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Abstract 

Hydrogen storage properties of Li functionalized B2S honeycomb monolayers are 

studied using density functional theory calculations. The binding of H2 molecules to the 

clean B2S sheet proceeds through physisorption. Dispersed Li atoms on the monolayer 

surface increase both the hydrogen binding energies and the hydrogen storage capacities 

significantly. Additionally, ab initio molecular dynamics calculations show that there is 

no kinetic barrier during H2 desorption from lithiated B2S. Among the studied B8S4Lix 

(x = 1, 2, 4, and 12) compounds, the B8S4Li4 is found to be the most promising 

candidate for hydrogen storage purposes; with a 9.1 wt% H2 content and 0.14 eV/H2 

average hydrogen binding energy. Furthermore, a detailed analysis of the electronic 

properties of the B8S4Li4 compound before and after H2 molecule adsorption confirms 

that the interactions between Li and H2 molecules are of electrostatic nature. 
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1. Introduction 

Hydrogen is an energy carrier that has attracted interest in recent years. Using the 

electricity generated by renewable sources, hydrogen can be produced from water. It 

can also be fed to a fuel cell to generate electricity when needed, such as in fuel cell 

electric vehicles.[1] A key issue for the efficient utilization of hydrogen is storing it at 

practical conditions with high gravimetric and volumetric densities.[2, 3] 

The chemical composition of storage materials has a direct influence on the effective 

gravimetric hydrogen capacity. Thereby, only lightweight chemical elements and their 

compounds are promising for reaching DOE targets for onboard hydrogen storage.[4] 

Nevertheless, there are several materials that are potentially interesting for the reversible 

storage of hydrogen. In these, hydrogen can be stored in atomic and molecular form. In 

the former, during the absorption and desorption processes, chemical bonds need to be 

broken and formed, affecting the (de)hydrogenation kinetics.[5-7] For the latter, highly 

porous open structures decorated with lightweight metal atoms, with an effort to 

improve their interactions with hydrogen molecules[8-10], attracted significant interest 

in recent years.[11-14] Among these are the metal decorated, atomically thin 

two-dimensional (2D) materials. As for the candidate metal atom, Li is usually preferred 

due to its light atomic weight, and the relatively small cohesive energy, when compared 

to other candidate metals. Li decorated C[15-20], B[21-23], C&B[24-27], and 

C&N[28-31], 2D materials have been studied for hydrogen storage. 

A completely new, atomically thin 2D material, B2S, has very recently been predicted 

by Wang and co-workers using Particle Swarm Optimization method.[32] B2S, with the 

same number of valence electrons as graphene, was predicted to have a honeycomb 

structure at its ground state. Li et al. have studied the Li and Na storage properties of 

2D-B2S monolayers and compared the key features of B2S to the strained graphene.[33] 
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Performing ab initio Molecular Dynamics (AIMD) simulations, they found that the fully 

Li-covered B2S monolayer was thermally stable at 400 K and was a good candidate 

anode material for both Li and Na batteries. In this paper, we present the results of our 

density functional theory (DFT) calculations for the study of hydrogen storage 

properties of single layer B2S and Li-decorated single layer B2S sheets with different Li 

loading concentrations.  

 

2. Computational methods 

DFT calculations were carried out using a plane-wave basis, as implemented in the 

Vienna ab initio simulation package (VASP)[34-36].  We used the projector augmented 

wave (PAW) method[37, 38] treating for H, Li, B, and S, one, three, three and six 

electrons, respectively, as valence. We employed the generalized gradient 

approximation (GGA), in the form of the Perdew−Burke−Ernzerhof (PBE)[39] 

functional. To account for the dispersion interactions, we used the DFT-D3 correction 

method of Grimme[40, 41] with its default force-field parameters. The PAW technique, 

PBE functional and the DFT-D3 correction scheme have been applied successfully for 

studying the interactions between different host materials and molecular 

hydrogen[41-44].  

The kinetic energy cutoff for the plane-wave expansion of the electron wave functions 

was set at 500 eV. For all structural optimizations and the calculation of electronic 

properties of the optimized structures, we used Γ-centered 6 × 10 × 1 regular k-point 

grids[45]. A vacuum spacing of 20 Å was used to avoid interactions between 

monolayers. For the isolated H2 molecule calculations, we used a 15 Å edge cubic box 

with periodicity. The relaxations of atomic positions were carried out with no spatial 

and symmetry constraints. The convergence criterion for self-consistency was set to 
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0.01 meV between two consecutive electronic steps. The structural optimizations of the 

structures were assumed to be complete when the total remaining forces on the atoms 

were lower than 0.01 eV/Å. The tetrahedron method with Blöchl corrections was 

applied for the calculation of electronic density of states (DOS). 

We calculate the binding energy of Li atoms to the most stable atomic configuration 

B2S monolayer, having the chemical formula of B8S4 in its primitive cell, as follows 

𝐸!!" = 𝑥𝐸!" + 𝐸!!!! − 𝐸!!!!!"! /𝑥    (1) 

where ELi is the total energy of an isolated Li atom, EB8S4 and EB8S4Lix are the total 

energies of the B8S4 primitive unit cells prior and posterior to Li decoration, 

respectively.  

We calculate the consecutive and the average binding energies of H2 molecules to the 

B8S4Lix compounds using Equations (2) and (3), respectively. 

𝐸!
!!!!"# = 𝐸!! + 𝐸!!!!!"!!!!!! − 𝐸!!!!!"!!!!  (2) 

𝐸!
!!!!"# = 𝑦𝐸!! + 𝐸!!!!!"! − 𝐸!!!!!"!!!! /𝑦  (3) 

where EH2 and EB8S4LixH2y are the total energies of the H2 molecule and the stepwise 

hydrogenated B8S4Lix compounds, respectively.  

 

3. Results and discussions 

The optimized primitive cell of the B2S monolayer is shown in Figure 1(a). The 

orthogonal primitive cell contains four formula units and has cell parameters of a = 

9.14, b = 5.26, and c = 20.00 Å, while the latter represents vacuum distance between 

monolayers. The optimized B–B and B–S bond lengths are 1.62 and 1.82 Å, 

respectively. These optimized lattice parameters and bond lengths are in accordance 

with the results of Wang et al.[32] 
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Figure 1. The top and side views of (a) the optimized B2S primitive cell with four 

formula units and (b) the most stable geometry of H2 molecule on B2S monolayer. The 

purple, yellow and white spheres denote B, S and H atoms, respectively. 

 

We first study the interaction of hydrogen molecule with the B2S sheet by considering 

different absorption sites on B2S, including the top of B and S atoms, top of B–B and 

B–S bond centers, and top of hexagonal ring centers, all with respect to the center of the 

molecule. We construct a total of twenty different H2 configurations where the 

hydrogen molecules have been placed parallel to the B2S sheet with its center of mass 

approximately 2 Å away from the surface. After structural optimizations, we find that 

the lowest energy configuration is when the H2 molecule is residing over the center of 

hexagonal rings with an angle of approximately 30° from its axis to the monolayer, as 

shown in Figure 1(b). The binding energy of the H2 molecule is calculated as 0.08 

eV/H2, which is similar to the physisorption energy of H2 on graphene[46, 47]. As 

shown in Figure 1, the structural integrity of the B2S monolayer is not affected with the 

presence of H2 molecules. 
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Figure 2. The most stable structures of (a) B8S4Li, (b) B8S4Li2, (c) B8S4Li4, and (d) 

B8S4Li12 compounds. The Li atoms are shown as blue spheres. 

 

Next, we study the interaction of Li atoms with the B2S monolayer. For the 

functionalization of B2S monolayer with a single Li atom, we consider different 

adsorption sites for Li, including over the hexagon centers, over the center of B–B and 

B–S bonds, and over the B and S atoms. The most stable position for Li is found to be 

over the para-hexagon center, with a calculated binding energy of 1.75 eV/Li. We also 

consider that both sides of the B2S monolayer can be functionalized with additional Li 

atoms. The calculated average binding energies of Li atoms for the two-, four-, and 

twelve-atom decorated B8S4 cells are 1.89, 1.93, and 1.84 eV/Li, respectively. The 

optimized structures of B8S4Lix compounds are shown in Figure 2. The calculated 
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binding energies of Li atoms for all the B8S4Lix compounds are higher than 1.71 eV/Li, 

the DFT calculated cohesive energy of bulk Li. These results indicate that, within the 

studied loading concentrations, the B8S4Lix compounds are stable with respect to 

clustering of Li atoms on the monolayer surface. As seen in Figure 2, the B2S 

monolayer can in principle be functionalized at all of its hollow sites with Li atoms. 

Although the incremental loading of Li atoms causes visible structural deformations on 

the B2S monolayer, its structural integrity is not broken. The optimized B8S4Li12 

structure that is shown in Figure 2(d) is very similar to the formerly reported structure 

of the same compound by Li et al.[33] For the heavily Li-loaded B8S4Li12 compound, 

the calculated distances between the first order neighbors of Li atoms range from 2.82 

to 3.58 Å. Meanwhile, with the addition of twelve Li atoms to the B8S4 primitive cell, 

the average distance between neighboring hollow sites of the B2S layer increases 

slightly from 3.04 to 3.06 Å. This is comparable to the Li–Li distance of 2.91 Å in bulk 

Li crystal, and it is almost 23% larger than the distance between the hollow sites of the 

hexagons in graphene[48], where the Li atoms are adsorbed with the lowest energy but 

they cannot easily form a densely packed Li monolayer.  

 

 

Figure 3. From (a) to (d), the side and top views of the optimized B8S4LiH2y (y = 1–4) 

compounds with gradually increasing amounts of hydrogen molecules.  
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Compound 𝐸!
!!!!"# 𝐸!

!!!!"# 

𝑑!"!!! 

𝑑!!! QB  QS QLi QH 1st  

H2 

2nd 

H2 

3rd  

H2 

4th  

H2 
ave 

B8S4Li         +0.53 -1.29 +0.87  

B8S4LiH2 0.19 0.19 2.00    2.00 0.76 +0.54 -1.29 +0.87 -0.02 

B8S4LiH4 0.18 0.18 2.04 2.05   2.05 0.76 +0.55 -1.30 +0.86 -0.01 

B8S4LiH6 0.10 0.15 2.14 2.19 2.48  2.27 0.76 +0.55 -1.30 +0.88 -0.01 

B8S4LiH8 0.07 0.13 2.12 2.23 2.89 3.22 2.62 0.76 +0.55 -1.29 +0.88 -0.01 

Table 1. The consecutive (𝐸!
!!!!"#) and the average (𝐸!

!!!!"#) binding energies of H2 

molecules are given in eV/H2. The Li–H2 distances (𝑑!"!!!) as measured from the 

center of the H2 bonds and the H–H bond lengths (𝑑!!!) are given in Å. The average 

Bader charges per atom type of the B8S4LiH2y compounds are given in units of e. 

 

After assessing the feasibility of Li decoration on B2S, we then study the adsorption of 

H2 molecules on Li decorated B2S monolayers. For B8S4Li, the calculated consecutive 

and average binding energies of hydrogen molecules using the Equations (2) and (3), 

respectively, are shown in Table 1. The first H2 molecule binds with 0.19 eV to B8S4Li. 

The average binding energy of H2 molecules decreases with each added hydrogen on 

the compound, finally dropping to 0.13 eV/H2 for B8S4LiH8. As shown in Figure 3 and 

Table 1, up to three H2 molecules can be accommodated around the protruding Li atom 

of the B8S4Li compound whose distances to metal, 𝑑!"!!!< 2.5 Å. Addition of the 

fourth hydrogen molecule is energetically feasible, though the consecutive binding 

energy, 𝐸!
!!!!"#, of the fourth H2 molecule is only 0.07 eV/H2. This value is similar to 

the calculated binding energy of the hydrogen molecule to the B2S monolayer. 

Moreover, the optimized distance of the outermost H2 molecule to Li atom is 3.22 Å. 

These results show that the interaction of the fourth H2 molecule with the B8S4Li is 
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relatively weaker, and using this compound up to three H2 molecules can effectively be 

stored, which results to B8S4LiH6 with hydrogen content of 2.7 wt%. Therefore, both 

the thermodynamics and steric effects in relation to the exposed area of the metal atom 

determine the practical amount of H2 molecules that can be stored[49]. 

 

 

Figure 4. The snapshots from the side views of the B8S4LiH6 compounds as obtained at 

the end of 20 ps AIMD simulations at T = 50, 100, 150, 200, 250, and 300 K.  

 

Additionally, we carry out AIMD calculations[50] on the fully optimized B8S4LiH6 

compound to further study its stability and the dynamics during the hydrogen desorption 

process. AIMD calculations have been performed between the temperatures of 50 and 

300 K, with 50 K intervals. During the AIMD simulations, the H2 molecules that moved 

noticeably far away from the surface have been removed from simulation cells and the 

calculations have been carried on with the remaining H2 molecules. Figure 4 shows the 

structures at the end of 20 ps for six different AIMD runs. At 50 K, all the three H2 

molecules stay adsorbed on the Li atom. At 100 K, only one H2 molecule has been 

found to depart away from the Li atom, but the molecule has stayed close to the surface, 
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with distances of < 3 Å to the surface, throughout the entire 20 ps.  At T = 150 and 200 

K, one and two H2 molecules have been released from the B8S4LiH6 compound, 

respectively. Similar to 200 K, at 250 K, only one H2 molecule has remained adsorbed. 

However, unlike 200 K, at T = 250 K the 𝑑!"!!! distances has reached up to 2.8 Å 

during the simulation. Finally at T = 300 K, there are no H2 molecules left on the B8S4Li 

compound. It is remarkable that for all the studied temperatures here, the B8S4Li 

compound was stable as in accordance with the previous results on the fully Li covered 

B2S monolayers at 400 K[33]. In contrast to commonly studied atomic hydrogen storage 

materials, such as MgH2[51-53], our AIMD calculations show that there are no kinetic 

barriers for hydrogen desorption from Li-decorated B2S. 

On both of the B8S4Li2 and B8S4Li4 compounds, up to three hydrogen molecules are 

adsorbed per Li, with average binding energies of 0.15 and 0.14 eV/H2, respectively. 

For B8S4Li2 and B8S4Li4, this leads to noteworthy hydrogen storage capacities of 6.2 

and 9.1 wt%, respectively. On the B8S4Li12 compound, each Li atom of a densely 

packed Li monolayer interacts with a H2 molecule via a significantly weaker average 

binding energy of 0.06 eV/H2.  

We further investigate the prior to lithiation and posterior to hydrogenation phases of 

the most interesting compound for hydrogen storage purposes, the B8S4Li4, by 

calculating the electron localization functions (ELF)[37], performing Bader[54] charge 

analysis and the electronic density of states (DOS) calculations. Calculation of the ELF 

provides useful information about the electron distribution within the structure of the 

whole compound. In Figure 5 (a–c), the optimized structures of the B8S4, B8S4Li4, and 

B8S4Li4H24 compounds and their respective ELFs are shown. Clearly, all Li atoms are 

exposed on the B2S monolayer and are depleted. Li atoms have no orbital interactions 

with the B2S monolayer or the H2 molecules around them. Additionally, the localized 
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electron clouds positioned around the H2 molecules show no evidence of orbital 

interactions with the rest of the atoms of the host material. Table 2 shows the 

decomposition of Bader charges onto the atoms of the B8S4, B8S4Li4, and B8S4Li4H24 

compounds. Similar to the ELF analysis, the Li atoms on the B2S monolayer are 

depleted and they carry an effective positive charge of about 0.9 e, which is not affected 

by the (un)loading of hydrogen molecules. The Bader charge states of Li atoms on the 

B2S monolayer have found to be similar to those of the Li atoms that decorated the 

boron sheets[21], showing the promise of the B2S monolayer as a host material for 

immobilizing the Li atoms. The calculated charges on H atoms of the B8S4Li4H24 

compound are close to zero, which shows that there is no remarkable charge transfer 

between the B8S4Li4 and the H2 molecules. 

 

 

Figure 5. The perspective views of the optimized structures of (a) B8S4, (b) B8S4Li4, (c) 

B8S4Li4H24 (top), and their corresponding ELF plots (bottom). Li, B, S, H atoms are 

shown as blue, purple, yellow and white spheres, respectively. 
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Compound 𝑄!"#!  𝑄!"#!  𝑄!"#!  𝑄!"#!  𝑄!"#!  𝑄!"#!  𝑄!"#!"  𝑄!"#!"  𝑄!"#!"  𝑄!"#!  𝑄!"#!  𝑄!"#!  

B8S4 +0.63 +0.74 +0.48 -1.27 -1.27 -1.27       

B8S4Li4 +0.24 +0.31 +0.17 -1.34 -1.34 -1.35 +0.86 +0.86 +0.86    

B8S4Li4H24 +0.28 +0.43 +0.13 -1.33 -1.33 -1.33 +0.88 +0.88 +0.88 -0.02 +0.04 -0.08 

Table 2. Bader charge analysis of the DFT optimized B8S4, B8S4Li4, and B8S4Li4H24 

compounds. All charges are given in units of e. 

 

Figure 6(a) shows the calculated electronic DOS of the B8S4 primitive cell (Figure 

5(a)), which is in very good agreement with previous results[32]. When both sides of 

the monolayer are functionalized with the Li atoms, the B8S4Li4 compound (Figure 5(b)) 

is formed. Charge transfer, from the Li atoms to the monolayer, takes place as 

evidenced by both the ELF contours and the Bader charges. Confirming these two 

methods, Figure 6(b) shows the DOS for the B8S4Li4 compound, in which the charge 

transfer from the Li atoms to the monolayer results in the population of the B2S 

monolayer’s originally empty conduction states of approximately between 0 and 2 eV. 

For B8S4Li4, a similar result has also been observed by Li et al.[33] The calculated 

electronic DOS for the fully hydrogenated B8S4Li4 (Figure 5(c)) is shown in Figure 

6(c). As for B8S4Li4H24, the adsorbed H2 molecules on the Li decorated B2S monolayer 

populate the low energy states that are approximately between -7.5 and -10 eV. 

According to these findings, the presence of H2 molecules does not influence the 

binding interactions between B, S, and Li atoms, consistent with our ELF and Bader 

charge analysis as discussed above. A closer inspection of the projected DOS shown in 

Figure 6 reveals that there are no notable hybridizations between Li and the H orbitals 

and the loading of H2 molecules onto the Li decorated B2S has not affected the binding 

interactions between the constituting atoms of the storage material. These findings are 
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consistent with our ELF and Bader charge analysis as were discussed above, suggesting 

that the interactions between B8S4Li4 and H2 molecules are of electrostatic nature. 

 

 

 

Figure 6. DFT calculated electronic DOS for the compounds (a) B8S4, (b) B8S4Li4 and, 

(c) B8S4Li4H24. For each compound, total DOS are shown in black at the top of the 

figures, and the projected DOS onto the atoms with s and p contributions are shown in 

red and green, respectively. For all figures (a–c), the origin of energy is set at the 

highest occupied state and indicated with a vertical dashed blue line. 

 

4. Conclusions 

In summary, we performed DFT calculations to study the adsorption of H2 molecules on 

B2S and the Li decorated B2S compounds. H2 molecules were found to interact weakly, 

with a binding energy of 80 meV/H2, with the atomically thin B2S honeycomb 

monolayer. To increase the H2 binding energies, we utilized the B2S sheet as a substrate 

for immobilizing Li atoms. Unlike Li-decorated graphene, the 2D–B2S interacts 

strongly with Li atoms and the Li decorated monolayers are thermodynamically stable, 

showing their promise for practical use. Among the studied B8S4Lix compounds, the 
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B8S4Li4 yields the highest hydrogen storage capacity of 9.1 wt% H2. For this compound, 

each protruding Li atom on the B2S surface interacts up to three H2 molecules via 

non-covalent interactions and with an average hydrogen binding energy of 0.14 eV/H2. 

Our DFT calculations show that Li-decorated B2S is a promising candidate material for 

molecular hydrogen storage. 
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