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The ubiquitous sawtooth phenomena in tokamaks are so-named because the central temperature
rises slowly and falls rapidly, similar to the blades of a saw. First discovered in 1974, it has so far
eluded a theoretical explanation that is widely accepted and consistent with experimental observa-
tions. We propose here a new theory for the sawtooth phenomena in auxiliary heated tokamaks that
is motivated by our recent understanding of “magnetic flux pumping”. In this theory, the role of
the (m,n) = (1,1) mode is to generate a dynamo voltage which keeps the central safety factor, qo,
just above 1.0 with low central magnetic shear. When central heating is present, the temperature
on axis will increase until at some point, the configuration abruptly becomes unstable to ideal MHD
interchange modes with equal poloidal and toroidal mode numbers, m = n > 1. It is these higher
order modes and the localized magnetic stochasticity they produce that cause the sudden crash of
the temperature profile, not magnetic reconnection. Long time 3D MHD simulations demonstrate
this phenomena, which appears to be consistent with many experimental observations.
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1. INTRODUCTION

Typical tokamak discharges undergo ”sawtooth” cycles
in which the central temperature periodically peaks until
a rapid onset instability causes the temperature near the
center to suddenly flatten and then this process repeats.
This phenomena was first observed in 1974 [1] and has
since been regularly observed in all tokamaks on many di-
agnostics including soft X-ray, temperature, and density
measurements.

Forty-five years after its discovery, there is still no
widely-accepted theory for the sawtooth phenomena that
is consistent with experimental observations. Such the-
ories are needed to construct accurate numerical models
which predict such things as transport near the magnetic
axis in whole-device-modeling codes [2], excitation of neo-
classical tearing modes [3], and central accumulation of
heavy metal impurities in future tokamaks [4].

The two leading existing theories, described in the next
section, are incomplete and are at odds with many exper-
imental measurements. In this paper we describe a new
theory for sawtooth oscillations that may occur in some
discharges. The mechanism for these oscillations was de-
termined by performing many long-time 3D extended
magnetohydrodynamic (XMHD) simulations with the
M3D-C1 code [5]. The advantage of a simulation over
an experiment is that it can be diagnosed to arbitrary
precision. The disadvantage, of course, is that the equa-
tions being solved are an incomplete description of real-
ity. Therefore, we present this as a “new theory”, and not
an absolute proof of the mechanism behind this phenom-
ena. We hope that this new theory will be considered as
an alternative possibility when interpreting experimental
results.

In Section 2 we discuss the two leading existing theo-

ries for the sawtooth oscillation, namely the Kadomtsev
model and the Wesson model, and why they are incom-
plete, and/or inconsistent with many experimental re-
sults. Section 3 describes the main features of the new
model being proposed here and how it relates to the Wes-
son model. In Sec. 4 we present the results from a long-
time M3D-C1 simulation in which sawteeth are observed.
Section 5 presents a simple model that illustrates what
the MSE magnetic signature of the new model of the saw-
tooth would look like. In Sec. 6 we review some of the
literature on experimental measurements of the central
safety factor before and after the sawtooth crash. This
is the major discriminator between the different models.
‘We also make recommendations for future work. Finally,
we present our conclusions in Sec. 7.

2. LEADING THEORETICAL MODELS

There are two leading models of the sawtooth in toka-
maks, which we will call the Kadomtsev model and the
Wesson model. The Kadomtsev model involves magnetic
reconnection, but the Wesson model does not. We briefly
describe these and some of their confirmations and limi-
tations.

2.1. The Kadomtsev Model

The interpretation of sawtooth oscillations has been
strongly affected by a seminal paper by Kadomtsev in
1975 [6]. In his model, the central safety factor, go, con-
tinues to drop from the value 1 due to current peaking
in a discharge with centrally peaked temperature and
Spitzer-like resistivity. At some point, when ¢o is low
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enough, a (m,n) = (1,1) (where m and n are poloidal
and toroidal mode numbers) resistive reconnection event
occurs, flattening the temperature and density profiles
interior to the ¢ = 1 surface and returning gy to 1. This
process has been shown to occur in 3D resistive MHD
and 2-fluid MHD simulations [5, 7-12] for tokamaks with
sufficiently low values of pressure or 8 = 2ug(p)/B%
B << 1 and/or sufficiently low values of Lundquist num-
ber S = Tr/TA < 10°, where 7z and 74 are the resistive
diffusion time and Alfvén transit time, respectively. How-
ever, these low-5 , low temperature simulations do not
exhibit the fast, ideal MHD timescale, temperature drops
during the sawtooth cycle that are observed experimen-
tally [13]. We also note that some of these calculations
included unphysical current sources, and some are now
thought to be inadequately resolved in the toroidal di-
rection [14].

Influenced by the Kadomtsev model, the fast temper-
ature drops observed in many experiments have almost
universally been assumed to be caused by fast magnetic
reconnection, and a number of numerical studies have
been published reporting to observe this fast reconnec-
tion in the simulation of a sawtooth event caused either
by anomalous electron viscosity [15], two-fluid effects [16—
18], high-n ballooning modes [19], plasmoids [20], or
plasma compressibility [21]. However, a common feature
of these studies is that they only simulate a single saw-
tooth event, and the initial conditions are such that the
central safety factor is much less than unity so that the
configuration is strongly unstable from the beginning of
the simulation. An obvious question is: “How did the
plasma get into this unstable state which was used to
initialize the calculation?”

In our resistive MHD simulations, we only observe
Kadomtsev reconnection events at low values of the
Lundquist number, S, and at low g, such as existed
in the ST tokamak in which sawtooth oscillations were
originally observed. It is well known that a collisional
tokamak plasma is unstable to a (1,1) resistive kink
MHD instability whenever ¢o < 1. The growth rate
of this instability scales as a fractional power of the re-
sistivity, v ~ n'/3 ~ S~1/3 [22], whereas the rate that
qo decreases due to resistive diffusion is much slower,
7! ~n~ S71[23]. Although in reality this mode will
be modified by FLR and other kinetic effects [24],the scal-
ing y7p ~ 7723 ~ 52/3 makes it unlikely that gy could
ever be substantially below 1, at least in a self-consistent
resistive MHD simulation at high S.

2.2. The Wesson Model

An alternative to the Kadomtsev model is the pres-
sure driven interchange model first put forth by Wes-
son [25, 26] in cylindrical geometry and soon afterward
extended to toroidal geometry [27, 28]. Wesson noted
that if the central safety factor was above but very close
to unity in a region near the magnetic axis, |1 — ¢| < 1,

the configuration could become unstable to an ideal MHD
(1,1) interchange instability that could flatten the tem-
perature profiles on an ideal MHD timescale withoug sub-
stantially changing the magnetic field. The fact that the
stability of this very low shear configuration is strongly
affected by small changes in the g-profile can potentially
explain the sudden onset of the crash. The Wesson
model, which does not involve magnetic reconnection, did
much to explain the fast crash times, but it was incom-
plete in that it did not explain why the central g-profile
remained close to 1 over an extended region in the pres-
ence of resistive diffusion, and it did not explicitly state
what caused the onset of the crash.

3. THE NEW MODEL

The new sawtooth model being proposed here is really
an extension of the Wesson model and builds on his in-
sight. We propose that the g-profiles is very near, and
slightly above, 1 in a region near the magnetic axis of the
tokamak, and that it does not appreciably change during
the sawtooth cycle. This is in agreement with the Wesson
model. However, in our model, the (1, 1) mode is not re-
sponsible for the crash phase of the sawtooth. Rather, it
nonlinearly saturates at a low amplitude and produces a
central loop voltage through the dynamo effect that keeps
qo from falling below 1. The crash occurs when other
ideal MHD interchange modes (m,n) with m =n > 1
become unstable causing a localized stochastic region to
form near the magnetic axis. We next discuss each of
these phenomena separately.

3.1. The Saturated (1,1) Mode

Recent papers by us [11, 29] reported on long time
self-consistent simulations where we demonstrated that a
pressure driven (1,1) interchange mode will be unstable
in a tokamak with ¢ just above 1 with low central shear,
much as predicted by Wesson and others. However, we
found that the mode saturates nonlinearly at a fairly
small amplitude. In those papers, we focused on how
“magnetic flux pumping” could explain sawtooth-free
“hybrid” discharges [30-34] and “long lived modes” [35-
37]. The basic mechanism is that for a sufficiently low
central magnetic shear discharge with ¢o 2 1, any pres-
sure gradient will cause a (n,m) = (1,1) interchange in-
stability to develop. This (1,1) interchange mode nonlin-
early produces a central (0,0) dynamo loop voltage that
acts to raise qo. If the pressure gradient exceeds a critical
value, the resulting dynamo loop voltage will be strong
enough to keep qo 2 1. Since, as shown in Appendix
A, the growth rate for this (1,1) mode which creates the
dynamo voltage is a maximum at go = 1 and decreases
as qo increases further [27, 28], this serves to regulate the
process and keeps qo 2 1.
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./Figures/Fig_1.pdf

FIG. 1. Typical sawtooth cycle in qo, 8p1 space. [A] crash oc-
curs when entering the (n,n) unstable regime with n > 1. [B]
Crash causes (1 to drop but o is largely unchanged. go then
begins to drop due to resistive diffusion as 3,1 increases due
to external heating. [C] Crossing the (1, 1) stability boundary
causes go to increase due to dynamo voltage as 3,1 continues
to rise until n > 1 stability boundary is crossed.

3.2. The (n,n) Modes with n > 1

But, what if sufficient central heating is applied to keep
peaking the temperature and density profiles despite the
(1,1) velocity field from the interchange mode acting to
flatten them? The profiles will then continue to peak
until some other instability sets in. We find that there is
a critical pressure gradient, or peaking, for which many
high-n modes with m = n abruptly become unstable,
causing a stochastic region to form near the magnetic
axis, locally flattening the profiles in the center. This
process does not involve magnetic reconnection as the ¢-
profile remains slightly above unity and nearly shear-free
and the modes are non-resonant. In this picture, the role
of the (1, 1) mode is to regulate the g-profile, and it is the
(m,n) modes with m = n > 1 that are responsible for the
crash phase. This is consistent with ideal MHD analysis
by Kirby [38] of cylindrical equilibria with a flat central
g-profile with go just slightly above unity: the higher n
modes with n = m can have higher growth rates than the
(1,1) mode, although their instability region in (qo, Bp1)
space is the smaller.

We have extended Kirby’s numerical results to toroidal
geometry and find qualitatively similar results, which
were also found analytically [27, 28]. Figure (1) shows lin-
ear stability boundaries for the first eight toroidal modes
for a set of model toroidal equilibria with circular cross
section, aspect ratio R/a = 3.2, pressure and safety fac-
tor profiles given by:

p=pox (1—9)% (1)

_ @ if 9 <4y
q_{qo+q1(w—w1>2 if >4y @
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FIG. 2. Growth rates for modes (n,n) for n = 1 —8 along the
dotted line in Fig.(1) with 8,1 = 0.531

./Figures/Fig_3.pdf

FIG. 3. Velocity stream function for (4,4) mode with
(g0, Bpq) = (1.005,0.531) for the profiles given in Eqn. 1-2.
Also shown is the ¢ = 1.01 surface. Note that the mode is
confined to the shear-free region. The mode structure for the
other modes is very similar, but with differing periodicity.

Here 1/; is the normalized poloidal flux, ¥y = 0.2, ¢; =
3.5322. The horizontal axis in Fig. (1) is given by:
Br = mo [ [p(¥) — p1]dV/ [ LB2dV, where py is the
value of p at ;. Figure (2) gives the linear growth rates
vs qo along the dotted line in Fig. (1) with 3,1 = 0.531.
Figure (3) shows the mode structure for a typical (4,4)
mode as an illustration. It is seen that the mode is con-
fined to the inner magnetic shear-free region of the cross
section.

The equilibria in the upper left corner of Fig.(1) are
stable to all ideal MHD modes. As qq is lowered towards
1 and/or the pressure is increased so that Bp1 increases,
we move down and/or to the right in the diagram. When
the black line is crossed, the (1,1) mode sets in, which
causes the dynamo voltage described in Appendix A to
develop and stop the decrease of gg. If the pressure is
further increased and the green line is crossed, an ideal
MHD (2,2) mode will become unstable. This will likely
destabilize (3,3),(4,4), etc. modes thru nonlinear mode
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./Figures/Fig_4.pdf

FIG. 4. Maximum electron temperature vs. time in a long-
time M3D-C1 simulation of an auxiliary heated tokamak
plasma. In normalized units, this simulation ran for 500,000
TA

./Figures/Fig_5.pdf

FIG. 5. (left) Temperatures along the midplane and (right)
safety factor profile just before and just after sawtooth crash
in Figure (4). Also shown are the steady state results for
a 2D (axisymmetric) calculation with the same heating and
transport profiles.

coupling, causing the center region to become stochastic
and hence the sawtooth crash.

4. M3D-C1 SIMULATION RESULTS

Here we report on a 3D MHD simulation of multiple
sawteeth occurring in a tokamak plasma with moder-
ate f. We employ a modern, massively parallel, im-
plicit 3D MHD code which uses high-order finite elements
in all three dimensions [5]. These features enable high-
resolution and long timescale calculations of MHD activ-
ity in a tokamak. Unlike the papers cited in Sec. 2.1,
we do not start the configuration in an unstable state
and watch it transition into a stable state. Rather, we
define particle and energy sources and transport coeffi-
cients, and run for 100’s of 1000’s of Alfvén times and
look for a repeating cycle.

./Figures/Fig_6.pdf

FIG. 6. Poincaré plots for the two times referred to in Fig-
ure (5) for the calculation shown in Figure (4)

4.1. Sawtoothing Simulation

We show the results in Figures (4)-(6) of a M3D-C1
simulation of a canonical tokamak discharge with aspect
ratio R/a = 3.2, ellipticity x = 1.3, triangularity § = 0.2,
B 2 2%, and edge safety factor g, = 4.3 . Figure (4)
shows that the simulation develops quasi-periodic oscil-
lations in which the central temperature slowly rises and
abruptly crashes, as is the case in sawtooth oscillations.
Consistent with the new model described above, in this
simulation gg never falls below unity, and the oscillations
and fast crashes are not primarily due to the (1,1) mode.
At the start of each temperature crash, a large number
of localized (m,n) modes with m = n > 1 grow up and
cause only the central region to become stochastic.

Shown in Fig. (5) (left) is the midplane temperature
profile just before and just after a crash at the times in-
dicated by the vertical lines on Fig. (4). The central elec-
tron temperature is seen to have decreased by about 25%
during the crash. Not shown is that the central density
also decreased, but only slightly, presumably because it
is originally less peaked than the temperature due to lack
of central fueling, and because the density equation does
not contain a large parallel diffusion term. Shown on the
right are the g-profiles at the same two times which are
seen to stay essentially unchanged. Also shown on the
two graphs, in dashed lines, are the results we obtained
in a 2D axisymmetric calculation with the same trans-
port coefficients and heating sources. Of course there is
no (1,1) mode activity and no crashes in 2D, and the
central temperatures are higher and the g-profile is lower
because of this.

We show Poincaré plots at the same two time slices in
Fig. (6). It is seen that before the crash, the magnetic
surfaces are mostly good everywhere, with some small
islands at rational surfaces. Just after the crash, most of
the surfaces are still good, but those near the center have
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FIG. 7. Top: Close-up of maximum electron temperature
(Max Te) in region between dotted lines in Fig. (4). Bottom:
Kinetic energy in the first 8 toroidal harmonics for the same
time period. Note that the Max Te begins to decrease once
the kinetic energy in several toroidal harmonics has peaked,
creating a central stochastic region as shown in the right in
Fig. (6).

been destroyed. Both the E x B convective velocities
from the many unstable modes and parallel transport
in the stochastic region contribute to the temperature
flattening.

Figure (7) is a closeup of one of the “crash” periods,
deliniated with dashed vertical lines in Fig. (4). The top
frame shows the maximum electron temperature, T,, as
a function of time. The bottom curve shows the kinetic
energy in each of the first eight (8) toroidal harmonics
during this time period. It is seen that as multiple modes
become unstable and their kinetic energy peaks, the max-
imum 7, begins to decrease. For the event shown, the
n = 4 mode reaches the largest amplitude, and the n=2
persists, seemingly in a state of marginal stability. This
is also the case for other crashes in this sequence and may
be a consequence of the elongation.

The nonlinear calculations shown here were performed
with the M3D-C1 code [5, 39]. A time and space vary-
ing Spitzer resistivity profile was used, n ~ T¢ 3/ 2, but
the resistivity was uniformly enhanced so that the cen-
tral Lundquist number was S = 10%. It used a uniform
viscosity with a value 10 times the central resistivity (di-
mensionless code units). The perpendicular thermal con-
ductivity varied, increasing radially from 18 (center) to
36 (edge) times the central resistivity. The parallel ther-
mal conductivity was 10® times greater than the perpen-
dicular. Sufficient beam heating was applied to maintain
the B8 at about 2.5%. The neutral beam model also drove
a centrally peaked sheared toroidal velocity which never
exceeded 10% of the Alfven velocity. A loop voltage was
applied at the boundary in a feedback loop to keep the
total toroidal current constant in time. The code uses
a 3D finite element mesh. This calculation had 32 Her-

(S

mite cubic finite elements in the toroidal direction and
a unstructured mesh in the poloidal plane with 4th or-
der Bell elements [40] of typical linear size 6 cm. This
was a single-fluid simulation in which the temperature,
density, and all components of the magnetic field were
advanced. The calculation ran for 5 x 10°7,4 requiring
=~ 10% processor-hours of computer time using 2.4 GHz
Xeon processors with Infiniband interconnect.

Also shown in Fig. (1) is a schematic trajectory in
(g0, Bp1) space of a sawtooth oscillation as calculated and
depicted in Figs. (4)-(6). At location [A] the instability
threshold for several (m,n) modes with m = n > 1 is
exceeded. As these modes grow, they locally increase
the pressure gradient and excite other (m,n) modes with
m =n > 1. These many interchange modes destroy the
surfaces in the center as shown on the right in Fig.(6),
collapsing the central pressure without changing the g¢-
profile as shown in Fig.(5). Once the central pressure is
flattened [B], these modes become stable and the mag-
netic surfaces reform. As central heating is applied, the
central pressure will again increase and o will initially
decrease due to resistive diffusion. Once the (1,1) sta-
bility boundary is crossed [C], the associated central dy-
namo voltage will act to raise gy and stabilize its drop.
When the increasing central pressure causes the stability
threshold for several (m,n) modes with m =n > 1 to be
crossed again, the process will repeat.

Note that Fig. (1) is an idealized calculation of the lin-
ear stability with model g-profile and p-profile, circular
cross-section axisymmetric plasmas. The actual nonlin-
ear calculation depicted in Figs. (4)-(7) is more complex
because it is non-circular geometry, and because each of
the unstable modes will deform the plasma column, af-
fecting the linear stability of the other modes. We be-
lieve the trajectory shown is qualitatively correct, but
not quantitatively. In addition, the stabilizing effect of
sheared toroidal rotation present in the simulations and
normally in the experiments was not taken into account.

4.2. The Relation to Stationary States

Both the stationary state simulations presented in [11,
29] and the sawtooth simulation in the present paper had
qo slightly above 1 with low central shear. The primary
differences were in the 8 values and in the sheared rota-
tion velocities. The stationary run in [29] had 8 ~ 2.0%
and central rotation velocity V(0) ~ 0.001Vy, decreas-
ing to 0 at the edge. The sawtoothing run in this paper
had slightly higher 8 ~ 2.5% and central rotation veloc-
ity V(0) ~ 0.01Vy4, about 10 time larger. Clearly, many
more runs need to be made in the future to determine
the sensitivity to these and other parameters.
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FIG. 8. (left) Safety-factor (¢) and (right) pressure (uop)
profiles used in the two equilibria.

5. MSE MAGNETIC SIGNATURE

Here we illustrate what the magnetic signature of such
interchange modes that flatten the pressure profile but
leaves the g-profile unchanged might look like according
to a motional Stark Effect (MSE) diagnostic. We start
with a toroidal equilibrium with circular cross section,
aspect ratio R/a = 3.2, minor radius ¢ = 1 m, with pres-
sure profile and g-profile given by Egs. (1) and (2). Here
1 is the normalized poloidal magnetic flux, Hopo = 0.02
(SI units), ¥; = 0.2, go = 1.008, ¢1 = 3.5322. With a
vacuum toroidal field at R = 3.2 m of 1 T, this equi-
librium has 8 = 2(p)/(B?) = 0.9675%. We designate
this equilibrium as “before”. We postulate that the final
state is an equilibrium with the same g¢-profile, but with
a pressure profile now given by:

_ 1 it <oy
”‘{poxu—&)? if > s ®)

Here ¢, = 0.3. In the interval ¢y < ¢ < g, a cubic
spline fit is used that makes both p and dp/dy continu-
ous. The value p; = 0.0155 makes the § for this “after”
equilibrium the same as the “before”. These profiles are
illustrated in Figure (8). These high-accuracy equilib-
ria were computed with the QSOLVER [41] inverse equi-
librium code and verified with the M3D-C1 equilibrium
option.

This second equilibrium is accessible since it has the
same g¢-profile and stored energy as the first, although
the pressure (and entropy) profiles have changed as a
result of the interchange instability. This change led to a
substantial change in the toroidal current profile as shown
in Fig. (9).

Figure (10) shows a closeup of the flux surfaces in the
central portion of the two equilibria. The magnetic axis
has shifted from R = 3.3694 m to R = 3.3538 m. Also
shown are vertical lines at 2 cm intervals in R, along
which the ratio tany = Byz/Bris evaluated and plotted
in Figure (11). It is evident that despite the fact that the

./Figures/Fig_9.pdf

FIG. 9. Midplane current profiles, o RJy for the two equilib-
rium shown in Figure (4).

./Figures/Fig_10.pdf

FIG. 10. Close-up of the change in central flux surfaces before
and after the instability. The six vertical lines are at R = 3.31
m, 3.33 m, 3.35 m, 3.37 m, 3.39 m, and 3.41 m. Red curves
are “before” and black “after”.

g-profile and § values are identical for the two equilibria,
the magnetic field at given R, Z locations has changed
substantially near the center of the discharge.

A commonly used formula for the safety factor at the
magnetic axis, Rys4 is given by [42, 43]:

-1

K 19}
q = Torn (ﬁ tan fy) . (4)

R=Rna

We compute the slopes of the 2 lines in Fig. (12) as 0.302
(before) and 0.306 (after). Using the boundary elliptic-
ity of k = 1 and evaluating Eq. (4) at the magnetic axis
locations gives: go = 0.983 (before) and gy = 0.974 (af-
ter). Comparing these with the true value, go = 1.008,
from the high-accuracy equilibrium code, we see that the
“before” value is accurate to 2.4%, and the “after” value
is off by about 3.3%.
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FIG. 11. Value of tan~y = Bz/Br along the six vertical lines
shown in Fig. (10) for the two equilibrium. Solid curves are
“before” and dashed curves are “after”.

./Figures/Fig_12.pdf

FIG. 12. Midplane values of the field ratio tany = Bz/Br
as a function of the major radius for the “before” and “after”
equilibrium.

In summary, in measuring the change (or lack of
change) in g during a sawtooth event with ¢o 2 1, it is
clear from Fig. (11) that one cannot rely on the change
in tany = Byz/Br at a single radial position, which can
be substantial. However, even with the exact value at
multiple locations near the axis, the measurement uncer-
tainty can easily be 2 —3% or greater. This is in addition
to the other known sources of error such as compensating
for the radial electric field and subtraction of the back-
ground. The incorporation of an equilibrium reconstruc-
tion code such as EFIT [44] and/or a current diffusion
calculation between sawteeth based on neo-classical re-
sistivity [45] could help to reduce this error, but they are
subject to their own set of assumptions which would need
to be verified.

6. DISCUSSION

People have been performing computational studies of
sawteeth for over 40 years [7]. Why hasn’t this effect
been observed before? Likely essential features for the
computational model include (1) fully 3D with many he-
lical modes present, (2) full MHD equations (not reduced
MHD), (3) toroidal geometry, (4) implicit time advance
for long time simulations covering multiple sawtooth pe-
riods, (5) high resolution, especially in the toroidal direc-
tions [14]. These features have only fairly recently been
computationally feasible.

6.1. Experimental Results

The experimental measurement of the g-profile near
the magnetic axis of a tokamak by the motional Stark
effect (MSE) and other diagnostics is notoriously diffi-
cult. The value of ¢g is proportional to the flux surface
average of the ratio of the toroidal magnetic field to the
poloidal magnetic field in the limit as the latter vanishes
at the axis. The intrinsic electric field due to ambipolar
diffusion in the core must be taken into account, as must
ellipticity in the core. Many teams have published the
results of measuring the g-profile just before and after a
sawtooth event with apparently conflicting results.

Early results by West [46] measured qp = 0.7 £ 0.05
and increasing as the edge ¢ increases on TEXT using
laser-induced fluorescence of an injected neutral Li beam.
Soltwisch [47] measured a 8% change from 0.77 on TEX-
TOR (ohmic with FIR). On PBX-M, gy was measured
to be 0.63 £ .03 (MSE), 0.7 + 0.2 (x-ray pinhole), and
0.8 + 0.14 (Fast Ion Diagnostic)[42]. These early results
of g staying well below 1 in smaller tokamaks were also
confirmed on JET and TFTR. Wolf [48] applied both FIR
and MSE to JET and found ¢ is in the range 0.7 — 0.85
throughout the sawtooth cycle. Yamada,et al [49] found
that go changed from 0.7 to 0.8 on TFTR. These mea-
surements seemingly contradicted all prevailing theories,
including the one presented here.

However, early measurements by Goldston analyzing
fast ion orbits found ¢o to be clamped at 1 in ATC [50].
Wesson[26] reports on McCormic’s measurements on AS-
DEX using Zeeman splitting of a lithium beam that “it
is found that when qq is lowered to unity, it shows a re-
sistance to going below unity”. The TEXT measurement
referenced above was apparently contradicted by Wrob-
lewski, et al [51] and Huang et al [52] who quote a value
very near unity for several discharges with differing edge-
q, and inferring a low shear central region, especially at
low edge-q. Weisen, et al [53] used resonant Alfvén waves
to deduce that TCA had a time-averaged g-profile with
a flat central region with ¢y close to unity. The JET
result quoted above was seemingly at odds with Gill,et
al [54], analyzing X-ray emission when an injected pel-
let crosses the ¢ = 1 surface, found that the magnetic
shear interior to the ¢ = 1 surface was very low, making
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it difficult to reconsile with [48]. Wroblewski [55] reports
that go in DIII-D is close to unity and the increase dur-
ing the sawtooth crash is of order of the measurement
error, 0.05. Analysis of BAE modes during a sawtooth
crash on TORE SUPRA [56] imply that go is normally
slightly above unity before the sawtooth crash, typically
~ 1.006, and decreasing to unity after the crash. A re-
cent study on KSTAR [57] supported by very high accu-
racy MSE measurements and supplemental MHD analy-
sis concluded that gy was ~ 1 in sawtoothing discharges
with relative accuracy £0.03 and with compelling evi-
dence that it is slightly above 1 after the crash. These
measurements of go 2 1 before and after the crash are
consistent with the model presented here.

There is also experimental soft X-ray evidence of a non-
resonant (2,2) mode appearing just before a sawtooth
crash when a (1,1) mode is also present in EAST [58]. In
HT-7 [59] tomography of high-resolution soft-x-ray emis-
sion led to the statement “that a purely fast reconnection
of the m = 1 magnetic island is not responsible for the
crash” and they emphasize the importance of higher m
modes, especially the (2,2). Analysis of SXR signals on
ASDEX-U [60] led to the conclusion that “...the sawtooth
oscillations cannot be fully described by a single (1,1)
helicity. One has to include at least the second (2,2)
component before and after the crash. The small third
component (3,3) is also seen before the crash.” These
measurements of higher mode numbers during the crash
appear to be consistent with the model presented here.
Also, the present model has many features in common
with the stochastic model of the sawtooth crash put for-
ward by the ASDEX team [61].

6.2. Future Work

The calculations presented here and in our previous
work [11, 29] were performed with a resistive MHD fluid
model of the plasma [5], which should be adequate to
describe resistive diffusion as well as resistive and ideal
MHD stability phenomena. The nonlinear calculations
also were restricted to a configuration with a particular
cross-section shape as described in Sec. 4. It remains to
be seen if the model presented here can be extended to
describe such things as “monster sawteeth” [62, 63] and
the control of the sawtooth period by RF [64] and neutral
beams [64, 65]. Also, we have yet to demonstrate the
dependence of the sawtooth period on plasma shape [66]
and other parameters. These studies as well as more
detailed experimental validation, including the presence
or absence of precursor and/or postcursor oscillations,
will be the subject of future work.

7. CONCLUSIONS

In summary, our simulations indicate that sawtooth os-
cillations in tokamaks could be explained as follows: For

sufficiently low-3 and low-S discharges, the Kadomtsev
model will apply. The temperature profile and current
will peak, causing ¢o to fall below 1. A resistive (1,1)
mode will grow, flattening the temperature and density
profiles interior to the ¢ = 1 surface. However, above a
critical value of § and at sufficiently high S, a station-
ary (1,1) interchange mode will grow and saturate, pro-
ducing a dynamo voltage that keeps the central g-profile
very close to 1 and flat due to a self-organizing feedback
mechanism as described previously by us [11, 29]. The
saturated interchange instability will also cause central
flows that act to decrease the central pressure gradient
through convection.

However, if the central heating is strong enough, the
pressure in the low shear central region will continue to
increase until higher-n ideal modes, primarily with m = n
suddenly become unstable causing the central region to
become turbulent and stochastic and the temperature
and density to flatten. In this higher-5 centrally peaked
heating regime, the role of the (1, 1) mode is to maintain
the central g-profile very near 1 and the central region
nearly shear-free. It is the higher (m,n) ideal modes
with m = n > 1 that cause the fast crash. We note here
that since the temperature rise phase of the sawtooth pe-
riod is due to heating and transport but the temperature
crash phase is due to ideal MHD instabilities and parallel
transport in stochastic fields, we expect the time sepa-
ration between these two events to be even wider (and
the crashes to be faster) as S increases and more realistic
values of & are used.

The central features of our model are that in moderate-
to-high f tokamaks, (1) the g-profile remains just above
unity with low central shear during the sawtooth, and (2)
higher-n modes are present during the crash. These are
consistent with many experimental measurements, but
are in apparent conflict with others. More work clearly
needs to be done to resolve these discrepancies.
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Appendix A: Origin of the Dynamo Voltage

The magnetic field in M3D-C1 is represented in the
form:

B=V¢YxVp—-V,0f/0p+ FVoy, (A1)

where F' = Fy + V2 f, with Fy a constant. The poloidal
velocity is represented as V = R?VU x Vi + R72V | y,
a form of a Hodge decomposition. Here V| indicates
the gradient perpendicular to the toroidal direction. In
all the results presented here the kinetic energy in the x
field is less than 1% of the energy in the U field (which
does not compress the strong toroidal magnetic field) and
can thus be ignored in the analysis.

To lowest order, the equation to advance the poloidal
flux is given by [67]:

61/} _ D2 _ 874) *
o0 = B0l 50 40ty (A2)

Here (R, ¢, Z) are cylindrical coordinates, ® is the scalar
electrical potential, and the Poisson bracket is defined in
the normal way: [a,b] = Va x Vb- V.

As in [29], we note that a good fit to the (1,1) com-
ponent of the stream function is given by the unstable
linear eigenfunction found in [27]. For r < r1:

U=Uy|1- (}ﬂ sin (0 — ). (A3)

1

Here r is the minor radius, r = |R— Ry, r1 is the minor
radius where the shear becomes non-zero, and 6 is such

that (r,6) form a local polar coordinate system. Using
the fact that to high order, V& = —FVU, we can calcu-
late the perturbed ¢ field to the first two orders. To first
order, ¢ just has a (1,1) component. Inserting Eq. (A3)
into Eq. (A2) and just taking the (1,1) component gives,
for r < ry:

N2
1 = %RQUl)J¢0(1 —qo)r {1 — <r7—) ] cos (0 — ).

1

(A4
Here, we defined the toroidal current density on axis
as Jyo and used the approximate identity qo =
2F/ (RZJV,O). Inserting Eq. (A4) into Eq. (A2), gives
for the second order contribution, for r < ry:

o = Lpepz g o-y |1 -3 AN FEAY
gt Yopolo el ri

(A5)
Note this second order (nonlinear) term is axisymmetric.
It has the units of a voltage. Near the magnetic axis
(r = 0) first term is positive for go > 1 while the second
term, with the resistivity, is negative. The resistive term
is normally acting to lower the gy value while the first
term coming from the interchange instability is acting to
raise it. Since for a fixed pressure profile, the interchange
growth rate and hence the magnitude of Uy decreases
quadratically with (go—1) (See Fig. (2) of [27]), a natural
feedback mechanism is in place to keep ¢o slightly above
1.
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