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We present an ideal two-fluid wave mode analysis for a pair plasma, extending an earlier
study for cold conditions to the warm pair plasma case. Starting from the completely
symmetrized means for writing the governing linearized equations in the pair fluid rest
frame, we discuss the governing dispersion relation containing all six pairs of forward
and backward propagating modes, which are conveniently labeled as S, A, F, M, O
and X. These relate to the slow (S), Alfvén (A) and fast (F) magnetohydrodynamic
waves, include a modified (M) electrostatic mode, as well as the electromagnetic O and
X branches. In the dispersion relation, only two parameters appear, which define the pair
plasma magnetization E2 ∈ [0,∞] and the squared pair plasma sound speed v2, measured
in units of the lightspeed c. The description is valid also in the highly relativistic regime,
where either a high magnetization and/or a relativistic temperature (hence sound speed)
is reached. We recover the exact relativistic single-fluid MHD expressions for the S, A
and F families in the low wavenumber-frequency regime, which can be obtained for any
choice of the equation of state. We argue that, as in a cold pair plasma, purely parallel or
purely perpendicular propagation with respect to the magnetic field vector B are special,
and near-parallel or near-perpendicular orientations demonstrate avoided crossings of
branches at computable wavenumbers and frequencies. The complete six-mode phase
and group diagram views are provided as well, visually demonstrating the intricate
anisotropies in all wave modes, as well as their transformations. Analytic expressions
for all six wave group speeds at both small and large wavenumbers complement the
analysis.

1. A new two-fluid wave labeling scheme

Any fluid theory, such as the single fluid magnetohydrodynamic (MHD) (e.g. Goed-
bloed & Poedts 2004; Goedbloed et al. 2010, 2019) or its two-fluid (electron-ion) exten-
sion, is based on taking moments of the kinetic equations, where a closure relation is
needed. E.g., the cold two-fluid theory (electron-ion) only involves zeroth and first order
moments, neglecting finite pressure effects, while the warm two-fluid theory brings in
the second moment through the plasma species pressures. As detailed in Chapter 3 of
Goedbloed et al. (2019), many assumptions enter in this truncation procedure, involving
all intricacies of classical transport theory. An interesting observation, pointed out in the
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same textbook, is how a maximal ordering argument of the involved plasma length scales
directly leads from the two-fluid prescription to the MHD one, without relying on the
smallness of the ratio µ = Zme/mp of masses over charges (electron mass me and ion
mass mp, with charge number Z). In particular, the MHD limit is thus perfectly adequate
for a pair plasma where µ = 1, when restricting attention to large scale phenomena,
accounting for all effects of inhomogeneities in physical space (but missing out effects
of inhomogeneities in velocity space). We therefore expect to retrieve exact MHD limits
for wave dynamics in two-fluid plasmas, and this point motivated our study of all waves
present in cold and warm two-fluid pair plasmas.

Although the ideal two-fluid viewpoint on a plasma fails to describe a number of im-
portant effects related to wave propagation, with wave-particle interaction à la Landau as
its most serious omission, it clearly shows how the usual one-fluid magnetohydrodynamic
(MHD) picture on plasma dynamics is enriched by electrostatic and electromagnetic (i.e.,
light) wave signals. In two recent works (Keppens & Goedbloed 2019b,a), we revisited
this established theory on wave propagation in uniform plasma conditions, which always
looks at plane wave solutions, such that a Fourier description can adopt exp [i(k · x− ωt)],
introducing the wavevector k and frequency ω. In both works, we demonstrated the
advantages of using the governing 12th degree polynomial in the wave frequency ω, which
can be derived from linearizing the governing two-fluid and Maxwell equations (Denisse
& Delcroix 1961). That there indeed are twelve non-trivial waves, which separate in
six pairs of forward-backward propagating waves, as the polynomial is sixth order in
ω2, is pointed out in several textbooks (e.g. Kulsrud 2005; Goedbloed & Poedts 2004;
Goedbloed et al. 2019). Since many classical textbooks (e.g. Stix 1992; Boyd & Sanderson
2003; Bittencourt 2004; Chen 2016; Thorne & Blandford 2017; Kulsrud 2005; Gurnett
& Bhattacharjee 2005) start with presenting the special case of a cold plasma, where
only five non-trivial pairs remain, our earlier works (Keppens & Goedbloed 2019b,a)
focused on these five, and suggested a convenient labeling that relates to their ordered
appearance at long wavelengths. Indeed, the cold case contains two modes that become
the low frequency, long wavelength MHD Alfvén (A) and fast (F) magnetosonic modes.
Together with the modified electrostatic (M) plasma oscillation (i.e., modified when going
from unmagnetized, where it does not propagate, to propagating in magnetized cases)
and the two electromagnetic O and X wave modes, the suggested A, F, M, O and X
labels were shown to be unambiguous in identifying waves for both cold pair (Keppens
& Goedbloed 2019b) and cold ion-electron plasmas (Keppens & Goedbloed 2019a). In
particular, their use improves on the fact that:

(i) the usual means of working with Left and Right (L/R) labels does not apply in
pair plasmas (Keppens & Goedbloed 2019b) and was found to mix forward and backward
waves between the five remaining wave pairs (Keppens & Goedbloed 2019a);

(ii) cold plasmas are known to have branches that can cross only at purely parallel or
purely perpendicular orientations (Gurnett & Bhattacharjee 2005) and these orientations
are therefore best treated as special cases. We return to this issue in the present
manuscript: avoided crossings can be identified precisely;

(iii) the established distinction between ordinary (O) and extraordinary waves is yet
another example where multiple solutions get mixed up, since the extraordinary branch
(E or X, depending on the textbook at hand) really accounts for three wave modes;

(iv) the use of fast-slow (F/S) labels for characterizing the maximal number of two
propagating wave modes in a cold plasma at a fixed frequency is rather confusing and
shown to be in conflict with the established naming convention of slow, Alfvén and fast
waves in MHD theory (Keppens & Goedbloed 2019a). Moreover, in a warm plasma, up
to four different wave modes can occur at a fixed frequency, so the traditional F/S labels
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from cold plasma theory become meaningless. We will therefore use the F and S label
differently, namely in direct correspondence with the MHD fast and slow magnetosonic
waves.

In this paper, we will hence study the more general case of a warm plasma, but restrict
our attention to pair plasmas. In that case, the general dispersion relation also covers the
slow MHD waves (S), and the unique labeling scheme for waves in a warm pair plasma
will thus logically consist of S, A, F, M, O, and X wave modes.

2. Motivation

The study of waves in pair plasmas is of great interest to both laboratory and
astrophysical contexts: recent breakthroughs in generating lab pair plasmas will lead to
fundamental insight in their behavior (Sarri et al. 2015), while pair plasmas are believed
to be especially relevant for pulsar magnetosphere processes (Lyutikov 1999). The fact
that a pair plasma has a unit mass ratio between its constituent species (electrons and
positrons) makes them more amenable to detailed numerical studies by means of particle-
in-cell treatments (Zenitani 2018; Bret & Narayan 2018; Loureiro & Boldyrev 2018),
which do account for the kinetic physics missing in the two-fluid approach. At the same
time, this mass symmetry between the negative and positive charge species significantly
complicates their theoretical treatment: in normal ion-electron plasmas, the mass ratio
between electrons and ions serves as a small parameter and introduces a convenient split
between high (electrostatic and electromagnetic) and low (MHD like) frequency wave
modes. Throughout the plasma literature, numerous examples exist which then focus on
either of these two families, each consisting of three (or sometimes up to four) mode
types (Stringer 1963; Ishida et al. 2005; Damiano et al. 2009; Bellan 2012; Zhao 2015,
2017). E.g., the frequently exploited Appleton-Hartree dispersion relation was shown to
be such a mass-ratio based reduction (Keppens & Goedbloed 2019a), where the remaining
four high frequency mode types are known as the whistler wave (our F mode), the so-
called Z mode (our M wave), and the free space electromagnetic L-O (i.e. our O) and
R-X (i.e. our X) mode (Gurnett & Bhattacharjee 2005). In the same paper (Keppens
& Goedbloed 2019a), we also identified a serious shortcoming of the Appleton-Hartree
description: it is simply not capturing the proper wave behavior at high (up to relativistic)
magnetizations. The present warm pair plasma analysis will be fully applicable to the
relativistic regime, similar to our cold plasma treatment.

The two-fluid approach will exploit normalized quantities in what follows, where we
scale all frequencies to the combined electron-positron plasma frequency, i.e. ω ≡ ω/ωp,
where ω2

p = ω2
pe +ω2

pp, where the electron and positron plasma frequencies are equal and

both given by ωpe =
√
e2ne/ε0me as their number densities are equal ne = np, as well

as their masses me = mp. The speed of light c obeys c2 = 1/µ0ε0, and is used to define
the skin depth δ = c/ωp, which then allows us to work with normalized wavenumbers
k ≡ δk. This is adopted all throughout the manuscript.

3. Symmetrized governing equations

Our starting point is the following, completely symmetric form of the linearized ideal
two-fluid equations (Goedbloed & Poedts 2004; Goedbloed et al. 2019), for the particular
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case of a warm pair plasma:
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(3.1)
In this equation, we used the following notation

τ = sinϑ , (3.2)

λ = cosϑ , (3.3)

where ϑ denotes the angle between the wavevector k and the magnetic field vector B.
The latter two vectors were used to introduce properly scaled components of the linear
electric field perturbation Ẽ and electron and positron flow perturbations ũe,p, as follows: ê1 = ê2 × ê3

ê2 = B× k/|B× k|
ê3 = k/|k|


Ẽ1 = i

√
ε0 Ẽ · ê1

Ẽ2 =
√
ε0 Ẽ · ê2

Ũe 1,3 =
√
neme ũe · ê1,3

Ũp 1,3 =
√
npmp ũp · ê1,3

(3.4)

This particular scaling and choice for the linearized variables ensures that we obtain a
symmetric 6× 6 matrix in Eq. (3.1). Note that ê2 is ill-defined for parallel propagation
k ‖ B, as there is freedom to then choose any set of orthogonal basis vectors in the plane
perpendicular to k. The dispersion relation, obtained from the vanishing determinant
of this real symmetric matrix, becomes a simple twelfth order polynomial in ω, which
is sixth order in ω2. Note that only two parameters (E2, v2) appear in Eq. (3.1), once
a particular choice for the orientation ϑ is made: these are in the original derivation
presented in Goedbloed & Poedts (2004) given by

E2 =
B2

µ0ρc2
, (3.5)

v2 =
γp

ρc2
, (3.6)

where we used the combined pressure p = pe + pp = 2pe and combined density ρ =
neme + npmp = 2neme, with equal electron and positron number densities ne = np for
charge neutrality. This uses a fiducial polytropic index γ, and adopts equal temperatures
for the electron-positron plasma constituents.

The six linear equations retained in Eq. (3.1) conveniently reduced the original set of
18 equations, which linearized the five (mass, momentum and energy) conservation laws
per species, augmented with the eight Maxwell equations. In terms of linear wave modes
ω, the original set counts 14 modes, since the time-independent Maxwell equations act
as constraints. Two marginal modes (i.e. a pair ω2 = 0) were further eliminated, which
represent the entropy modes familiar from linear MHD theory. Only the inclusion of
non-adiabatic effects makes those modes relevant for further analysis (Claes & Keppens
2019). The remaining six mode pairs in the dispersion relation obtained from Eq. (3.1)
will occupy us in what follows.

As a final note on the 6× 6 matrix formulation from Eq. (3.1), its real and symmetric
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nature implies that this matrix has always a set of six real matrix eigenvalues (λ1, . . . , λ6),
for which we will always be able to find a set of six orthonormal eigenvectors. The wave
modes following from the dispersion relation ω(k) = 0 make at least one of these matrix
eigenvalues zero. When the zero matrix eigenvalue has an algebraic multiplicity of two,
there is some freedom in choosing the set of two orthonormal eigenvectors within the
then two-dimensional eigenspace of this zero eigenvalue. This occurs when two of the
ω(k) branches cross, and we will pay specific attention to these crossings. The discussion
of actual polarization properties related to the six wave pairs best starts from the real
and symmetric matrix above, using its eigenvectors. This is illustrated in the appendix.

4. Dispersion relation and relativistic validity

The dispersion relation ω(k) = 0 for the six non-trivial mode pairs follows from setting
the determinant of the matrix in Eq. (3.1) to zero. This gives a sixth order polynomial
in ω2, with coefficients depending on E2, v2, λ2 and k2. At a fixed frequency ω and for
a set of (E2, v2, λ2), we get a fourth order polynomial in k2. In the cold case v2 = 0, the
same dispersion relation becomes only second order in k2, and this inspired all textbook
theory to use these maximal two propagating waves at fixed frequency and refer to them
as ‘fast’ and ‘slow’, and to produce e.g. the familiar Clemmow-Mullaly-Allis or CMA
diagrams (Clemmow & Mullaly 1955; Stix 1992; Thorne & Blandford 2017; Gurnett
& Bhattacharjee 2005). We will use both polynomial viewpoints (i.e., in either k2 or
ω2) in our discussion that follows. In Keppens & Goedbloed (2019a) we discussed the
disadvantages of using the CMA means to visualize wave properties for a cold ion-electron
plasma. Instead, five-mode phase and group diagrams were introduced, which in the
present warm pair case will become six-mode phase and group diagrams.

4.1. Factorizing the dispersion relation

The dispersion relation for warm pair plasmas turns out to factorize in two separate
branches. These are given by

X,F,S : ω6 − ω4(1 + k2 + E2 + v2k2) + ω2k2
(
E2 + v2 + v2E2λ2 + v2k2

)
− E2v2k4λ2 = 0 , (4.1)

and

O,M,A : ω6−ω4(2+k2+E2+v2k2)+ω2
[
1 + E2 + k2(1 + E2 + v2 + v2E2λ2 + v2k2)

]
− E2k2λ2 − E2v2k4λ2 = 0 . (4.2)

The labels in front of the equations already introduce the six wave mode pairs we will
find, and they contain the Alfvén (A) and fast (F) related modes, also present in the
cold (pair or ion-electron) plasma case (Keppens & Goedbloed 2019b,a), along with the
modified electrostatic (M) and electromagnetic O and X branches. The sixth mode pair,
which was marginal for the cold case, is labeled S for slow magnetosonic. One can verify
that the v2 = 0 limit reduces to the cold pair case discussed in (Keppens & Goedbloed
2019b), where the X and F branch become angle-independent: v2 = 0 makes λ2 disappear
from Eq. (4.1). This meant that both X and F branches behaved isotropically in a cold
pair plasma, but this isotropy is gone for warm pair plasmas.

The fact that we can split the six mode pairs for a pair plasma in two branches was
already noted by Stewart & Laing (1992), who rather exploited the dielectric tensor
means for obtaining the dispersion relation. In terms of polarization, the X, F, S branch
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has its electric field perturbation purely perpendicular to k and B (hence Ẽ1 = 0 = Ẽ3,
with only Ẽ2 6= 0), while the O, M, A branch has a more involved variation in its
orientation of Ẽ w.r.t. k and B, but has Ẽ2 = 0. As noted above, a full quantification
of the polarization properties should employ the eigenvectors of the real and symmetric
6× 6 matrix, as illustrated in Appendix A.

The two separate branches in the warm pair case are completely independent of each
other, and no mode conversions between them can ever occur. Within a sub-branch of
three modes, either X, F and S, or O, M and A, conversions do occur, as discussed
further on. Note that this makes it impossible to find a split in the wave modes in high
and low frequency branches, as is commonly adopted for ion-electron plasmas such as a
fully ionized hydrogen plasma. In that case, the mass ratio between ions and electrons
allows to get approximate relations for the high frequency (these would be X, O and
M) modes or for the low frequency MHD modes (S, A, F) separately. E.g., this leads
to the Appleton-Hartree dispersion relation for a cold ion-electron plasma (Keppens &
Goedbloed 2019a), but this Appleton-Hartree dispersion relation is simply not applicable
to the (cold or warm) pair plasma case.

4.2. Relativistic validity

Our starting equations presented in Section 3 used the full Maxwell equations, and
Newtonian versions of the rest frame linearized conservation laws (mass, momentum,
energy). This e.g. led to the expressions (3.5-3.6) for the parameters E2 and v2, where
also a polytropic index γ appears. However, we will argue that a full relativistic treatment
should lead to the same dispersion relation, where E2 and v2 then become the magneti-
zation and the squared sound speed, respectively. Indeed, it is possible to rearrange the
expressions (4.1-4.2) and write them in terms of the refractive index n2 = k2/ω2. This
yields simply

X,F,S : n4v2(ω2 − E2λ2) + n2
[
E2 + v2(1 + E2λ2)− ω2(1 + v2)

]
+ ω2 − 1− E2 = 0 , (4.3)

and

O,M,A : n2
[
k2v2(ω2 − E2λ2)− ω4(1 + v2) + ω2(1 + E2 + v2 + v2E2λ2)− E2λ2

]
+ ω4 − ω2(2 + E2) + 1 + E2 = 0 . (4.4)

We then read off the low frequency, long wavelength limits, where we expect to retrieve
the finite n2 expressions for the slow, Alfvén and fast magnetosonic modes. We find

E2v2λ2n4 −
[
E2 + v2(1 + E2λ2)

]
n2 + 1 + E2 = 0 , (4.5)

−E2λ2n2 + 1 + E2 = 0 . (4.6)

These are the correct ideal relativistic MHD expressions for the slow, fast and Alfvén
speeds, usually written as

ω2
S,F =

k2

2

E2 + v2(1 + E2λ2)

1 + E2
±

√(
E2 + v2(1 + E2λ2)

1 + E2

)2

− 4λ2E2v2

1 + E2

 ,
ω2
A =

k2λ2E2

1 + E2
. (4.7)
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The point to note is that these ideal MHD expressions exploit the following, relativisti-
cally correct, magnetization and sound speed given by

E2 =
B2

µ0ρh
, (4.8)

v2 =
c2g
c2
, (4.9)

where h = c2 + ε + p/ρ is the specific enthalpy, using the rest frame specific internal
energy ε. We note that the magnetization parameter E2 is frequently written as σ in
single-fluid MHD theory (see also Keppens & Goedbloed (2019a)), but for consistency
with our previous works, we retain the symbol E2 here. For a polytropic equation of state
where ρε = p/(γ − 1), this leads to the expression for the sound speed as c2g/c

2 = γp/ρh.
Hence we find that our original expressions (3.5-3.6) recover Newtonian approximations
where we set h ≈ c2. But the validity of the dispersion relations in terms of E2 and
v2 also extends to the fully relativistic case, where any choice of equation of state can
be adopted, if we merely re-interpret the parameters in accord with Eqns. (4.8-4.9).
We then get complete agreement with ideal relativistic MHD (Keppens & Meliani 2008;
Goedbloed et al. 2010, 2019), and note that this implies that a suitable range for the
parameters is to take the magnetization E2 ∈ [0,∞], while the squared sound speed, in
units of the light speed c, is bound from above to the range v2 ∈ [0, γ−1]. Taking γ = 4/3
is consistent with relativistically hot prescriptions. In fact, one can also take a Synge or
Matthews equation of state (Synge 1960; Mathews 1971; Goedbloed et al. 2010, 2019),
which retrieves the effective gamma variation with internal temperature going from 5/3 to
4/3. These latter, general equations of state, are fully consistent with adopting a Juttner
distribution function (the relativistic equivalent of a Maxwell-Boltzmann distribution),
as often exploited in kinetic pulsar plasma theory (e.g. Rafat et al. 2018). This then
implies a smooth variation of the effective polytropic index (and hence changes aspects
like shock compression ratios) from 5/3 to 4/3 when varying mec

2/kBT = ρc2/p. The
limit of relativistic plasmas, with strong magnetization is also especially relevant for
pulsar radio emission, and we provide a separate discussion of this limit in Appendix B.
Finally, we note that, as in single fluid relativistic MHD (Keppens & Meliani 2008), one
can also perform Lorentz transformations on the obtained rest frame dispersion relation,
bringing in relativistic Doppler and aberration effects (and also beaming for light waves
in vacuum) when analyzing the same wave propagation from a relative (moving) vantage
point.

5. Cut-offs and resonances

We can use the expressions (4.3-4.4) to read off cut-offs and resonances as well. For
cut-offs, we look for low k (i.e. low n) behavior at finite frequency ω, and it is easy to
see that we then find

X,F,S : ω2 = 1 + E2 ,

O,M,A : ω2 = 1 + E2, 1 . (5.1)

For resonances, we need to identify finite ω solutions at large k, making n2 large as well.
We then get from both branches the same expression, namely

X,F,S : ω2 = E2λ2 ,

O,M,A : ω2 = E2λ2 . (5.2)
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We can also look for finite n2 solutions at large k, hence at high frequencies ω. This
yields again expressions that are the same for both branches, namely

X,F,S : n2 = 1, 1/v2 ,

O,M,A : n2 = 1, 1/v2 . (5.3)

Hence, we find that each triple solution branch has one that goes to light waves where
ω2 = k2, and one where we find sound waves, i.e. ω2 = k2v2. Together with the finite
n2 expressions for the S, A and F branches as given by Eqns. (4.7), we now have all
ingredients to study the low to high wavenumber behavior of the six wave pairs. We have
in fact used suggestive boldfaced labels in Eqns. (5.1-5.2-5.3) to indicate which mode is
actually described by the limit behavior. This will be discussed in more detail further on.

6. Group speeds

6.1. General expressions

Since both the X, F, S and the O, M, A branches are described by a simple third
order polynomial expression, we can directly use partial differentiation with respect to
the wavenumber k and obtain the following vectorial expression for the group speed

∂ω

∂k
=
−λkP2

[
b̂− λn̂

]
+ kn̂P4

P5
. (6.1)

In this equation, a second (P2), fourth (P4) and fifth (P5) order polynomial appears by
the process of partial derivation. The polynomial P5 is directly proportional to the ω-
derivative of the original sixth order polynomial, and hence only when double roots are
present, a formal division by zero appears. The other polynomials come about from the
variation with k of dispersion relation terms containing λ2 and k2. We use conventional
notation to indicate unit vectors b̂ = B/|B| and n̂ = k/k.

The three polynomials are reported here for completeness on both branches:

X,F,S : P2 = v2E2(ω2 − k2) ,

O,M,A : P2 = E2(ω2v2 − 1− v2k2) , (6.2)

X,F,S : P4 = ω4(1 + v2)− ω2(E2 + v2 + v2E2λ2 + 2v2k2) + 2v2E2k2λ2 , (6.3)

O,M,A : P4 = ω4(1 + v2)− ω2(1 + E2 + v2 + v2E2λ2 + 2v2k2) + E2λ2(1 + 2v2k2) ,

X,F,S : P5 = ω
[
3ω4 − 2ω2(1 + E2 + k2 + v2k2) + k2(E2 + v2 + v2E2λ2 + v2k2)

]
,

O,M,A : P5 = ω
[
3ω4 − 2ω2(2 + E2 + k2 + v2k2)

+1 + E2 + k2(1 + E2 + v2 + v2E2λ2 + v2k2)
]
. (6.4)

These general expressions can be used to quantify the group speed at any combination
of E2, v2 characterizing the plasma conditions, and for any orientation λ between the
wavevector k and magnetic field B. The value for ω to be inserted in the expressions is one
of the corresponding ω values that obeys the dispersion relation. Note that this complete
knowledge of the group speed is all that is needed to e.g. perform an eikonal analysis
for wave propagation in an inhomogeneous plasma, where the inhomogeneity variation
should be on lengthscales that are much longer than the wavelength considered. Indeed,
one can then compute ray paths for all six wave modes in given inhomogeneous mag-
netized plasmas, such as e.g. coming from advanced single fluid magnetohydrodynamic
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Figure 1. Group diagram for the high magnetization reference case E2 = 10 and v2 = 0.3,
at long wavelengths (k = 0.01). In this figure and all the next ones, the following colors are
exploited for the X/F/S family: X - black, F - blue, S - green, and for the O/M/A family: O -
cyan, M - purple, A - red. The dashed black circle gives the light speed limit. The M, O and X
modes all appear near the origin, and are shown in a zoomed fashion in the inset. For this small
wavenumber, all modes correspond to their predicted anisotropic limit behavior from Table 1.

computations, and study the resulting wave refractions, reflections, transmissions and
transformations (Cally 2006).

We show in Figs. 1 to 3 three typical group diagrams, for parameters E2 = 10 and v2 =
0.3, since these are representative of a highly relativistic regime, both in magnetization
and in sound speed. Figure 1 is for long wavelengths, where the relativistic version of the
Friedrichs diagram can be recognized for the F (blue), A (red), S (green) modes, where
the M (purple), O (cyan) and X (black) modes have small groupspeeds. In the following
section, explicit analytic expressions for this limit are provided. Figure 2 is at short
wavelengths, and then the O and X modes essentially give a group speed nearing the
lightspeed (the dashed circle), the M and F modes near the isotropic sound speed circle,
and the A and S mode show two lobes of forward-backward anisotropic propagation. That
in this limit only 3 typical group speed variations are found, is also analytically shown in
the next section. At intermediate wavenumbers, fascinating diagrams are obtained that
visually show the anisotropy of all wave modes, and Fig. 3 shows an example at k = 3.5.

6.2. Short and long wavelength limits

Using the knowledge of the cut-offs from Eq. (5.1) and the low frequency MHD
expressions (4.7), we get immediately the group speed expressions for all six wave modes
at long wavelengths (small k). Similarly, the resonances from Eq. (5.2) as well as the high
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Figure 2. Group diagram for the high magnetization reference case E2 = 10 and v2 = 0.3, at
short wavelengths (k = 100). Only three curves remain, each is doubly degenerate: the (cyan) O
and X mode coincide with the light speed circle, the (purple) M and F mode behave as isotropic
sound waves, the (red) A and S mode behave anisotropic. For this large wavenumber, all modes
correspond to their predicted anisotropic limit behavior from Table 2.

frequency wave modes from Eq. (5.3) provide the six short wavelength limits (large k).
These are collected in Tables 1 and 2, for the low and high wavenumbers, respectively.
In Table 1, we refer to the solutions of Eq. (4.5) with nS and nF , for the slow and fast
mode, respectively.

A few observations can be made from the expressions listed:
• All six wave modes behave anisotropic in their group speed behavior at large

wavelengths. At short wavelengths, only the A and S mode are anisotropic.
• The S, A and F expressions for the group speed variation at low wavenumbers

are exactly those known from ideal relativistic MHD. They generalize the well-known
Friedrich diagrams to relativistic regimes. They follow directly from the finite n2 behavior
known for these modes in the low frequency, long wavelength MHD limit.
• At short wavelengths, both electromagnetic O and X modes behave as isotropic light

waves. In the same limit, F and M behave as isotropic sound waves.
• These expressions are valid for all combinations of E2 and v2, and hence contain the

special cases of unmagnetized (E = 0) or strongly magnetized (E → ∞) pair plasmas.
The cold (v = 0) limit is to be treated differently though, since then the A, M and F
branch all have a resonance, while the S branch becomes marginal (Keppens & Goedbloed
2019b).

The case where the (squared) sound speed v2 equals the Alfvén speed E2/(1 + E2)
shows an interesting degeneracy, observable in the long wavelength, low frequency MHD
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Figure 3. Group diagram for the high magnetization reference case E2 = 10 and v2 = 0.3, at
some arbitrary intermediate wavelength (k = 3.5). The dashed black circle indicates the light
speed limit.

Table 1. All phase and group speed expressions for all six warm pair plasma wave modes, in
the low wavenumber regime.

Group speed at small k (k → 0) phase speed at small k

(
∂ω
∂k

)
X

= k

(1+E2)3/2

[
−λv2E2b̂ + (1 + v2E2)n̂

] (
ω
k

)
X
n̂ =

√
1+E2

k
n̂

(
∂ω
∂k

)
F

=
λv2E2(n−2

F
−1)b̂+[n−2

F
(E2+v2)−λ2v2E2]n̂

n−1
F [2n−2

F
(1+E2)−E2−v2−λ2v2E2]

(
ω
k

)
F
n̂ = n−1

F n̂

(
∂ω
∂k

)
S

=
λv2E2(n−2

S
−1)b̂+[n−2

S
(E2+v2)−λ2v2E2]n̂

n−1
S [2n−2

S
(1+E2)−E2−v2−λ2v2E2]

(
ω
k

)
S
n̂ = n−1

S n̂

(
∂ω
∂k

)
O

= k

(1+E2)3/2

[
(1− v2 − v2E2)λb̂ + (v2 + v2E2)n̂

] (
ω
k

)
O
n̂ =

√
1+E2

k
n̂

(
∂ω
∂k

)
M

= −λk(1− v2)b̂ + kn̂
(
ω
k

)
M

n̂ = 1
k
n̂

(
∂ω
∂k

)
A

= E√
1+E2

b̂
(
ω
k

)
A
n̂ = λE√

1+E2
n̂
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Table 2. All phase and group speed expressions for all six warm pair plasma wave modes, in
the high wavenumber regime.

Group at large k (k →∞) Phase at large k(
∂ω
∂k

)
X

= n̂
(
ω
k

)
X
n̂ = n̂(

∂ω
∂k

)
F

= vn̂
(
ω
k

)
F
n̂ = vn̂

(
∂ω
∂k

)
S

= E
k

(b̂− λn̂)
(
ω
k

)
S
n̂ = λE

k
n̂(

∂ω
∂k

)
O

= n̂
(
ω
k

)
O
n̂ = n̂(

∂ω
∂k

)
M

= vn̂
(
ω
k

)
M

n̂ = vn̂

(
∂ω
∂k

)
A

= E
k

(b̂− λn̂)
(
ω
k

)
A
n̂ = λE

k
n̂
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Figure 4. Group diagram for a case where the sound speed (v2 = 0.3) equals the Alfvén speed
(i.e. v2 = E2/(1 + E2)), at a long wavelength (k = 0.01). The MHD modes S (green), A (red)
and F (blue) then show a clearly special topology in this group speed diagram. The other M, O
and X modes are also shown in a zoomed in fashion, as they all appear near the origin. For this
small wavenumber, all modes agree with the predictions from Table 1.
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Figure 5. A typical dispersion diagram for the reference high magnetization case E2 = 10 and
v2 = 0.3, at ϑ = π/4. For clarity, the regions where modes seemingly overlap show one of the
modes using a dashed curve segment. Slanted black dashed lines correspond to the light speed
and sound speed limits.

limit. Figure 4 shows the group diagram for k = 0.01, where we took v2 = 0.3 and equal
to the Alfvén speed. In the next sections, we explain how this degeneracy relates to a
special case of avoided crossings of branches.

7. Dispersion diagrams

We now discuss the six branches ω(k) which for a given choice of E2 and v2 can be
computed at all orientations λ2 ∈ [0, 1]. It turns out that the purely parallel (λ2 = 1)
and purely perpendicular (λ2 = 0) orientations demonstrate degeneracy, which is lifted
at arbitrary oblique propagation. Therefore, we discuss oblique propagation first. When
showing example figures in what follows, we will always adopt parameters E2 = 10
and v2 = 0.3, since these are representative of a highly relativistic regime, both in
magnetization and in sound speed.

7.1. Oblique propagation

In the overview of long and short wavelength group speed expressions, we tacitly
assumed that the six branches always demonstrate the same connectivity ω(k) between
these low and high k-limits. At the long wavelength (small k) regime, the frequency
ordering is always fixed, as the MHD frequencies are ordered and are far below the two
cut-offs ω = 1 and ω =

√
1 + E2. The six wave modes are then also ordered, as ωS 6



14 R. Keppens et al.

1.0 0.5 0.0 0.5 1.0
vph, /c

1.0

0.5

0.0

0.5

1.0

v p
h,

/c

Figure 6. A typical phase diagram, for the reference high magnetization case E2 = 10 and
v2 = 0.3 at k = 3.5. The black dashed circle indicates the light speed limit.

ωA 6 ωF 6 ωM 6 ωO 6 ωX . This ordering is maintained at all oblique propagations, a
result we also pointed out in the cold pair plasma case (Keppens & Goedbloed 2019b).
Figure 5 shows a typical dispersion diagram, containing all six waves at the arbitrary
chosen angle of ϑ = π/4. Note how the lower-left corner of this diagram shows us the
MHD slow (ωS in green), Alfvén (ωA in red) and fast (ωF in blue) limits. The green
and red curves jointly approach the resonance value of ω = E/

√
2 at high wavenumber.

At these high wavenumbers, the blue (ωF ) and purple (ωM ) branch approach the sound
wave values, indicated as a dashed black line, while the cyan (ωO) and black (ωX) behave
like light waves (also indicated with a dashed black line). The modified electrostatic ωM
mode starts off at the plasma frequency, while both electromagnetic modes start off at√

1 + E2. For clarity, the regions where modes seemingly overlap in Fig. 5 (there are
small differences in frequencies at all these limits) show one of the modes using a dashed
curve segment. We can produce dispersion diagrams at all angles ϑ, and then collect
the same information in polar plots of phase speed vph(ϑ) = [ω/k](θ) for ϑ ∈ [0, 2π] at
a given wavenumber k. A typical phase diagram for all six modes is then provided in
Fig. 6, using the same E2 = 10 and v2 = 0.3, at k = 3.5. At this wavenumber value, it
is clearly seen how the six modes are showing nested phase diagrams, while some mode
pairs coincide exactly at parallel orientations. This will be discussed in what follows.

We will find that in both the parallel and perpendicular cases the X, F, S and O, M, A
families share a common root. This however does not happen for other orientations, as
revealed by the resultant. The resultant of two polynomials is a polynomial expression
of their coefficients, which is equal to zero if and only if the polynomials have a common
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root, i.e. a common factor. For the polynomials appearing in Eqns. (4.1) and (4.2) it
reads

R = −E6k6(1− v2)2(1− λ2)2λ2 . (7.1)

Therefore only the λ = 0 and λ = 1 orientations lead to common roots between these
families.

7.2. Parallel and near-parallel behavior

If we specify to exactly parallel orientation, we find that both the X, F, S and the O,
M, A branches can be factorized completely, as we can write them for λ = 1 as:

X,F,S : 0 = (ω2 − v2k2)
[
ω4 − (1 + E2 + k2)ω2 + E2k2

]
,

O,M,A : 0 = (ω2 − 1− v2k2)
[
ω4 − (1 + E2 + k2)ω2 + E2k2

]
. (7.2)

Hence, we find that at parallel orientations only four different branches appear, of which
two are doubly degenerate as the quadratic factor in ω2 is identical. In the O, M, A family,
the ω2 = 1 + v2k2 is always the M-branch, as it starts off from the plasma frequency at
low k, and this mode is the warm pair plasma version of the Langmuir wave discussed
in classical plasma physics textbooks. The O and A modes come from the quadratic
expression in ω2 where the largest frequency is the O mode. This O mode at parallel
orientation is always identical to the X mode in the X, F, S branch.

The identification of the F, S modes is more subtle: the square root expression
appearing in Eq. (4.7) for labeling the S and F branches implies that for λ = 1 a factor
| E2 − v2(1 + E2) | appears. This means that the low frequency MHD limit for the F
mode will be ω2

F = E2k2/(1 + E2) for E2 > v2(1 + E2) and then similarly the low
frequency S mode is ω2

S = v2k2, but when E2 < v2(1 + E2) the labeling changes: F is
then ω2

F = v2k2. This is well-known in MHD, where the changeover at E2 = v2(1 +E2)
is identifying the field strength value for which the sound speed (v = cg/c) coincides
with the Alfvén speed vA/c = E/

√
1 + E2, or in Newtonian setting where the plasma

beta attains the special value β = 2µ0p/B
2 = 2/γ. We note in passing that the usual

MHD phase and Friedrichs wave diagrams indeed contain an interesting degeneracy at
precisely this value (see Goedbloed et al. (2019), Chapter 5, their Fig. 5.4), which we
recovered in Fig. 4 when showing six-mode group diagrams for such a case, in the long
wavelength limit.

7.2.1. SF crossings.

From Eq. (7.2), we can also compute when the S branch intersects with the F branch
at parallel orientations. This happens at k-values where

k2SF =
E2 − v2(1 + E2)

v2(1− v2)
, (7.3)

which only corresponds to positive values for E2 > v2(1 + E2). Hence, when the Alfvén
speed exceeds the sound speed, we will observe a crossing between the S and F branches,
at the wavenumber above, and at the frequency given by

ω2
SF = E2 − v2

(1− v2)
. (7.4)

This exact knowledge on when S and F branches cross is relevant to appreciate what
happens at near-parallel, and all oblique orientations: the branches will demonstrate an
avoided crossing, as illustrated in Fig. 7. In this figure, we only show the X, F and S
branches for the E2 = 10 and v2 = 0.3 case, which indeed is a case where the Alfvén speed
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Figure 7. Dispersion diagram for the X, F, S family, at parallel (left, ϑ = 0) and near-parallel
(right, ϑ = 0.0005) orientations for the case E2 = 10 and v2 = 0.3. The avoided crossing between
the S and F branch is demonstrated in the zoomed inset.
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Figure 8. Dispersion diagram for the O, M, A family at parallel (left, ϑ = 0) and near-parallel
(right, ϑ = 0.0005) orientations for the case E2 = 10 and v2 = 0.3. The double avoided crossing
between the A and M branch is demonstrated in the zoomed insets.

exceeds the sound speed. The predicted wavenumber-frequency values for the crossing
are indicated with dotted lines. Note the change in connectivity from small to large k
behavior for the S and F branches, when going from parallel to near-parallel orientations
(we took ϑ = 0.0005 for illustration purposes). Note further that in the cold plasma case,
the S branch is marginal, and this particular crossing then never occured.

7.2.2. AM crossings.

We can further investigate when the A and M branch intersect at parallel orientations.
Using Eq. (7.2), we find easily that this occurs for wavenumbers obeying

v2(1− v2)k4 − (E2 − 1)(1− v2)k2 + E2 = 0 . (7.5)
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Figure 9. Dispersion diagram for the O, M, A family, at near-perpendicular (ϑ = π/2−0.0005,
left) and perpendicular (ϑ = π/2, right) orientation, for the reference high magnetization case
E2 = 10 and v2 = 0.3. The inset zooms in on the crossing of the O and M branches. The red A
mode is off the scale shown, at much lower (or marginal for perpendicular) frequencies.

When we consider this for a cold v = 0 pair plasma, there is only one (squared)
wavenumber possible namely k2 = E2/(E2 − 1) for E > 1. This crossing was indeed
reported in Keppens & Goedbloed (2019b), where the corresponding frequency becomes
the plasma frequency. In the cold case, the warm pair Langmuir wave modifies to the
purely non-propagating electrostatic mode.

We now see that for a warm pair plasma, we can find two solutions given by

k2AM,± =
(E2 − 1)(1− v2)±

√
(1− v2) [(E2 − 1)2 − v2(E2 + 1)2]

2v2(1− v2)
. (7.6)

The corresponding frequencies are

ω2
AM,± = 1 + v2k2AM,± . (7.7)

In order for both roots k2AM,± to be positive, we must have E > 1, as the polynomial

Eq. (7.5) tells us that their sum k2AM,++k2AM,− = (E2−1)/v2. Also, the expression under

the square root in Eq. (7.6) requires v2 < [(E2 − 1)/(E2 + 1)]2. This is also satisfied for
the chosen high magnetization case from the figures, and the double AM crossing is
demonstrated in Fig. 8. At v2 = [(E2 − 1)/(E2 + 1)]2, the Langmuir wave related M
branch and the Alfvén branch touch in one point only.

7.3. Perpendicular and near-perpendicular behavior

We can further specify to perpendicular λ = 0 orientations, where the branches also
factorize easily, since then

X,F,S : 0 = ω2
[
ω4 − (1 + E2 + k2 + v2k2)ω2 + k2(E2 + v2 + v2k2)

]
,

O,M,A : 0 = ω2
(
ω2 − 1− k2

) (
ω2 − 1− E2 − v2k2

)
. (7.8)

The zero frequency for the first family is the S mode, while it is the A mode for the second
family: both Alfvén and slow modes do not propagate perpendicular to the magnetic
field. The other modes can be identified without any confusion (M is ω2 = 1 + k2), and
it is easily verified that for perpendicular orientations, an unavoidable crossing happens
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between the O and the M branch, in particular at

k2OM =
E2

1− v2
,

ω2
OM = 1 +

E2

1− v2
. (7.9)

This reduces to the same perpendicular crossing reported for the cold pair plasma case
in Keppens & Goedbloed (2019b). At near-perpendicular orientations, the O, M, A family
shows the OM crossing as illustrated in Fig. 9 for our reference high magnetization case.
Note once more how the connectivity of the branches between low and high wavenumber
regimes clearly changes at exactly perpendicular orientation.

8. Group diagrams and wave transformations

All the above crossings reported lead to intricate transformations of wave modes, which
are particularly evident in group diagrams. The reference high magnetization case was
found to demonstrate four of such crossings, at wavenumbers kSF , kAM,+, kAM,− and at
kOM . The SF and AM crossings were found to occur when certain conditions prevail, e.g.
when the Alfvén speed is higher than the sound speed we encounter an SF crossing. The
near-perpendicular OM crossing always occurs, irrespective of the parameters E2 and v2.
We therefore illustrate the transformation observed at near-perpendicular orientations in
the group diagram, for the reference high magnetization case. Figure 10 shows how the
wave anisotropy is strikingly changing at precisely the wavenumber-frequency mentioned
in Eq. (7.9). In the end, an actual exchange of the purely perpendicular solution has
occurred between these branches (note the exchanged purple-cyan dot in the bottom
panel). The other, near-parallel transformations behave similarly and also exchange
purely parallel wave modes between two branches. It is to be expected that these intricate
wave transformations have observable consequences in actual warm pair plasmas. Note
furthermore that the middle diagram of Fig. 10 indeed shows a similar topological change
as mentioned earlier for the MHD modes, when Alfvén and sound speed coincide (i.e.
Fig. 4).

9. Conclusions

We extended our earlier discussion of waves from the cold pair plasma case (Keppens
& Goedbloed 2019b) to the warm pair plasma. Using the general polynomial dispersion
relation, derived from a symmetrized description of the linear governing equations, we can
easily discuss group speed variations, recover their limits at low and high wavenumbers,
and this for arbitrary orientations between wavevector and magnetic field. The special
orientations of parallel and perpendicular propagation are also discussed, but shown to
be inappropriate for use as a classification of wave modes types: their variation from low
to high wavenumbers is different from any oblique orientation. We argued to be fully
consistent with special relativistic MHD, and recovered the MHD Friedrichs diagrams
in relativistic conditions (Keppens & Meliani 2008). This is illustrated by showing
exemplary dispersion curves for a highly magnetized case, which was shown to demon-
strate up to four avoided crossings, at precisely known wavenumber-frequency values.
We find intricate transformations of the group speed diagrams at near parallel or near
perpendicular angles, when the wavenumber varies across these predicted wavelengths.

Although complete, our two-fluid treatment shares the usual shortcomings for any fluid
viewpoint on plasmas: the subtleties related to velocity phase space resonances (Landau
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Figure 10. Group diagram transformation for the case E2 = 10 and v2 = 0.3, as one crosses
the crossing wavelength kOM for the near-perpendicular OM crossing. We only show the O, M,
A family, and take k = kOM − 0.001 (top), k = kOM (middle) and k = kOM + 0.001 (bottom).
Only half of the group diagram is shown, as there is top-down (and left-right) symmetry.

damping, damping of cyclotron wave modes, and all intricate instabilities related to some
form of anisotropy in the velocity part of the distribution function) are absent. Some
aspects can be remedied, e.g. a collisional damping can be incorporated, sometimes as
easy as by making the substitution ms → ms(1 + iνs/ω) for the mass of species s, where
a drag force introduces a collision frequency νs for that species (Gurnett & Bhattacharjee
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2005; Kulsrud 2005). This is left for future work, where one should contrast the more
complete kinetic dispersion relation with the warm two-fluid limit. For the special case
of relevance to pulsar pair plasmas, this comparison is given in appendix B. Aspects to
be investigated further are which branches suffer wave-particle driven damping, where
only those parts of the dispersion curves that behave subluminal (phase speeds less than
c) can be affected.

In the same two-fluid approach, we can do the warm two-fluid analysis for an ion-
electron plasma, where the six modes no longer separate in two branches. Then, the
intricate mode exchanges are to be studied with more than two parameters: the species
can have different temperatures, and the finite mass ratio makes the species cyclotron
frequencies differ greatly, so four parameters will need to be varied. It may also be of
interest to study the link with single-fluid relativistic resistive MHD wave properties,
which have been characterized recently (Mignone et al. 2018).

Appendix A. Electrostatic versus electromagnetic wave
characteristics

The usual textbook approach to plasma wave characterizations often distinguishes
between purely electrostatic, versus full electromagnetic wave modes. Electrostatic ones
only involve electric field perturbations, i.e. have a perturbed magnetic field

ωB̃ = k× Ẽ = 0 , (A 1)

where the first equality is the Fourier form of Ampère’s law, and the last is specific
for electrostatic waves. Waves which do involve perturbed magnetic fields are termed
electromagnetic.

In Section 3, we explained how the six mode dispersion relation follows from a 6 × 6
real symmetric matrix formulation, adopting a specific scaling and choice for the linear
quantities retained, as given by Eqns. (3.4). As we retained two components of the electric
field, namely Ẽ1 in the k − B plane perpendicular to k, and Ẽ2 perpendicular to the
k−B plane, electrostatic modes must make both of these perturbations zero. Electrostatic
modes indeed only have k aligned electric field perturbations, i.e. only nonvanishing Ẽ3

components, which we conveniently removed from our analysis. Actually, it is easy to
show that Ẽ3 ∝ Ũe3 − Ũp3, so its value is directly available from the retained velocity
components.

Electromagnetic modes then correspond to any mode which has either one of Ẽ1 or Ẽ2

non-vanishing. Note further that due to the divergence constraint, B̃3 = 0 always, hence
it was also removed from the formulation. At this point, we can exploit the real-symmetric
nature of the matrix and compute its six real eigenvalues and the corresponding set of
mutually orthogonal eigenvectors. This can be done using computer algebra software,
and we provide expressions for the specific cases of purely parallel (ϑ = 0 or λ = 1) or
purely perpendicular (ϑ = π/2) propagation.

For parallel propagation, when introducing

∆1 =
√

(1 + E2 + k2)2 − 4E2k2 , (A 2)

∆2 =
√

4ω2 + (E2 − k2)2 , (A 3)
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the six eigenvalue-eigenvectors are

ω2 − k2v2 , (0, 0, 0, 1, 0, 1)
T
, (A 4)

ω2 − 1− k2v2 , (0, 0, 0,−1, 0, 1)
T
, (A 5)

ω2 − 1
2 (1 + E2 + k2)− 1

2∆1 ,

(
0,
−1 + E2 − k2 −∆1

E
√

2
, 1, 0, 1, 0

)T
, (A 6)

ω2 − 1
2 (1 + E2 + k2) + 1

2∆1 ,

(
0,
−1 + E2 − k2 +∆1

E
√

2
, 1, 0, 1, 0

)T
, (A 7)

ω2 − 1
2 (E2 + k2)− 1

2∆2 ,

(
−E2 + k2 +∆2√

2ω2
, 0,−1, 0, 1, 0

)T
, (A 8)

ω2 − 1
2 (E2 + k2) + 1

2∆2 ,

(
−E2 + k2 −∆2√

2ω2
, 0,−1, 0, 1, 0

)T
. (A 9)

Comparing these expressions for the eigenvalues of the matrix with the specific factor-
ization (7.2) of the dispersion relation obtained for parallel propagation, we can note:

• The vanishing of the first matrix eigenvalue (A 4) leads to ω2 = v2k2, which is
the S or F branch depending on the ratio of sound to Alfvén speed. The corresponding
eigenvector has no electromagnetic perturbations (i.e. we have Ẽ1 = 0 = Ẽ2, but also
Ẽ3 ∝ Ũe3 − Ũp3 vanishes), and is a pure sound wave with associated density-pressure
perturbations. The velocity perturbation for electrons and positrons has a component
along k, where they move in phase (i.e. we have Ũe3 = Ũp3). This branch was not even
mentioned in Stewart & Laing (1992).
• The vanishing of the second matrix eigenvalue (A 5) leads to the M branch. As

Ẽ1 = 0 = Ẽ2, but Ẽ3 6= 0, this branch is purely electrostatic (no magnetic perturbations)
and is the textbook Langmuir wave. The velocity perturbation for electrons and positrons
has a component along k, where they move out of phase.
• The vanishing of the third matrix eigenvalue (A 6) gives us the coincident O and X

mode. This mode is electromagnetic (only Ẽ2 6= 0), and there is no associated movement
of electrons and positrons along k (implying no density or pressure perturbations, and a
transverse wave character).
• The vanishing of the fourth matrix eigenvalue (A 7) gives us the coincident A and S or

F mode (the latter choice again depending on plasma beta). This mode is electromagnetic,
and there is no associated movement of electrons and positrons along k.
• The vanishing of the remaining two matrix eigenvalues also corresponds to the shared

quadratic factor ω4 − ω2(1 +E2 + k2) +E2k2 = 0 from Eq. (7.2), i.e. the degeneracy of
the branches found at parallel orientations.

For the perpendicular case, we can also list the eigenvalue-eigenvectors. Introducing

∆3 =
√

(1 + E2 + k2 + v2k2)2 − 4k2(E2 + v2 + v2k2) , (A 10)

∆4 =
√
k4 + 4ω2 , (A 11)
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these become

ω2 , (0, 0, 1, 0, 1, 0)
T
, (A 12)

ω2 − 1− E2 − v2k2 , (0, 0, 0,−1, 0, 1)
T
, (A 13)

ω2 − 1
2 (1 + E2 + k2 + v2k2)− 1

2∆3 ,

(
0,
−1 + E2 − k2 + k2v2 −∆3

E
√

2
, 0, 1, 0, 1

)T
,

(A 14)

ω2 − 1
2 (1 + E2 + k2 + v2k2) + 1

2∆3 ,

(
0,
−1 + E2 − k2 + k2v2 +∆3

E
√

2
, 0, 1, 0, 1

)T
,

(A 15)

ω2 − 1
2k

2 − 1
2∆4 ,

(
k2 +∆4√

2ω2
, 0,−1, 0, 1, 0

)T
, (A 16)

ω2 − 1
2k

2 + 1
2∆4 ,

(
k2 −∆4√

2ω2
, 0,−1, 0, 1, 0

)T
. (A 17)

These can again be identified with the branches noted in Eq. (7.8), noting that this time
the ω2 = 1 + E2 + v2k2 (i.e. the O branch) behaves electrostatic (Ẽ3 6= 0, in Stewart &
Laing (1992) these are called ‘a magnetized analogue of Langmuir waves’, corresponding
to plasma upper-hybrid waves), and the marginal frequency ω2 = 0 (as the S branch,
omitted in Stewart & Laing (1992)) has no electromagnetic perturbations. The vanishing
of eigenvalues (A 16)-(A 17) occurs for (ω2 − 1− k2)ω2 = 0 (i.e. the M and A branches).
Note that at this perpendicular orientation, the M mode has Ẽ1 6= 0, making it a
transverse electromagnetic wave.

At intermediate angles, we may similarly get explicit expressions for the eigenvalue-
eigenvector pairs. It is already clear from the above special orientations that the M branch
(for modified electrostatic) is not always electrostatic, while the ‘electromagnetic’ O mode
can indeed become electrostatic (e.g. at perpendicular orientations). The mode nature is
thus mixed when the angle gets varied, and we therefore prefer the unambiguous naming
scheme S, A, F, M, O and X.

Appendix B. Pulsar relevant limit

Wave dispersion of strongly magnetized pair plasmas is of significant interest in
astrophysical context, especially for pulsars, where the typical radio emission has been
attributed to various mechanisms (see, e.g. Arons & Barnard 1986; Rafat et al. 2018).
Since the work by Arons & Barnard (1986), deriving dispersion relations for normal
modes in (ultra)relativistically streaming pair plasmas in superstrong magnetic fields, it
became costumary to focus on the low-frequency assumption, i.e. those modes whose
Doppler shifted wave frequencies are much below the cyclotron frequency (see, e.g.
Lyutikov 1998; Rafat et al. 2018). At the same time, these fully kinetic treatments of the
retained normal modes quantify effects of e.g. Landau damping, invariably invoking tran-
scendental functions (the relativistic plasma dispersion function) to handle the potential
wave-particle resonances. Such effects are fully ignored in the ideal two-fluid treatments,
where the dispersion relation becomes a simple polynomial expression. However, we will
now demonstrate the relevance of both the cold and the warm two-fluid viewpoints on
wave dispersion in pair plasmas, as presented in Keppens & Goedbloed (2019b) and in
this paper, respectively.

We first focus on the cold pair plasma case, where our previous work (Keppens &
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Goedbloed 2019b) identified two decoupled sets of modes given by the v = 0 limit of
Eqns. (4.1-4.2), which we can reorganize into the following expressions

n2 = 1− 1

ω2 − E2
, (B 1)

n2 =
(ω2 − 1)(ω2 − 1− E2)

λ2E2 + ω2(ω2 − 1− E2)
. (B 2)

These two branches, which contain our X and F mode in Eq. (B 1), and our O, M and A
mode in Eq. (B 2), are in exact correspondence with expressions in Lyutikov (1999) [in
the extended preprint physics/9807022, his Eqs. (11)-(12)], or in Stewart & Laing (1992)
[their Eq. (15)]. The limit of infinite magnetic field implies E → ∞, and hence retains
only one mode from the first branch, and two modes from the second one, which obey

ω2 − k2 = 0 , (B 3)

ω4 − ω2(1 + k2) + k2λ2 = 0 . (B 4)

Which modes of the original five (X, F, O, M and A) are retained is easily identified,
since both our X and O modes have cut-off k → 0 behavior given by ω2 = 1 + E2,
so they moved off to infinity, making the F mode approach the light behavior given by
Eq. (B 3), while the M and A mode remain in Eq. (B 4). This is in perfect agreement
with corresponding limits as identified in Arons & Barnard (1986), where our Eq. (B 4)
is identical to their Eq. (50). Their Eq. (50) refers to the infinite magnetic field limit
of the ‘Ordinary’ or O-mode branch, obtained from a fully kinetic description where a
delta-function distribution is inserted, and where one expresses the dispersion relation
in the rest frame of the plasma. The n2 = 1 mode recovers the exact behavior for the
‘Extraordinary’ or X-mode, as found from the infinite magnetic field limit of Eq. (83) in
Arons & Barnard (1986). The main source of potential confusion is that this mode is not
our X mode, but our F mode in the strong field limit.

The advantage of our two-fluid viewpoint is that we do not need to focus solely on
the three low-frequency modes (F, M and A) retained in the cold, strong field limit, but
can demonstrate what happens with all five modes, including the actual high frequency
electromagnetic counterpart waves, which are our X and O modes. In Fig. 11, we show
dispersion relations for all five modes (we took E = 100 in this figure), for six different
orientations varying from ϑ = 0 (parallel), ϑ = 0.000001, ϑ = 0.25 and ϑ = 0.5, to
ϑ = π/2− 0.0001 and ϑ = π/2 (perpendicular). For visualization purposes, the X and F
mode are shown in dashed black and blue lines, and these branches are angle-independent
for a cold pair plasma. The other modes are shown in the color coding we used before: red
for A, cyan for O, and purple for M. At exactly parallel orientation (top left panel), the
M branch reduces to ω = 1, which crosses the coincident A and F modes at a predictable
frequency (see also Arons & Barnard (1986), their Fig. 1, or Rafat et al. (2018), their
Fig. 5, or also shown in Lyutikov (1999), his Fig. 2). In that orientation, also the O and X
modes coincide, as noted in Keppens & Goedbloed (2019b), but these two modes are never
retained in works employing the low-frequency assumption. In the top right panel, we
show what happens at near parallel behavior, and indeed we recover the avoided crossing
as shown in the lower insets, where suddenly the A mode shows a different resonance from
the F mode. Following the behavior of the M and A mode for varying angles, we get the
very same behavior as discussed in Rafat et al. (2018), where one must be aware of the
different names employed there: their X mode is our F, and their L and A mode are the
M and A used here. In our two-fluid picture, we can follow the high frequency behavior
of these modes, and find that at all orientations, the F mode shows a cyclotron resonance
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towards ω = E, and the angle-independent F and X modes never cross, as illustrated
in the second inset in the top left panel (note that the enormous range in frequencies
and wavenumbers displayed shows some misleading apparent crossings, and only zoomed
views demonstrate the true behavior). In contrast, the angle-dependent O (cyan) and
M (purple) modes do finally cross at exactly perpendicular orientation, as shown in the
insets in the bottom two panels. That in particular the M mode can ultimately transform
to a true light wave at perpendicular orientation may be very relevant to pulsar emission.

While the cold two-fluid limit is thus clearly related to the low-frequency approximation
for normal modes in superstrong magnetic fields, there are various dispersion relation
aspects that differ. If we translate the results from Rafat et al. (2018) to our notation,
their low-frequency, non-gyrotropic approximation yields (in the pulsar rest frame):

ω2 = k2
(E2 − λ2v2‖)

1 + E2
, (B 5)

ω4 − ω2

[
ω2
L + k2(E2 − v2‖)

(
1

E2
+ λ2(

1

1 + E2
− 1

E2
)

)]
= −k2λ2ω2

L

(E2 − v2‖)
1 + E2

.(B 6)

The first of these expressions is the X-mode (our F mode), and agrees with the cor-
responding Eq. (83) in Arons & Barnard (1986), where the indication v‖ results from
considering only parallel thermal motion, justified by the highly anisotropic (velocity)
distribution expected in superstrong magnetic fields. This split in parallel versus perpen-
dicular pressures could be accounted for in an extended two-fluid picture, introducing
potential firehose instabilities. In fact, in the extreme anisotropy expected in a pulsar
magnetosphere, one may argue for a zero perpendicular pressure (often used in kinetic
treatments when assuming the delta-function distribution in perpendicular velocity)
while only a parallel pressure remains. The latter Eq. (B 6) combines the L and A mode
(our M and A) from Rafat et al. (2018), but is more involved due to the appearance of the
relativistic plasma dispersion function, making ω2

L a complex, transcendental function of
z ≡ ω/(λk). The latter involves integrations accounting for pole contributions, with an
assumed distribution function, which was taken as a 1D Juttner distribution, for which
the cold limit makes ω2

L → 1 (and v‖ → 0). On visual inspection, these expressions differ
from our warm (and cold) two-fluid results. The point to note is that the function ω2

L can
behave such that in relativistically hot regimes, the latter branch becomes multivalued
in its L mode, and can introduce an additional lower frequency branch. It is tempting to
relate this with the appearance of the S mode, as present in the two-fluid picture. A fourth
low-frequency mode is also retained in Lyutikov (1998), where it is called the ‘slow Alfvén
mode’, and which can be expected to correspond exactly to the S mode (as it also belongs
to the X, F, S family). The differences between Eqns. (B 5-B 6) and our expressions for
the warm two-fluid mode families should be studied in future work. We note that our
two-fluid results recover the exact relativistic versions of the MHD modes, and this is
not the case for the results shown above. In particular, the MHD expressions for the F,
A and S mode never have superluminal phase speeds, only the M, O and X show this
possibility, while Lyutikov (1998) reports the possibility of superluminous fast transverse
waves. Finally, our expressions recover all limits properly, e.g. the unmagnetized case
E = 0, which is obviously not described by Eq. (B 6).

This research was supported by the KU Leuven (GOA/2015-014). RK thanks NJU
and PMO for kind hospitality during his sabbatical stay.
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Figure 11. The cold plasma dispersion diagram for six different orientations, in a strongly
magnetized E = 100 case as relevant for pulsar physics. All panels show all five modes, in
the usual color coding, but the angle independent X (black) and F (blue) modes are shown in
dashes, so overlap of modes can be better appreciated. Note that these X and F modes never
cross, as indicated in the upmost inset for parallel orientations. The four upper panels show
the typical changeover from parallel to oblique for the M (purple) and A (red) mode, known
from the low-frequency limit of pulsar theory. Important is the high frequency behavior when
approaching perpendicular orientations (bottom two panels), where the A mode is off the scale
shown but where the O and M mode show a similar interaction (as shown in insets).
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