

A = exp

(
− (µi − µo)2

2 (σ2
i + σ2

o)

)
(11)

By examining Equation (11) intuitively, it com-
pares the absolute difference between their means,
|µi − µo|, while taking into account the combined
width of their distributions, σ2

i +σ2
o , making it a suit-

able measure of accuracy. The negative exponent en-
sures that A ∈ (0, 1], with a value of unity meaning a
perfect match between the two means and a value of
zero meaning no statistical overlap between the two
distributions, corresponding to no overlap of the 3σ
boundaries of the two distributions. Equation (11) is

similar to the metric proposed by P. Ricci [17], except
with the inclusion of the negative exponential oper-
ator and the 1/2 factor. In order to provide a rule-
of-thumb for the interpretation of A, it is generally
noted that distribution pairs with A & 0.8 typically
have their mean values lie within the ± 1σ range of
the distribution of the other.

However, in Equation (11), A → 1 as σi → ∞ or
σo → ∞, which is undesired behaviour as it would
award high scores to distributions that are too dis-
persed to be meaningful. The precision component
is then introduced to provide a penalty for this be-
haviour based simply on the ratio of the distribution
width to its mean, as follows:

P = exp

(
− (3σ)2

µ2

)
(12)

where 3σ was chosen as the reference width
as ∼ 99.7% of the distribution lies between
[µ− 3σ, µ+ 3σ] in Gaussian statistics, effectively
meaning 99.9% of the probability distribution lies
on one side of zero when |µ| = 3σ. Similarly to
Equation (11), the negative exponent ensures that
P ∈ (0, 1], with a value of unity meaning the quan-
tity in question is perfectly known and a value of
zero meaning that the given distribution can be re-
garded as meaningless due to its width in comparison
to its mean. This particular method for qualifying
the distribution width is only useful for quantities
which have a non-zero expected value, as P = 0 when
µ = 0. In order to provide a rule-of-thumb for this
component, it is generally noted that distributions
with P & 0.7 have a relative error of σ/µ . 0.2.
When applying this to fusion profiles, which generally
have strictly positive values, regions with P < 0.3 can
effectively be regarded as meaningless without addi-
tional information. Due to the dependence of this
parameter on the absolute value of the distribution
mean itself, it is only suitable for comparing distri-
butions of quantities which do not fluctuate around
zero, as is generally the case for fusion profile quanti-
ties. In that sense, extra care should be taken when
applying this to toroidal rotation profiles, as they can
cross zero in certain plasma regimes.

By considering the heuristic statements for each
individual component in Equation (10), a good rule-
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of-thumb for the proposed FOM is that a value of
M . 0.1 implies the two distributions do not match
at all, ie. inaccurate, or the data is inconclusive, ie.
imprecise. On the other hand, a value of M & 0.9
implies an excellent match between the two distri-
butions, meaning they are both precise and accurate
in comparison to each other. A pair of distributions
whose means lie within ± 2σ of each other, each hav-
ing a relative error of ∼ 10%, yields M ' 0.5, which
indicates a reasonable match for fusion data. The
constant factors added in Equations (11) and (12)
were chosen such that this interpretation is consistent
with that described for the point-distribution metric
discussed in Section 3.1.

The performance and suitability of the proposed
FOM can be determined by comparing it to other
known statistical distance tests which evaluate the
agreement between two distributions. The cho-
sen tests are the validation metric proposed by P.
Ricci [17] and the Kullbeck-Leibler (K-L) divergence
test [18, 19] for continuous probability distributions,
specifically the Gaussian distribution in this case.
These tests were modified with a negative exponen-
tial operator to simplify their comparison with the
proposed FOM in Equation (10) and were computed
as follows:

MRicci = exp

(
− (µi − µo)2

(σ2
i + σ2

o)

)
MK-L c. = exp

(
−
∫ ∞
−∞

po(y) ln

(
po(y)

pi(y)

)
dy

) (13)

where N is the number of bins in the discrete prob-
ability histogram, po(y) ∼ N (µo, σo) is the näıve
Gaussian envelope computed from the Monte Carlo
results, po(yj) is the histogram of the Monte Carlo
results, pi(y) ∼ N (µi, σi) is the GPR fit distribution
and pi(yj) is calculated from the GPR fit distribution
as such:

pi(yj) =

∫ yj,upper

yj,lower

pi(y) dy (14)

Depending on the application of these profiles, the
spatially-resolved FOM, M , can be reduced even fur-
ther into a single number via its integration with
respect to an appropriate quantity. For exam-
ple, integrating it with respect to volume, V , ie.

∫
MdV/

∫
dV , can provide a rough estimate of sim-

ilarity of the profiles for applications involving vol-
umetric considerations, such as total plasma energy,
Wp, or neutron rate, Rn. Although the uncertainty
of the numerical integration can be made small by se-
lecting an appropriate algorithm, the uncertainty of
the multiplied quantity provides an additional source
of error which could significantly influence the inter-
pretation of this single number. As such, this paper
does not comment further on the use of an integrated
FOM, as it is highly dependent on the application.

As a final note, both the proposed figures-of-merit
discussed in this paper for evaluating the agreement
and trustworthiness between simulation inputs and
outputs, found in Equations (9) and (10), should not
be confused with other statistically meaningful quan-
tities, ie. probability, likelihood, etc. Although the
derivations of these metrics are based on statistical
principles, they are intended only to provide a sim-
ple, quantitative, but still inherently heuristic mea-
sure of agreement between the experimental fits and
the simulation output while simultaneously incorpo-
rating any knowledge on the experimental and simu-
lation uncertainties.

4 Integrated modelling results

The macroscopic transport phenomena within fusion
plasmas are governed by a system of coupled differen-
tial equations, which must be solved self-consistently
in order to determine the time evolution of the sys-
tem. The one-dimensional energy transport equation
for a given species, s, in cylindrical geometry is pro-
vided below as an example of one such equation:

3

2

∂ (nsTs)

∂t
+

1

r

∂ (rqs)

∂r
= Qs(r, t) (15)

where ns and Ts are the density and temperature, re-
spectively, qs represents the heat transport flux within
the plasma, and Qs represents the heat source of the
plasma. This equation along with the mass transport,
momentum transport and current diffusion equations
form the basic equations of a plasma transport sim-
ulation code.

Due to the complexity of these equations, they are
typically solved numerically and in an iterative man-
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ner, requiring that the spatial and temporal coor-
dinates be divided into discrete points, or grids, to
make its computation viable. Due to the effective
timescales of the most influential plasma physics phe-
nomena, the temporal grid typically has small inter-
vals, typically on the order of 10−5 – 10−3 s, to re-
solve and investigate their behaviour and underlying
mechanisms. Such an approach effectively linearises
the system of transport equations, allowing the sep-
aration of plasma transport processes into distinct
sets of linearised equations which can be solved indi-
vidually, using results from other models as inputs if
necessary. The amalgamation and interconnection of
these separate components back into a larger simula-
tion suite is called an integrated model. The plasma
transport simulation code used in this study, JETTO,
is an example of such an integrated model, schemati-
cally depicted in Figure 5, and QuaLiKiz is the mod-
ule used for the calculation of the turbulent trans-
port fluxes, known to be the dominant contributor to
transport fluxes, ie. qs within Equation (15), within
the core region of tokamak plasmas. This section dis-
cusses the settings used in this integrated modelling
exercise and the results of the simulation.

4.1 Nominal simulation settings for JET
#92436

Once processed by the GPR1D tool, the resulting
kinetic profiles, along with their associated deriva-
tives, can be used to calculate the input quantities
needed by various plasma models. The uncertainties
of the fit calculated by the GPR technique, which are
themselves derived from the measurement uncertain-
ties, allow for rigourous model V&V efforts, described
further in Sections 3.2 and 3.1.

The fitted kinetic profiles were given as inputs to
an interpretive TRANSP [20] calculation, along with
the experimental input heating parameters, in or-
der to determine the associated particle, heat, and
momentum source profiles. Then, both the fitted
kinetic profiles and calculated source profiles were
used to define the initial and boundary conditions
for the JETTO + QuaLiKiz integrated model, which
then self-consistently evaluates the particle, heat,
and momentum flux within the chosen steady-state

Plasma
profiles

Core Transport Solver
JETTO

Neoclassical Transport Models
NCLASS, NEO

Turbulence Transport Models
QuaLiKiz, TGLF

Impurity Transport Models
SANCO

Equilibrium Models
EFIT, ESCO

MHD Transport Models
Sawteeth, ELMs, NTMs

Auxiliary Models
B/gB, ETB, ITB, pellets, fusion

Source Models
ICRH, ECRH, NBI, LH

Neutral Models
FRANTIC

1
Figure 5: Workflow diagram of the JETTO integrated model,
showing the coupled calculation of several smaller models and
integrating their results in the core transport solver. The green
modules are the primary focus of this study, while the yellow
modules were used but not involved in the statistical study
and the red modules were not used.

time window, then consequently the kinetic profiles
themselves. Due to the focus on steady-state solu-
tions, it is assumed that only the boundary condi-
tion, set at ρtor = 0.85 for the simulation of this
discharge, will have a significant impact on the sim-
ulation results. Although the initial condition can
affect steady-state solutions through the switching of
plasma turbulence regimes, the variations in the ini-
tial condition required for such effects to be impor-
tant are typically much larger than the uncertainties
given by the GPR profile fits. Thus, any initial con-
dition dependencies can be safely neglected in this
study. As the TRANSP calculation also provides the
fast ion density and energy density profiles, it was
decided to also include them inside the quasilinear
turbulent transport model, QuaLiKiz, as additional
Maxwellian-distributed ions species. This implemen-
tation only accounts for the linear component of the
fast ion species as the non-linear saturation rules for
the fast ion turbulence contributions are still under
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Figure 6: Comparison of the simulated li time traces from
the various interpretive JETTO runs against the measured li
signal taken from EFIT/LI3D.

study. For reference purposes, a list of other rele-
vant settings and parameters for the simulation can
be found in Appendix B.

A number of modifications were made to the in-
put profiles in order to increase the self-consistency
of the simulation. Some complications are foreseen
in incorporating modifications of this nature into
any automatised version of the proposed verification
workflow, due to their reliance on additional signals
and consequent analysis, but the modifications them-
selves are still presented here for completeness.

Firstly, the input safety factor, q, profile was
not prescribed using the standard equilibrium fitting
(EFIT) routine at JET, but was instead calculated
from a separate interpretive JETTO simulation with
the fitted profiles as inputs. Within the framework of
integrated modelling, this is justified by the knowl-
edge that the current profile evolves on a slower time
scale than the kinetic profiles. Thus, to avoid non-
physical feedback loops in the time evolution of the
kinetic profiles due to excessively far initial condi-
tions, the chosen q profile was such that the time
evolution of the simulated internal inductance, li, had
a reasonable match with the measured values at the
desired simulation start time, 10 s. Figure 6 shows
the comparison study of the li traces and their corre-
sponding q profiles. The q profile chosen to be used
as the base setting was the t = 8 s option.

Secondly, an inspection of the time-resolved tem-
perature measurements from the ECE heterodyne ra-
diometer revealed the presence of MHD behaviour,
as can be seen in Figure 7. The presence of saw-

teeth behaviour is visible throughout the discharge
at a frequency of ∼ 1 Hz but is only plotted around
the crash at 10.77 s for clarity. From these measure-
ments, the inversion radius of the sawtooth crash was
estimated to be located at ρtor,inv ' 0.25, but the
presence of similar behaviour with a different inver-
sion radius before sawtooth crash is indicative of ad-
ditional MHD behaviour. As the explicit modelling
of all the complex MHD behaviour within the inner
core is not necessary for the validation of the turbu-
lent transport model, an ad-hoc emulation of the ex-
pected transport of this phenomena was implemented
in the model instead. As such, the q profile was fur-
ther modified with a linear multiplication, such that
q = 1 at the observed inversion radius, and the diffu-
sion coefficients in the simulation were manually in-
creased in the central core region, ie. ρtor < ρtor,inv,
as a proxy for sawtooth-induced transport in this re-
gion. Both the electron and ion thermal diffusion
coefficients, χe and χi respectively, were modified ac-
cording to a Gaussian-shaped function, centered on
ρtor = 0.0 with a height of 1.0 m2 s−1 and a stan-
dard deviation of 0.15 in the toroidal rho coordinates,
such that the additional contribution is sufficiently
reduced but non-zero at the inversion radius. The
density diffusion coefficient, D, was also modified us-
ing an identical function except with a height of 2.0
m2 s−1.

Thirdly, based on the presence of nickel within the
vessel during this discharge observed via spectroscopy
and a suspected population of beryllium due to the
first wall materials and tungsten from the divertor
tiles, the impurity transport module, SANCO [5],
was employed to self-consistently evolve the impu-
rity density profiles. The boundary conditions of the
impurity densities were chosen such that the simula-
tion converged on a 0.8% beryllium (Be) and 0.07%
nickel (Ni) impurity ion composition within the in-
ner core, with both species computed with variable
ionisation levels and the percent composition refer-
enced to the measured electron density, ne. The con-
straint applied was that the beryllium concentration
should be between 0.5% and 1.0%, as given by the
acceptable impurity concentration for the observed
IC heat deposition. The tungsten concentration in
the plasma was adjusted such that the total radiated
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Figure 7: Time traces of the core ECE radiometer channels,
showing the signature behaviour of MHD activity in the core
and the inversion radius, ρtor,inv ≈ 0.25, of the sawtooth insta-
bility located at t ≈ 10.77. The sawtooth behaviour continues
throughout the discharge at a frequency of ∼ 1 Hz, with the
smaller sawtooth-like behaviour before the crash begin indica-
tive of additional MHD instabilities.

power of the simulation was within 10% of the mea-
sured value, leading to a core tungsten density around
0.004% of ne. The computed radiated power profile
from SANCO was then used self-consistently in the
simulation.

Finally, since QuaLiKiz is an electrostatic code,
an ad-hoc emulation of electromagnetic (EM) β-
stabilisation of ITG turbulence was added as a non-
standard option. However, as JET #92436 is a base-
line discharge with a reasonably low βN , it is antici-
pated that these effects will play a minor role in the
predicted profiles of the discharge. The effect of this
stabilisation mechanism is shown to be important for
high performance hybrid scenarios with βN > 2.5 and
significant fast ion populations [21–24], where:

βN = β
aBT
Ip
' 2µ0a

BT Ip

〈∑
s

nsTs

〉
V

(16)

where 〈 〉V denotes a volume-average operation. For
JET #92436, with βN,th = 1.88 and βN,tot = 2.11,
the impact of the EM stabilisation is not expected to
be significant but the option is retained in the simu-
lation for completeness. The ad-hoc implementation
applies a numerical reduction of the normalised ion
temperature gradient, R/LTi

, input to QuaLiKiz by
the ratio of the local thermal energy density over the

local total energy density, Wth/Wtot
4. This ad-hoc

correction does not imply that fast ions are solely re-
sponsible for the EM-stabilisation effect, but rather
acknowledges that the expected level of stabilisation,
including contributions from the thermal component,
βN,th, is strongly correlated with the fast ion content
in discharges with substantially high NBI and IC aux-
iliary heating powers.

In order to test the applicability of known physical
phenomena for recovering the plasma conditions in
JET #92436, including the ad-hoc electromagnetic
stabilisation factor, a number of sensitivity studies
were performed based on the exclusion of certain
physics from the JETTO + QuaLiKiz simulation. In
order to increase the rigour of these tests, the results
were evaluated against the fit uncertainties provided
by the GPR. The sensitivities performed for this iden-
tification analysis are as follows:

• moving the simulation boundary condition to
ρtor = 0.9;

• switching off the calculation of electron temper-
ature gradient (ETG) scale turbulence in Qua-
LiKiz;

• removing the ad-hoc EM-stabilization based on
Wth/Wtot from QuaLiKiz;

• removing the linear contribution of the fast ion
populations from QuaLiKiz.

Figure 8 shows the results of the base simulation and
the described sensitivity studies established earlier in
this section.

From the simulation using the base settings, the
blue line in Figure 8, there is a slight overprediction of
ne and Te within the inner half of the core, ρtor ≤ 0.5,
and an underprediction of Ti near the mid-radius,
ρtor ∈ [0.3, 0.6]. The agreement of these profiles are
considered to be good given the 2σ uncertainties of
the input profiles and the complexity of the simula-
tion undertaken. However, further discussion on the

4The implementation used in this paper has since been de-
termined to overestimate Wfast by a factor of 2.25. While
the effect of this ad-hoc factor on the Ti simulation results
is significant, it is expected to have a negligible effect on the
conclusions made by this study.
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Figure 8: Results of the sensitivity studies regarding the ad-
dition or inclusion of known physical phenomena, where the
input profiles (green lines) are compared against the output
profiles (see legend) and the base case scenario (blue line). Up-
per left: Electron density profiles. Upper right: Electron tem-
perature profiles. Lower left: Ion temperature profiles. Lower
right: Toroidal angular frequency profiles.

possible explanations of these discrepancies are rele-
gated to Section 4.2, after the introduction of results
from a more statistical rigourous study.

The extension of the simulation boundary to ρtor =
0.9 yields similar results for the ne, Te, and Ti pro-
files, which indicates good performance of the tur-
bulent transport model in H-mode baseline plasmas
up until the pedestal top and potentially into the
pedestal. However, as this radial location is just in-
side the pedestal region, as seen in the ne profile, it
was chosen to forego using this extended boundary
condition as the base settings for this validation ex-
ercise. The reduced agreement of the Ωtor profile at
the edge when using the extended boundary condi-
tion is attributed more to a poorly resolved pedestal
in the angular frequency measurements, as further
evidenced by the overall smoothness of the GPR fit.

The exclusion of ETG scale turbulence from Qua-
LiKiz yields a significantly higher Te profile, likely
due to the supression of electron heat transport gen-
erated by the ETG instabilities. The QuaLiKiz ETG
model contains a rudimentary multi-scale model [21]

which is not fully verified against nonlinear multi-
scale simulations [25–27]. Nevertheless, the excellent
agreement for the Te profile using the QuaLiKiz pre-
dictions, with a significant ETG contribution, pro-
vides a compelling case for further nonlinear inves-
tigation of ETG impact in this discharge. Such an
investigation is outside the scope of this paper.

The addition of the ad-hoc EM-stabilization fac-
tor significantly increases the density and ion tem-
perature profile, as the reduction of the normalized
ion temperature gradient input, R/LTi , to QuaLiKiz
reduces the driving mechanism of ITG turbulence.
As this instability is a significant transport channel
for both particles and ion heat, it effectively causes
the integrated modelling suite to drive the local den-
sity and ion temperature gradients higher, in order
to achieve the fluxes required to balance the source
terms in the simulation. While its removal improves
the ne and Te predictions, the reduction of the Ti pre-
diction to values outside the 2σ GPR uncertainties
motivated the decision to retain this ad-hoc factor in
the base settings.

Finally, the contribution of the fast ion species in
the simulations only had a minor impact on the re-
sults. However, the fast ion impact on turbulence in
QuaLiKiz is currently limited to dilution and elec-
trostatic kinetic effects. In this discharge, it is pos-
sible that the EM-stabilisation of ITG modes is fur-
ther enhanced by sharp fast ion gradients, particu-
larly those generated by IC heating at inner radii [21].
This effect is not captured by the simple ad-hoc EM-
stabilisation model employed here and may partially
explain the Ti underprediction. Further investigation
of this effect, which would involve nonlinear gyroki-
netic simulations, is left for future work as it is out-
side the scope of this paper.

Due to the physical arguments for the settings cho-
sen for this execution, they were designated as the
base settings to represent this particular time win-
dow in this discharge. This is further supported by
the level of agreement between the input profiles from
the GPR technique and the output profiles from the
converged JETTO + QuaLiKiz execution, as shown
by the blue line in Figure 8. From these base case set-
tings, a wide variety of additional sensitivity studies
were performed, as further discussed in Sections 4.3
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Figure 9: Point-distribution validation metric for sensitivity
study results regarding the addition or inclusion of known
physical phenomena (see legend). Upper left: Electron density
profiles. Upper right: Electron temperature profiles. Lower
left: Ion temperature profiles. Lower right: Toroidal angular
frequency profiles.

and 4.4.

4.2 Validation of the nominal settings

Figure 9 shows the results of applying Equation (9)
to the profiles shown in Figures 8. As shown in this
figure, the level of agreement between the experimen-
tal fit and the simulation output profiles is quantita-
tively captured by the proposed metric, with a value
of S ≥ 0.5 indicating that the profile lies within the
±2σ boundary of the experimental fit distribution.
The negative impact of the removal of the ETG scale
turbulence calculation in QuaLiKiz on the Te and
Ωtor agreement is clearly evident in Figure 9. In ad-
dition, the negative impact of the removal of the ad-
hoc EM stabilisation factor on the Ti agreement is
also clearly shown.

Also, since the predicted ne and Ti profiles lie at
the edges of the uncertainty envelopes, as shown in
Figure 10, a quantification of the agreement between
prediction and experiment is desirable and will be fur-
ther discussed in Section 3.2. However, this was still
chosen as the base settings as no parameter combina-
tions were found to remedy this while simultaneously

remaining strictly consistent with the experimental
data.

Based on the uncertainty information provided by
the GPR fits, the JETTO + QuaLiKiz boundary con-
ditions for the electron density, ne, electron tempera-
ture, Te, ion temperature Ti, and angular frequency,
Ωtor, set at ρtor = 0.85, were simultaneously varied
within their uncertainties using a Monte Carlo ap-
proach and a normally-distributed random number
generator (RNG). The red shaded regions in Fig-
ure 10 represent the results from the Monte Carlo
study with 100 samples4, executed with the sampled
profiles as both the initial and boundary condition,
computing over 2 s of plasma, or ∼ 10 τE , with si-
multaneous predictive updates on eight channels: the
current, j, main ion density, ni, three impurity ion
densities, nBe, nNi and nW, electron and ion temper-
atures, Te and Ti, and angular frequency, Ωtor. A
more quantitiative statement on the level of agree-
ment is discussed further in this section but can be
considered in good agreement for the four channels
for which experimental measurements exist, ne, Te,
Ti and Ωtor, except for an overprediction in the cen-
tral ne and Te and an underprediction in the mid-
radius Ti. Similar information about the derivatives
of the profiles with respect to the radial coordinate,
ρtor, is shown in Figure 11. From this plot, it becomes
evident that the source of the discrepancies seen in
the profiles result from differences between the fitted
and simulated derivatives within ρtor ∈ [0.4, 0.7] for
ne, and within ρtor ∈ [0.25, 0.8] for Ti.

Figure 12 shows the proposed FOM, given by
Equation (10), and its associated components, A, Pi,
and Po as a function of ρtor, determined from the
näıve Gaussian envelope approximation calculated
from the Monte Carlo boundary condition study per-
formed on JET #92436. The level of agreement
graphically shown in Figure 10 is successfully cap-
tured by the proposed FOM for the comparisons of
all profile quantities, with regions having M & 0.5

4The Monte Carlo analysis was originally performed using
a slightly different boundary condition. The statistics from the
original analysis was carried over to the simulations presented
in this work due to limitations from its computational expense,
as these statistics are not expected to change significantly as
a result of the adjusted boundary condition.
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Figure 10: Comparison of GPR fit profiles (green line) and er-
ror (green shaded region) for JET #92436 against JETTO +
QuaLiKiz output (blue line), using the GPR fits as the initial
/ boundary conditions and the base scenario parameters. The
mean output (red dashed line) and output distribution (red
shaded region) was determined from a Monte Carlo sampling
of the four respective initial / boundary conditions simultane-
ously, with 100 sample points. Upper left: Electron density
profiles. Upper right: Electron temperature profiles. Lower
left: Ion temperature profiles. Lower right: Toroidal angular
frequency profiles.

indicating sufficiently good agreement between the
input and output profile distributions. As expected
from previous analysis, the central core ne, Te and
the mid-radius Ti all exhibit M < 0.5, though it is
not low enough to exclude these profiles to be un-
trustworthy.

By combining all the Monte Carlo study results
into a single data set and calculating the variance,
σ2
o , of that data set using the base case result as

the mean, µo, a probability distribution can be con-
structed to act as the simulation output uncertainty.
By using only these two statistical moments of the
data set, it is näıvely assumed that its distribution
can be described as Gaussian, as given by Equa-
tion (3). Figure 13 shows a comparison between the
proposed FOM, given in Equation (10), and the other
tests which evaluate the agreement between two dis-
tributions described in Section 3.2. The other tests
provide lower scores for the simulated ne and Ti pro-
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Figure 11: Comparison of GPR fit profile derivatives with re-
spect to ρtor (green line) and error (green shaded region) for
JET #92436 against JETTO + QuaLiKiz output derivatives
(blue line), using the GPR fits as the initial / boundary con-
ditions and the base scenario parameters. The mean output
(red dashed line) was determined from a Monte Carlo sam-
pling of the initial / boundary conditions, with 100 sample
points. Upper left: Electron density profile derivatives. Upper
right: Electron temperature profile derivatives. Lower left: Ion
temperature profile derivatives. Lower right: Toroidal angular
frequency profile derivatives.

files and provide higher scores for the simulated Te
and Ωtor profiles compared to the proposed FOM.
This is expected behaviour as the standard tests only
provide a measure of how similar the input and out-
put distributions are to each other, in both location
and shape, resulting in values of unity at the bound-
ary condition (not shown) where the distributions are
identical. The proposed FOM attempts to provide a
measure of the likelihood that a profile drawn from
the output distribution belongs to the input distri-
bution and vice versa, regardless of the match in the
distribution shapes, by the addition of the terms, Pi

and Po. Since these tests do not answer the same
question, the comparison shown is cannot be taken
as quantitatively meaningful. However, the fact that
the trends in the figure-of-merit profiles are similar
provide confidence that the proposed FOM provides
a valid measure of the agreement between the two
distributions.

In preparation for future extrapolation exercises,

15



0.0 0.5 1.0
ρtor

0.00

0.25

0.50

0.75

1.00

M
n
e

A
Pi
Po

M

0.0 0.5 1.0
ρtor

0.00

0.25

0.50

0.75

1.00

M
T
e

0.0 0.5 1.0
ρtor

0.00

0.25

0.50

0.75

1.00

M
T
i

0.0 0.5 1.0
ρtor

0.00

0.25

0.50

0.75

1.00

M
Ω

to
r

Figure 12: Distribution-distribution validation metric, M , for
the kinetic profiles (black line) and associated components, A,
Pi, Po (red, blue and green lines, respectively) calculated from
the Monte Carlo sampling of the JETTO + QuaLiKiz initial /
boundary conditions, based on the GPR fit uncertainties and
the base scenario parameters. Only ρtor < 0.8 is displayed
since the profiles are not evolved for ρtor ≥ 0.8, as a result of
the chosen boundary condition for the JETTO + QuaLiKiz
simulations. Upper left: FOM for electron density profile.
Upper right: FOM for electron temperature profile. Lower
left: FOM for ion temperature profile. Lower right: FOM for
toroidal angular frequency profile.

Table 2 shows a comparison of results of the neutron
rate sensitivity studies, performed with TRANSP,
against the experimental total neutron rate, mea-
sured using calibrated time-resolved neutron coun-
ters with a quoted calibration error of ∼ 10% [28].
All uncertainties are given with ± 2σ or at the ∼95%
confidence interval of the mean. These results pro-
vide further evidence that the Ti profile from JETTO
+ QuaLiKiz is underpredicted, as the neutron rates
using the simulated profiles consistently fall under the
measured neutron rate, though still within the ± 2σ
uncertainty ranges for pure Ni. These results are con-
sistent with previous works on this matter [29] and
accentuate the importance of reliable impurity com-
position and profile estimations for any extrapolation
exercises, due to the impact of fuel dilution on the to-
tal fusion rate.

The Ti underprediction is suspected to come from
the underestimation of the EM-stabilization factor
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Figure 13: Comparison of the validation figure-of-merit pro-
files (black line), calculated from the Monte Carlo sampling of
the JETTO + QuaLiKiz initial / boundary conditions based
on the GPR fit uncertainties and the base scenario parame-
ters, against other metrics, (red, blue, green, and yellow lines,
respectively). Only ρtor < 0.8 is displayed since the profiles
are not evolved for ρtor ≥ 0.8, as a result of the chosen bound-
ary condition for the JETTO + QuaLiKiz simulations. Upper
left: Metrics for electron density profile. Upper right: Metrics
for electron temperature profile. Lower left: Metrics for ion
temperature profile. Lower right: Metrics for toroidal angular
frequency profile.

provided by the ad-hoc implementation. The pres-
ence of IC auxiliary heating within the analyzed time
window generates a large fast ion pressure gradient in
the energy deposition region, with a maximum abso-
lute value of ∂pfast,IC/∂ρtor = (5.2± 0.3)×105 J m−3.
Due to the known dependency of this effect on large
fast ion pressure gradients [21, 30], generated in this
discharge by IC auxiliary heating, the ad-hoc EM-
stabilization factor, based on Wth/Wtot, may under-
estimate the magnitude of the stabilization effect.
However, the quantification of this shortcoming is
outside the scope of this study and deeper investi-
gations are left as future work.

4.3 Impact analysis of rotation profiles

In addition to the Monte Carlo analysis of the model
sensitivity to boundary conditions, the GPR fit un-
certainties also allow for greater statistical rigour in
the modification of prescribed input profiles for the
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Table 2: Results of neutron rate studies performed using TRANSP based on simulation data for JET #92436, with a line-
integrated Zeff measurement of 1.76 and an impurity composition of 0.8% Be, 0.07% Ni, and 0.004% W. Measurements taken
from calibrated time-resolved neutron counters with a quoted calibration error of ∼ 10% [28]. The uncertainty ranges for the
TRANSP results come from setting the Ti profile at its ±2σ values and leaving all other inputs identical.

Data Source Neutron Rate [n/s] with Zeff + 20% Uncertainty (± 2σ)

Measured 2.8× 1016 – 0.3× 1016

GPR, Be/Ni/W mix 3.2× 1016 3.0× 1016 0.7× 1016

JETTO + QLK, Be/Ni/W mix 2.9× 1016 2.5× 1016 0.3× 1016

integrated model. A typical example of such a pre-
scribed input profile is the toroidal angular frequency,
Ωtor, within simulations using interpretative momen-
tum transport, meaning that the Ωtor profile remains
fixed to its initial condition. To demonstrate this ca-
pability and the effects of this modification within
this discharge, the following sensitivity studies were
performed:

• switching off the rotational contributions to the
fluxes calculated by QuaLiKiz, applied only to
ρtor ≥ 0.5 in the base settings [7];

• adjusting the angular rotation, Ωtor, profile
within ± 2σ to have a steeper gradient at the
simulation boundary;

• adjusting the angular rotation, Ωtor, profile
within ± 2σ to have a shallower gradient at the
simulation boundary.

Figure 14 shows the results of these sensitivity stud-
ies.

The impact of the rotation shear in QuaLiKiz ap-
pears primarily on the density profile, which is at-
tributed to a strong E × B shear stabilisation effect
on ITG instabilities within QuaLiKiz. Despite the
fact that ITG instabilities also drive ion heat trans-
port, this effect is not as prevalent in the Ti profile. It
is likely that the increasing density gradient prevents
further increase of Ti with increasing E × B shear,
as this simulation performs both predictive heat and
particle transport. This increasing density gradient
increases the turbulence drive and compensates the
stabilising effect of the E × B shear on the ion heat
flux. The sensitivity of density peaking to the ro-
tational shear is consistent with previous works [22,
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Figure 14: Results of the sensitivity studies regarding the
toroidal rotation profile modifications, where the input profiles
(green lines) are compared against the output profiles (see leg-
end) and the base case scenario (blue line). These simulations
were performed using interpretive momentum transport. Up-
per left: Electron density profiles. Upper right: Electron tem-
perature profiles. Lower left: Ion temperature profiles. Lower
right: Toroidal angular frequency profiles.

31], although a more detailed transport analysis of
this effect is recommended and left for future work.

Figure 15 shows the analysis of these sensitivities
according to the FOM given in Equation (9). The
negative impact of the removal of the rotation contri-
butions within QuaLiKiz on the ne and Ti agreement
can be seen.
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Figure 15: Point-distribution validation metric for sensitiv-
ity study results regarding the toroidal rotation profile mod-
ifications (see legend). These simulations were performed us-
ing interpretive momentum transport, thus the Ωtor figure-of-
merit calculation is not meaningful here. Upper left: Electron
density profiles. Upper right: Electron temperature profiles.
Lower left: Ion temperature profiles. Lower right: Toroidal
angular frequency profiles.

4.4 Impact analysis of impurity concentra-
tion and composition

Due to the inclusion of predictive impurity transport
calculations via SANCO, sensitivity tests were also
performed regarding the impurity concentration and
composition in order to assess the validity of the cho-
sen base settings. The sensitivities performed for this
analysis are as follows:

• increasing the initial Zeff condition by 20%;

• setting Zeff = 1 in the JETTO simulation by
disabling the impurity transport module.

Figure 16 shows the results of these sensitivity stud-
ies.

The dilution is expected to strongly stabilize ITG
turbulence [32, 33], which is reflected in the increase
of Ti with increasing Zeff. However, the trend is
also noticed in the Te and an inverse trend is seen
in the Ωtor profile, where increased Zeff slows down
the plasma rotation. An analysis of the QuaLiKiz
growth rates show that the ETG instabilities become
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Figure 16: Results of the sensitivity studies regarding impu-
rity concentration and composition modifications, where the
input profiles (green lines) are compared against the output
profiles (see legend) and the base case scenario (blue line).
These simulations were performed using interpretive momen-
tum transport. Upper left: Electron density profiles. Upper
right: Electron temperature profiles. Lower left: Ion tempera-
ture profiles. Lower right: Toroidal angular frequency profiles.

less dominant as the Zeff increases, possibly explain-
ing the rise in the Te. This is consistent with known
ETG critical threshold dependencies [34]. It is un-
certain whether the impurities have a direct impact
on the momentum transport or the observations are
a result of an indirect effect through the modifica-
tion of other profiles, particularly the Te profile in
this case. However, the clarification of the underly-
ing mechanisms and their relative strengths is left for
future work.

Overall, all of the performed physics studies ap-
pear to agree with current literature, with the largest
impact on the formation of these particular profiles
being the stabilizing effect of flow shear. This high-
lights the importance of ensuring self-consistent pro-
files through the predictive calculation of the Ωtor

profile simultaneously with the other quantities, es-
pecially for extrapolation to D-T plasmas.

The application of the point-distribution metric de-
scribed in Equation (9) to the data presented in Fig-
ure 16 were omitted from this paper as they did not
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reveal additional insights.

5 Conclusions

A novel implementation of model validation, in-
corporating the use of Gaussian process regres-
sion techniques in profile fitting, has been proposed
and demonstrated in JETTO integrated modelling
of JET-ILW discharge #92436 with the QuaLiKiz
quasilinear turbulence model. A comparison between
the fitted and simulated profiles showed that an ex-
cellent level of agreement was achieved in all chan-
nels, with discrepancies in both the core ne and Te
profiles as well as in the mid-radius Ti. However,
due to the high sensitivity of the ne prediction in the
model to the simulation boundary conditions, only
the temperature profile discrepancies are considered
to warrant more in-depth studies. Two figures-of-
merit were proposed, one for comparing a point and
a distribution and one for comparing two distribu-
tions, which were shown to sufficiently quantify the
level of agreement between the experimental profiles
and the simulated profiles, with figure-of-merit scores
& 0.5 indicating the two profiles fall within ±2σ un-
certainty bounds of each other. All four of the major
predictive channels in the base simulation have figure-
of-merit scores > 0.5 for the point-distribution metric
and ∼ 0.5 for the distribution-distribution metric, ef-
fectively and quantitatively evaluating the degree of
trust that can be assigned to these simulation results.

Additionally, the neutron rates calculated from
the fitted and simulated profiles, using interpre-
tive TRANSP, were compared against the measured
neutron rate, agreeing with the experimental value
within the ± 2σ uncertainties. This showed the sen-
sitivity of the neutron rate prediction to the various
impurity composition estimates and relative concen-
tration estimates, made via Zeff. The discrepancy in
the simulated Ti profile is suspected to be the result
of an incomplete description of the fast ion contribu-
tions to the instabilities driving turbulent transport.
It was also shown that the Ωtor profile is crucial to
the accuracy of integrated modelling results of JET
discharges and that QuaLiKiz is capable of providing
reasonable momentum transport predictions within

the studied plasma regime. This capability is ex-
pected to be important for extrapolating to future
scenarios, such as deuterium-tritium plasmas.

As the proposed data processing and fitting proce-
dure lends itself well to automatization, provided that
the hyperparameter optimisation settings have been
properly tuned, it opens the possiblity of large-scale
model verification and validation through the com-
parison of thousands of different discharges. How-
ever, a bottleneck remains in performing the in-
tegrated modelling executions due to the complex-
ity of setting up the simulations and ensuring self-
consistency between any additional inputs to the
model. Future work is foreseen in applying this
procedure to similar data from other tokamak de-
vices, such as ASDEX-Upgrade, Alcator C-Mod, and
WEST, with the aim of developing a large database of
discharges suitable for performing model verification
and validation studies on a wide variety of gyroki-
netic codes. Furthermore, when combined with their
corresponding model outputs, this large database can
be used to generate training sets for neural network
emulations of the target model. Such emulations not
only reduce the computational resources required for
Monte Carlo uncertainty quantification studies, sim-
ilar to the one presented in this paper, but also allow
for the development of extremely quick and reliable
model emulators for use in scenario optimization and
tokamak controller design.
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A Gaussian processes

A Gaussian process (GP) [3, 4] is strictly defined a
collection of random variables whose joint distribu-
tion, along with the joint distribution of any finite
set of them, is Gaussian. As such, a GP is com-
pletely specified by its mean function, m(x), and its
covariance function, k(x1, x2), also known as kernel,
where x, x1 and x2 all represent the same coordinate
space. In general, the theory assumes that m(x) = 0,
as it is simple to devise a transformation which makes
this true and is easy to apply to the data before and
reverse after the completion of the algorithm.

Given a N -dimensional set of data, (X,Y ), a kernel
function describing the covariance between the data
points, k(x1, x2, θ), and a measurement error func-
tion, r(x), a Gaussian process regression (GPR) at-
tempts to fit the data in a statistically rigourous man-
ner. One advantage of this approach lies in the re-
placement of pre-defined basis functions with the ker-
nel, allowing for a more generalized fit. However, the
disadvantage is that the fitted function cannot be ex-
pressed in an analytical form, excluding further anal-
ysis of the fits in terms of comparing the mathemat-
ical model selection against equations derived from
theoretical interpretations of the underlying process
producing the data. All algorithms mentioned in this
section are implemented within the “GPR1D” tool,
written in the Python programming language for ap-
plying the GPR technique to one-dimensional data.

A.1 Mathematical Overview

As mentioned in Section 2.1, the GPR applies
Bayesian statistical principles to general regression
fitting. This section provides a brief synopsis of the
mathematical concepts used in the derivation of the
GPR algorithm.

The generalized regression model is represented as
follows:

y = Φ(x, β) + ε (17)

where Φ represent the set of basis functions in the
regression analysis, β represents the set of fit coeffi-
cients or free parameters to be adjusted by the fitting
routine, and ε represents the residuals of the model.

The derivation starts with the assumption that the
optimal value of β lies within a probability distri-
bution, p(β), known as the prior. Then, as data
points, (X,Y ), are added to test this hypothesis, the
Bayesian inference framework can be applied to up-
dating the prior to form the posterior distribution as
follows:

p(β|X,Y ) =
p(Y |X,β) p(β)

p(Y |X)
(18)

where the denominator, p(Y |X), is known as the
marginal likelihood which is a normalization factor
determined by the combined likelihood over all pos-
sible models. The posterior distribution effectively
describes all the possible models within the confines
of the pre-defined basis functions, Φ, and their re-
spective probabilities of being the correct model given
the available data, (X,Y ).

However, the purpose of a regression algorithm is
usually to make predictions of points, (X∗, Y∗), that
are not explicitly provided as input data, as a means
of interpolating or extrapolating to unexplored ter-
ritory. The predictive distribution, p(Y∗|X∗, X, Y ),
determines the probability distribution of predictions
across all the regression models described by the pos-
terior distribution, as follows:

p(Y∗|X∗, X, Y ) =

∫ ∞
−∞

p(Y∗|X∗, β) p(β|X,Y ) dβ (19)

The normalization factor of the predictive distribu-
tion is omitted from the previous equation as it is
often unnecessary in practice, ie. only the moments
of the predictive distribution are regularly calculated.
However, for completeness, this normalization factor
is identical to the marginal likelihood from the pos-
terior distribution.

Furthermore, if all the probability distributions
in this framework are assumed to be Gaussian or
normally-distributed, then these equations can be an-
alytically solved and simplified, resulting in the equa-
tions of the GPR predictive algorithm. This analyt-
ical solution provides an added advantage that the
explicit definition of the basis functions, Φ, can be
replaced by a more generic concept, the model covari-
ance function, k(x1, x2). This replacement, known as
the kernel trick, effectively allows for the use of an
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infinite set of basis functions through a clever selec-
tion of the model covariance function, making the
GPR technique more similar to an universal function
approximator.

A.2 Predictive algorithm

Firstly, the contribution of the measurement noise,
or the output noise, to the kernel must be defined.
In order to account for the possibility of spatially-
varying noise, it was decided to implement this noise
as such:

R(x1, x2) = r(x1) r(x2) δ(x1 − x2) (20)

Then, after selecting the hyperparameters, denoted as
a set with θ, for the kernel, a prediction of the fit and
its confidence interval, evaluated at the points, X∗,
can be made using the following set of equations [3,
16]:

Y∗ = K(X∗, X)L−1 Y

σ2
Y∗ = L∗ −K(X∗, X)L−1K(X,X∗)

(21)

where the short-hand K = K(X,X), R = R(X,X),
K∗ = K(X∗, X∗), R∗ = R(X∗, X∗), L = K +R, and
L∗ = K∗ + R∗ was used to improve the readability.
Most GPR implementations, including this one, mod-
ify the Y -values such that Ȳ = 0 and Y ∈ [−1, 1] and
reverse these changes afterwards, in order to improve
the numerical stability of the algorithm.

Additionally, provided that the derivatives of the
kernel can be calculated, the derivatives of the fit and
its confidence intervals can also be predicted directly
from the data using the following equations [35]:

Y ′∗ =
∂K(X∗, X)

∂X∗
L−1 Y

σ2
Y ′∗

=
∂2L∗

∂X∗ ∂X∗
− ∂K(X∗, X)

∂X∗
L−1 ∂K(X,X∗)

∂X∗

(22)

If the error function, r(x), is not known, it can
be estimated using a separate GPR on the data set,
(X,ΣY ), where ΣY represents the standard deviation
of the Y -values [16]. For this GPR, it is recommended
to assume a constant error function with a normalized
value of ∼ 10−3.

A.3 Hyperparameter optimization

Within the GPR framework, the hyperparameters of
the chosen kernel, θ, act as the free variables which
can be adjusted to fine-tune the fit. The optimal
value for these hyperparameters can be obtained by
maximizing the log-marginal-likelihood (LML), given
as follows [3]:

ln p(Y |X) = −1

2
Y TL−1Y − λ

2
ln |L| − N

2
ln 2π (23)

where the hyperparameter-dependence is given by
L ≡ L(θ), the vertical brackets represent the deter-
minant of the enclosed matrix, λ is the regularization
parameter, used to control the degree of complexity
in the model, and N is the number of data points to
be fit. By maximizing this value, the chosen model is
the most probable match to the input data but pro-
vides no guarantee that the physical process behind
the data is modelled correctly. Note that this is only
one optimization criterion that can be applied to the
hyperparameters and that other criteria may provide
models that have different relations to the data.

Most maximization algorithms require the deriva-
tive of Equation (23) with respect to each of the hy-
perparameters, θj , which can be calculated directly,
provided that an analytical form exists for the deriva-
tive of the kernel function with respect to these hy-
perparameters, as such:

∂ ln p(Y |X)

∂θj
=

1

2
Y TL−1 ∂K

∂θj
L−1Y − λ

2
tr

(
L−1 ∂K

∂θj

)
(24)

where tr(...) represents the trace, the sum of all the
entries along the main diagonal, of the enclosed ma-
trix. The desired solution will then be the combina-
tion of hyperparameters, θ, which satisfy the follow-
ing criteria:

∇θ ln p(Y |X) = 0 (25)

However, since Equation (24) typically forms a non-
linear system of equations for the set of θ, it becomes
difficult to calculate the solution explicitly. Thus,
an iterative method, such as a gradient-based opti-
mization algorithm, is used to find the desired solu-
tion. Of the optimization methods discussed below,
the nominal implementation uses the Adam method
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for fitting both the plasma profiles and the associated
error function.

A.3.1 Gradient ascent method

The most basic gradient-based optimization algo-
rithm for maximization problems is known as the gra-
dient ascent method. It starts with an initial guess,
θ0, and iteratively updates that guess in increments,
labelled with index i, as follows:

θi+1 = θi + ∆θi (26)

where the step, ∆θi, is calculated according to a step
estimator.

The step estimator used in this method is as fol-
lows:

∆θi = γGi (27)

where γ, called the learning rate, was set to a value
of 10−5 and

Gi ≡ ∇θ ln p(Y |X)|θ=θi (28)

This simple method is considered to be the most
robust out of all the gradient-based optimization al-
gorithms but it also suffers from a slow convergence
rate. Thus, a number of additional methods were im-
plemented in an attempt to improve the performance
of the algorithm, though only the ones relevant to this
application will be discussed here.

A.3.2 Adaptive moment estimation method
(Adam)

This method introduces a way for the algorithm to
autonomously adjust the learning rate for each hyper-
parameter individually, such that a more intelligent
approach path to the optimal solution can be deter-
mined. This is done by including some memory of
both the gradient with respect to the hyerparameters
and the square of the gradient to the step estimator.
This is done as follows [36]:

∆θi = γ
[
V̂

1/2
i + ε

]−1

M̂i (29)

where all operations are done element-wise, γ was set
to 10−2, ε ∼ 10−8 is provided to avoid division-by-
zero errors in the algorithm and

M̂i =
1

1− βi1
Mi , Mi = β1Mi−1 + (1− β1) Gi

V̂i =
1

1− βi2
Vi , Vi = β2Vi−1 + (1− β2) G2

i

(30)

where β1 ∈ [0, 1], β2 ∈ [0, 1] and Gi is given by Equa-
tion (28). For fusion data, β1 = 0.4 and β2 = 0.8 were
found to adequate choices for these memory factors.

Mathematically, this algorithm can be seen as at-
tempting to pick steps which minimize a weighted
l2-norm of the gradient, represented by Vi, and a
strong penalty is applied to steps which dramatically
increase this value. Thus, the algorithm tends to
move towards the regions where the gradients are
zero with fewer iterations. This conveniently turns
out to be the desired behaviour as the solutions to
the maximization problem have a gradient of zero.

B Detailed base simulation settings

The JETTO + QLK settings used as the definition
of the base settings in this paper are detailed in Ta-
bles 3, 4, and 5.
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Table 3: Summary table of most pertinent JETTO settings of the base case simulation, discussed in Section 4.1.

Field Name / Option Value / Setting

JAMS Version v080817
Shot number 92436
Number of grid points 101
Start time1(s) 50
End time1(s) 52
Min. time step (s) 10−13

Max. time step (s) 10−3

Ion (1) mass (u) 2
Simulation boundary ρtor = 0.85
Equilibrium ESCO
Equilibrium boundary 0.998
Toroidal Field 2.8 T
Plasma Current 2.9 MA
Neoclassical transport model NCLASS

Additional transport2 Electron heat Ion heat Particle
Shape Gaussian Gaussian Gaussian
Centre 0.0 0.0 0.0
Height (cm2 s−1) 104 104 2× 104

Width 0.212 0.212 0.212

1 The reference time, t = 0, in the PPF data system at JET is set as the time when the magnetic coils
start ramping up, instead of the time of plasma breakdown as is usual in the fusion physics community.
The time interval between these two events is typically 40 s at JET. This interval is not subtracted
here such that the entries in this table represent the exact inputs to the simulation suite for replication
purposes.
2 These transport coefficients were added to the computed ones before advancing the transport calcu-
lation iteration, and were used here to emulate the MHD-induced transport within the central core
for reasons of simplicity.

Table 4: Summary table of most pertinent SANCO settings of the base case simulation, discussed
in Section 4.1.

Field Name / Option Value / Setting

Impurity Be Ni W
Index 1 2 3
Mass (u) 9 58 184
Charge (e) 4 28 74
ADAS Year 96 89 50
Initial condition Coronal
Boundary condition ρtor = 0.85
Effective charge, Zeff (e) 1.76
Time steps per JETTO step 25
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Table 5: Summary table of most pertinent JETTO–QuaLiKiz settings of the base
case simulation, discussed in Section 4.1.

Field Name / Option Value / Setting

JETTO–QuaLiKiz Version Git hash: 8c97aca0c0
Inner simulation boundary ρtor,min = 0.15
Outer simulation boundary ρtor,max = 0.85
Particle diffusion multiplier 1.0
Bohm electron diffusion multiplier 0.08
Bohm ion diffusion multiplier 0.08
Bohm momentum diffusion Prandtl number 1.25
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