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Abstract 

Vibrational excitation potentially enhances the energy efficiency of plasma dissociation of stable 

molecules and may open new routes for energy storage and process electrification. Electron, 

vibrational and rotational temperatures were measured by in-situ Thomson and Raman scattering in 

order to assess the opportunities and limitations of the essential vibration-translation non-equilibria 

in N2, CO2 and CH4 plasma. Electron temperatures of 1.1-2.8 eV were measured in N2 and CH4. These 

are used to confirm predominant energy transfer to vibrations after an initial phase of significant 

electronic excitation and ionization. The vibrational temperatures initially exceed rotational 

temperatures by almost 8000 K in N2, by 900 K in CO2, and by 300 K in CH4. Equilibration is observed 

at the 0.1 ms timescale. Based on the vibrational temperatures, the vibrational loss rates for different 

channels are estimated. In N2, vibrational quenching via N atoms is identified as the dominant 

equilibration mechanism. Atomic nitrogen population reaches a mole fraction of more than 1%, as 

inferred from the afterglow emission decay, and explains a gas heating rate of 25 Kμs−1. CH4 

equilibration at 1200 K is predominantly caused by vibrational-translational relaxation in CH4-CH4 

collisions. As for CO2, vibrational-translational relaxation via parent molecules is responsible for a 

large fraction of the observed heating, whereas product-mediated VT relaxation is not significantly 

contributing. It is suggested that electronic excitation, followed by dissociation or quenching 

contributes to the remaining heat generation. In conclusion, the time window to profit from 

vibrational excitation under the present conditions is limiting practical application.  

Broader context 
Efficient dissociation mechanisms of thermodynamically stable molecules will fulfill a pivotal role in 

the energy and industrial landscape of the future. As carbon cycles are to be closed and nitrogen 

fixation to become fossil fuel independent, efficient activation of CO2, CH4 and N2 as chemical 

building blocks becomes essential. In this context, plasma technology is gaining attention as an 

alternative to conventional methods due to its compatibility with renewable energy intermittency 

and scalability. Moreover, it is widely theorized that preferential heating of molecular vibrations 

offers opportunities for breakthroughs in yield and efficiency. This paper provides a benchmark for 
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these speculations by a detailed characterization of vibrational heating specificity and timescales of 

quenching on basis of microscopic measurements and rate estimations for the splitting of CO2, CH4 

and N2.  

Introduction 

Molecular vibrations can significantly enhance energy efficiencies in the dissociation of 

thermodynamically stable molecules [1] in both the gas phase and coupled with catalysts [2]. In the 

gas phase, the efficiency of electron impact dissociation may be enhanced through more favorable 

Franck-Condon overlap between lower vibrational levels of ground state and products [3]. The high 

efficiency of vibration-driven chemistry is mainly attributed however to the vibrational ladder 

climbing process, analogous to vibrational pooling [4][5]. Here, stepwise vibrational excitation allows 

to break molecular bonds at the bond enthalpy [6][7]. This mechanism is the prevailing model for 

explaining the over 80% energy efficiency that was reported for the splitting of CO2, where the 

vibrational excitation was provided by plasma electrons [8][9]. The anharmonicity of the molecule 

creates a preference in vibration-vibration (VV) collisions to up-excite molecules in higher vibrational 

levels compared to those in lower levels, thereby overpopulating the higher vibrational levels 

[10][11]. Low gas temperatures must be maintained under strong vibrational excitation conditions 

for ladder climbing to be effective [12]. Coupled with a catalyst, vibrational excitation is believed to 

provide an energetically favorable pathway in for example ammonia synthesis [2] or in providing 

selectivity to the non-oxidative coupling of methane [13]. Successful implementation of these 

schemes, similar to ladder climbing in the pure gas phase, requires abundant vibrational excitation 

preferably at low gas temperatures. Additionally, the lifetime of the vibrationally excited species 

must be of sufficient length to ensure interaction with the catalytic surface.  

Plasma can be a suitable medium to achieve the required selective vibrational excitation. Under 

steady state conditions of moderate power density, vibrational excitation can be the primary energy 

transfer channel between the plasma electrons and the heavy particles [12]. The selectivity of the 

plasma in transferring electrical power to vibrations depends mainly on the electron temperature 

[14]. If the electron temperature gets above 2-3 eV, as often is the case in transient behavior, the 

electrons will deposit significant amounts of energy in electronic excitation [1]. The electronic states 

can cause dissociation, radiate or be quenched, which will cause gas kinetic heating or radiative heat 

losses and thus reduce efficiency [15].  

To maintain a high vibrational non-equilibrium, the gas temperature must be kept low to suppress 

quenching of vibrations. Quenching of vibrational quanta to translational heat (VT relaxation) poses 

an inherent loss mechanism of vibrational energy, and limits the timescales in which the vibrational 
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chemistry can occur [11]. VT relaxation not only decreases the vibrational excitation density, but also 

increases the gas temperature. Because the rate of VT relaxation increases strongly with gas 

temperature [16], the gas temperature has to be kept as low as possible to prevent the undesired 

positive feedback loop between gas heating and quenching [15].  

The present study compares three molecules: N2, CO2 and CH4. Starting from a symmetric diatomic 

molecule and stepping up in atom number increases both the complexity and state density of the 

vibrational manifold as well as the chemistry. Nitrogen has a single mode of vibration for which 

ladder climbing has been demonstrated to lead to overpopulation of the higher levels. This yields a 

non-Boltzmann distributed vibrational distribution function (VDF) [17][18], such as a Treanor 

distribution [5]. CO2 has four normal modes of vibrations (of which one doubly degenerate), where 

the high energy asymmetric stretch mode is decoupled from the low-energy bending and symmetric 

stretching modes (the latter two being coupled by Fermi resonance). CH4 has 9 vibrational normal 

modes, a complexity for which such decoupling is no longer evident. Furthermore, the relaxation 

times of vibrations in CO2 and CH4 are respectively 3 and 4 orders of magnitude faster than for N2 at 

similar conditions due to their resonances  and low-energy vibrational constants [19][20]. This 

emphasizes the challenge of vibrationally driving chemistry in more complex molecules.  

In addition to their scientific relevance, all three molecules also have societal impact in the context 

of the energy transition and climate change. Efficient dissociation of nitrogen for fertilizer 

production can potentially lower the large carbon footprint associated with the current Haber-Bosch 

production standard [21]. Efficient CO2 dissociation into CO and O2 will create opportunities for 

closing the carbon cycle. For example, it constitutes an alternative form of storing energy, i.e. in 

chemical bonds instead of in batteries, enabling large scale energy storage and transportation as 

well as sector integration [1][7]. Non-oxidative coupling of methane may open high efficiency 

pathways to value-added chemicals such as ethylene [22]. Here the methane molecules are first 

dissociated into CHx radicals, which form larger carbon chains upon recombination [23].  

For CO2 plasma, extensive research has been reported in recent years on dissociation and vibrational 

kinetics in, both in low-power glow discharges [24][25][26] and in high power microwave discharges 

[27][28][29][30]. However, it remains unproven whether the mechanism of vibrational ladder 

climbing is the main dissociation pathway while none of the investigations reproduced the >80% 

energy efficiencies reported by Butylkin et al. [8] so far.  

For nitrogen plasma, vibrational temperatures up to 104 K at gas temperatures less than 103 K have 

been reported in literature under specific conditions [17][31]. The large degree of non-equilibrium 

which can be obtained in N2 is attributed to its slow quenching of vibrations, as previously 
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mentioned due to the large vibrational constant compared to typical translational energies [32]. 

However, atomic N, which is inherently produced in a plasma discharge, is an efficient quencher of 

vibrations, especially at higher temperatures and for high vibrational levels [17]. Nonetheless non-

equilibrium conditions have also been observed in the periphery of continuous intermediate 

pressure N2 plasmas, which do have a thermal core [33]. 

CH4 plasma is traditionally receiving interest in view of non-oxidative coupling as an alternative to 

oxidative CH4 reforming. However, it is limited by coke formation and selectivity problems 

[22][34][35]. In high-power microwave plasma, specific conditions with temperatures ranging from 

1000 K to 2000 K were found without coke formation [36]. Nevertheless, selectivity and low energy 

efficiency remain as issues.  

Vibrational energy transfer in these molecules has been studied extensively. For N2 and CO2, this was 

mainly in the context of the CO2 laser [16][37][38][39]. The CO2 laser operates on population 

inversion between the first excited asymmetric stretch vibrational level and the first Fermi resonant 

levels. Ladder climbing beyond the first level, the motivation within the present context, is 

specifically suppressed in the CO2 laser by the addition of H2 or H2O [40]. CH4 was a molecule of 

choice to study fundamental molecular energy transfer mechanisms. It was found that sustaining a 

non-equilibrium between the vibrational modes is more challenging because of the strong coupling 

of the four modes of vibration [20][41][42].  

The present paper uses low duty-cycle pulsed plasma to assess the potential for achieving non-

equilibrium in high-power microwave plasma. Pulsed operation is chosen over continuous plasma, as 

the latter is seen to have a high temperature thermal core for the considered molecules 

[33][36][43], thereby likely eliminating possible non-equilibrium benefits and creating conditions in 

which thermal chemistry dominates [27]. In the low duty cycle pulsing scheme adopted from Van 

den Bekerom [44], the plasma ignites at room temperature, which ensures minimal VT relaxation. 

Van den Bekerom estimated the reduced electric field based on an energy partition to the different 

degrees of freedom. This demonstrated a limited selectivity to vibrational modes, attributed to the 

low duty cycle and high electron losses. All experiments were performed with pure N2, CH4 and CO2. 

Admixing noble gases [45] or alkali metals [28] may be attractive options for altering electron 

properties and is envisaged for future work. 

The ultra-low duty cycle, high flow conditions ensure the gas is refreshed between pulses, 

eliminating product-induced effects on VT relaxation or electron properties at ignition. These 

plasmas are coupled with laser scattering to yield time resolved measurements of the energy fluxes 

to the different degrees of freedom. Thomson scattering and rotational and vibrational Raman 
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scattering respectively yield electron temperatures, rotational temperatures (which serve as a proxy 

for the gas temperature) and vibrational temperatures. Electron temperatures could only be 

resolved in N2 and CH4 plasma, where the absence of rotational Raman signature in CH4 readily 

yields Thomson signal. In N2 the well resolved Raman signal could be separated to yield a Thomson 

signature. Vibrational Raman scattering in N2, analyzed following the analytical treatment of Long 

[46], gives rotational and vibrational temperatures. Vibrational Raman spectra of the CO2 dyad are 

analyzed following the procedure described in our earlier work [44] to yield temperatures of the 

different vibrational modes, T12 and T3, respectively belonging to the coupled symmetric/bending 

mode and the asymmetric stretch mode. Vibrational Raman in the pentad region of CH4 yields both 

vibrational and rotational temperatures, as detailed in recent work of Butterworth et al. [47]. 

These time-resolved measurements allow us to unravel the importance of different heat transfer 

processes that may limit the time window of non-equilibrium in microwaves plasma. The aim is to 

establish how, and on what timescale gas heating and thermal equilibration will occur, and thus how 

long it is possible to sustain non-equilibrium under high-power conditions. 

Method & Setup 

The experimental layout is schematically shown in Figure 1. A solid state MW power source 

(Ampleon) applies 200 μs, 800 W peak power MW pulses via a WR340 waveguide to a 27 mm inner 

diameter quartz tube, where the plasma is generated. A three-stub tuner and an adjustable short 

are used to tune the electrical field to optimal conditions for electrical breakdown. Tangential gas 

injection leads to a swirl flow in the tube, which stabilizes the plasma. The flow and pressure are 

fixed at 4 slm and 25 mbar for all experiments.  

 

Figure 1: Schematic of the experimental setup used for these experiments, showing a vacuum system with a glass tube 

where the plasma is created, through the center of which a laser is focused to do laser scattering experiments. Scattered 

light is collected with a 100 mm focal distance lens and focused into a fiber array. A sharp-edge long-pass filter is placed in 
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front of the fiber array to reject the laser fundamental. The scattered light is analyzed with a Littrow-configuration 

spectrometer equipped with an em-ICCD camera. 

Perfect impedance matching could not be realized for the entire duration of the plasma pulses due 

to variations in plasma impedance. These variations are caused by the increasing electron density, a 

relationship analyzed by Groen et al. [48], and observed in the works of Baeva et al. [49] & 

Golubovskii et al. [50]. A typical example of the changing absorbed power over time is shown in 

Figure 2. 

 

Figure 2: Example of measured forward and reflected microwave power and the resulting absorbed power. It illustrates the 
decreasing absorbed power as a result of degrading matching as plasma density builds up. Here, CO2 plasma was ignited at 

25 mbar and 4 slm.  

The figure shows almost perfect tuning in the initial phases of the plasma with close to zero reflected 

power. As the electron density changes, the plasma impedance changes, the matching deteriorates 

and the reflected power increases. For all three gases, very similar power deposition profiles are 

obtained, which indicates plasma density building up similarly for different gases.  

A 30 Hz, frequency doubled Nd:YAG laser (SpectraPhysics GCR-230) of 400 mJ per pulse is focused 

into the center of the plasma. A 100 mm focal distance lens collects and focuses the scattered light 

into a fiber array. The fibers relay the scattered light into a 50 𝜇m entrance slit of a 1 m focal 

distance custom built Littrow-configuration spectrometer equipped with an 1800 l/mm grating, 

yielding a dispersion of 0.012 nm/pixel. The spectrally resolved image is captured by an em-ICCD 

(Princeton Instruments PiMax4) camera. More details on the general features of the experiment 

have been reported previously by Den Harder et al. [43]. 
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Rejection of stray light and filtering of the Rayleigh light is crucial for resolving Thomson and Raman 

features. Both effects can be orders of magnitude stronger than Raman and Thomson scattering and 

need to be reduced to obtain a good signal-to-noise ratio. A sharp edge long-pass filter (Semrock 

RazorEdge) is used to block the laser frequency. The depolarized rotational Raman signal of CO2 is 

used to calibrate the transmission of the filter, which results in the ability to measure electron 

temperatures as low as 1 eV.  

A typical incoherent Thomson scattering spectrum measured in methane is shown in Figure 3. A 

threshold of 30% in transmittance is used to manually stop the fit around 533 nm. Spectral signature 

of products, most notably Laser Induced Fluorescence (LIF) from the Swan-bands of C2 [51], is 

responsible for the structure on top of the Thomson signature, most visible at wavelengths larger 

than 536 nm. Since only a small spectral band can be observed, it is checked as follows that the 

measured signal is Thomson scattering signal and not produced by other means. Firstly, the 

polarization is confirmed to follow the laser polarization, thereby excluding LIF and Raman 

scattering. Secondly, it is confirmed that the signal disappears if either the camera gate is out-of-

sync with the laser or when the plasma is off, thereby excluding plasma emission. Thirdly, the 

spectra are compared to measurements in a continuous argon discharge, in which spurious laser 

scattering contributions are absent. Electron densities are calibrated with the rotational Raman 

signal of nitrogen at room temperature and a pressure of 25 mbar, as described in [52]. 

 

Figure 3: Thomson spectrum and Gaussian fit overlaid belonging to the 25 mbar, 4 slm CH4 plasma at 100 𝜇s into the pulse.  

The electron temperature for this spectrum is 1.9±0.2 eV. The electron density is 2.8 ± 0.6 ∙ 1019 𝑚−3. 
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Results & discussion 

Plasma electron properties 

 

Figure 4: (a) Electron temperature and density evolution measured by Thomson scattering in CH4 plasma. (b) Power 

partitioning over vibrational and electronic excitation and ionization calculated on basis of the measured electron 

temperature with a Boltzmann solver (Bolsig+ [53]), taking cross sections from [54]. For comparison, also the measured 

absorbed power is shown. This figure shows the limited selectivity to vibrations during the onset of the pulse, where the 

input power is highest. 

Evolutions of electron temperature and density in CH4 plasma as measured with Thomson scattering 

are shown in Figure 4(a). The plot reveals that the electron temperature is decreasing from 2.8±0.4 

eV to 1.4±0.2 eV over 200 𝜇s. The electron density increases throughout the pulse while the plasma 

is developing towards its steady state conditions. It changes the impedance and consequently the 

matching, which explains the decreasing power absorption shown in Figure 6(b). In work on pulsed 

argon and nitrogen plasma these electron density trends are also observed and explained by the 

plasma density build up in the ionization phase [49][55]. 

The selectivity of electron energy transfer to vibrations is computed from the electron temperature 

measurements using a Boltzmann solver with a non-Boltzmann EEDF (Bolsig+ [56]) with cross 

sections from [54]. All vibrational modes of methane are lumped together, as are all the electronic 

states. The Thomson data provides a mean energy of the electrons coming from the standardly 

assumed Maxwell-Boltzmann distribution. It lacked sensitivity to give insight in the tail of the EEDF 

that is most important for estimating ionization and electron-impact dissociation. Therefore, the 

shape of the EEDF is calculated in the Boltzmann solver and, coupled with the Te measured, used to 
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estimate the selectivity to different excitation channels. The result is shown in Figure 4(b) and 

illustrates how the initial high electron temperature limits the selectivity to vibrational activation 

during the plasma onset. A significant fraction of the input energy for the CH4 plasma is deposited in 

electronic excitation: for 0<t<50 𝜇s more than 10%. This inherently leads to dissociation since none 

of methane’s electronic states are stable [57]. Moreover, it involves a significant reaction barrier 

that is converted into kinetic energy of the fragments and consequently heats the gas. The figure 

also shows that the strongest electron density increase occurs when the energy spent on ionization 

is already falling off. The changing absorbed power density is a likely explanation for this behavior. 

Alternatively, formation of carbon ions as main charge carrier may become important, which 

reduces charge recombination losses and consequently again the electron temperature and density 

[58]. The present diagnostic means do not allow to distinguish these effects unambiguously. 

Resolving the Thomson scattering signatures is more challenging in N2 and CO2. The Thomson 

scattered light has a lower intensity than the Raman signal in the electron density regime that we 

have established for CH4. In order to increase the sensitivity, we take advantage of the fact that the 

Thomson scattering signal is completely polarized whereas the rotational Raman signal is partly 

depolarized. Hence, the Raman signal can be eliminated by comparing the two polarizations of the 

scattered light and taking the depolarization ratio into account [46]. This approach consists of 

measuring two spectra at the same temporal and spatial position, but with perpendicular 

polarization. The spectrum following laser polarization contains both Raman and Thomson, whereas 

the perpendicularly polarized spectrum only contains Raman signal. Figure 5 illustrates this method 

and highlights the possibility to measure Thomson scattering in these molecular systems. The wing 

of the Thomson spectrum is fitted to a Gaussian profile to obtain the electron parameters: Te = 

1.8±0.6 eV and ne = 1.0±0.5∙ 1019 m-3.  

The applicability of this technique depends on the ratio between Thomson and Raman signal 

strength. Only if the Raman signal does not exceed the Thomson signal by more than a factor of ~5, 

a reliable Thomson signature can be distinguished. The beneficial combination of high translational 

temperature, which lowers the neutral density and thus reduces the Raman contribution, and high 

electron density, which increases the Thomson signal, is achieved in our nitrogen discharges after 

50 𝜇s. Later in the pulse, in our case at 𝑡 > 80 𝜇s the plasma emission of the N2 first positive system 

Δ𝑣 = −5 [59] band becomes so strong that again the Thomson signature is blended.  

So far, we have not succeeded to apply the same approach to CO2 discharges. Firstly, the much 

larger rotational Raman cross section, which exceeds that of N2 by a factor 9 [60], challenges the 
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sensitivity demands. Moreover, the more complicated and denser rotational spectrum prevented us 

to sufficiently resolve the rotational Raman structure for CO2. 

 

 

Figure 5: (a) The polarized and depolarized signals as measured in a pulsed N2 discharge at t=50 𝜇s, where the difference 

between signals represents the underlying Thomson signal. (b) The Thomson scattering signal as obtained after taking the 

filter response into account, where the cutoff wavelength of the filter is taken around 534nm as to not amplify the signal 

noise. The Gaussian fit yields 𝑇𝑒 = 1.8±0.6 eV and 𝑛𝑒 = 1 ± 0.5 ∙ 1019 𝑚−3. The slight asymmetry of the rotational Raman 

lines originates from the large population of vibrational states that have smaller rotational constants than the ground state. 

Thomson scattering on CO2 plasma in an argon background, one of the few works employing 

Thomson scattering in molecular systems, shows very similar electron temperature values as those 

detected in CH4 and N2 [61]. The electron parameters over the whole CO2 pulse, as well as in N2 for 

0<t<50μs, where Thomson analysis was unsuccessful, are estimated on basis of those measured in 

CH4. The estimates are based on the assumption of equal ionization frequency for the three 

discharge gases with the purpose of assessing the vibrational excitation selectivity for these gases. 

The equal ionization frequency is inspired by the similarity in electron loss frequencies (ambipolar 

diffusion and e-i recombination) as well as by experimentally observed power density and power-

absorption curves. In CO2 plasma this assumption is additionally supported by the similarity with CH4 

in electron-neutral collision frequency with E-fields between 40 Td and 100 Td (calculated with 

Bolsig+, cross sections from [62]), which is the range of electric fields expected in these pulsed 

plasmas.  Of course, it is still only an assumption without true verification.  
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The resulting electron temperatures evolutions are shown in Figure 6(a), the vibrational excitation 

selectivity derived from those curves in Figure 6(b). Error margins are propagated from the CH4 and 

N2 electron temperature measurements.  

 

 

Figure 6: (a) Electron temperatures over time, measured (solid lines) for CH4 and N2, and calculated (dashed lines) from the 
CH4 measurements for N2 and CO2. (b) The selectivity of power transfer to vibrations calculated with the electron 

temperatures in (a). Shown is an increasing selectivity as the pulse progresses, but also clearly indicated is a low selectivity 
during the discharge onset. All calculations were performed with Bolsig+ software [53], with cross sections from 

[54][62][63]. 

The results indicate very similar electron temperatures of CO2 and N2, while those of CH4 are 

significantly higher. It is noteworthy to observe here that the computed and measured electron 

temperatures in N2 plasma align well given the error margins. The calculated power partitioning 

shows the selectivity to be very similar for the three molecules: ~60 ± 20% at the discharge onset 

up to ~95 ± 4% after 80 𝜇s of the input energy is being transferred to CO2 and CH4 vibrations. The 

calculated power partitioning from the nitrogen measurements shows a lower selectivity: from 63 ±

20% after 40 𝜇s up to 87 ± 10% after 80 𝜇s. After 80 𝜇s, the selectivity remains above 90% for all 

cases. While the figure suggests excellent initial selectivity, we note that the error margins are 

significant. Consequently, the selectivity for CO2, could be less than 50% up until t = 40𝜇s. 

The remaining input energy fractions will mainly go into electronic excitation, as was detailed for CH4 

in Figure 4(b). Electronic excitation in nitrogen easily accumulates in its lowest electronic states, the 

metastable 𝐴3Σ𝑢
+ and 𝑎1Σu

− states, because of their long radiative lifetimes (more than 10 s for A-

state [64]). It means that an energy reservoir in the metastable states will build up over the pulse. 

For CO2, the electronic excitation processes are not well characterized, but these will certainly play 

an important role in producing dissociation and accompanying gas heating. Our reasoning is that 
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dissociative electronic excitation involves a high energy threshold and thus is a channel that directly 

causes additional heat production via thermalization of the energetic dissociation products.  

In conclusion, the power partitioning estimates on basis of the Thomson scattering measured 

electron temperatures indicate that initially 60±20% of the power is deposited in vibrations, a 

number that increases to ~90% at 80 𝜇s. It also indicates that there is a significant fraction (>10%) of 

total energy spent in electronic excitation for all three molecules for 𝑡 <50 𝜇s. It is likely that most of 

this energy will end up in thermal heat through collisional quenching. 

Heavy particle temperature dynamics 
Vibrational temperatures are determined under the assumption that the vibrational levels are 

Boltzmann distributed. Only in N2 plasma, and most pronounced in the early phase (10 𝜇𝑠 < 𝑡 <

50 𝜇𝑠), deviations from Boltzmann distribution were observed. In those cases, two vibrational 

temperatures were calculated: one for the ratio of ground and first excited state populations, 𝑇𝑣
0,1, 

and the other for the population distribution of all other observed vibrational bands, 𝑇𝑣
1,5 , as 

described in [65][66]. Figure 7 shows such a deviation from a Boltzmann distribution as was typically 

measured in N2, which is clearly significant for characterizing the energy stored in vibrational modes. 

 

Figure 7: Boltzmann plot illustrating the bimodal vibrational distributions measured in the 25 mbar, 4 slm N2 plasma at 

t=15 𝜇s. 𝑇𝑣
0,1 is the usual Boltzmann temperature calculated from the ground state and first vibrational level population 

ratio. 𝑇𝑣
1,5 is the temperature describing the population distribution over the levels v=1-5. The two temperatures are 

respectively 1500 K and 5700 K.  
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Figure 8: Rotational and vibrational temperature evolutions inferred from Raman scattering in the center of pulsed 

microwave plasmas of (a) N2, (b) CO2 and (c) CH4. Deterioration of the coupling efficiency in the course of the pulse is 

reflected by the decreasing net absorbed power. Error bars shown for some representative data points are estimated from 

the quality of the Raman spectral fits and the signal-to-noise ratio. The large error in temperature for high rotational and 

vibrational temperatures in nitrogen is caused by low signal-to-noise ratios due to low scatter yields and a very low 

sensitivity to temperature of the first vibrational levels in the range of 104 K. 

The heavy particle temperature evolutions in microwave discharges in N2, CO2 and CH4 as inferred 

from Raman scattering measurements are shown in Figure 8. It is seen that the evolution of gas 

heating is significantly different for the three molecular systems. Nitrogen exhibits the largest 

vibrational excitation, with very limited initial gas heating. Moreover, it is the only molecule 

exhibiting a bimodal distribution, which can be observed from the start of the plasma. At the onset 

of the rapid gas heating in nitrogen this bimodal distribution disappears. The vibrational 

temperatures in N2 reach almost 10000 K with a rotational temperature of less than 1000 K, whereas 

the vibrational temperatures measured for CO2 and CH4 are an order of magnitude lower. The 
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asymmetric stretching mode of CO2 has initially the strongest increase, with T3 reaching 1100 K at a 

gas temperature of 400 K. All vibrational modes equilibrate after 45 𝜇s. This effect is not observed in 

CH4, where all vibrational modes have equal temperature throughout the discharge, confirming the 

strong coupling between all its vibrational modes. The evolution of T12 in CO2 is very similar to that of 

Tvib in CH4: The maximum difference between T12/Tvib and Trot is about 300 K. The much higher 

vibrational temperatures in N2 must be evaluated in the context of its smaller vibrational heat 

capacity; N2 only has one vibrational mode, whereas CO2 has four and CH4 has nine (including 

degeneracies). The vibrational heat capacities for each molecule are evaluated following the 

approach of our earlier work on CO2 [44] using 

 cp,vib = ∑ 𝑑𝑖𝑧𝑖  (
ln(𝑧𝑖)

1 − 𝑧𝑖
)

2

𝑅

𝑖

. eq. 1 

Here 𝑑𝑖  is the degeneracy of mode i, 𝑧𝑖  is the typical Boltzmann term associated with this mode, 

expressed as 𝑧𝑖 = exp(ℎ𝑐𝜔𝑖/𝑘𝑇𝑖), and R is the gas constant. For the low vibrational temperatures 

observed in CO2 and CH4 the Boltzmann terms have not yet reached their maximum value, while N2, 

reaching a Tvib of 10000 K does reach its maximum heat capacity. Hence the high vibrational 

temperature of N2 holds significantly more energy than the vibrational energies in all the modes of 

CO2 and CH4: 10000K Tvib in N2 holds the same energy as 2075 K in CH4 and 2850 K in CO2. 

In gas temperature evolution, CH4 and CO2 are similar, but different compared with nitrogen. Where 

the temperature in CO2 and CH4 rises gradually to 1000-1300 K over the entire 70 𝜇s pulse duration, 

there is almost no change in gas temperature in N2 for 40 𝜇s, after which the temperature rises 

rapidly to more than 3000 K at 70 𝜇s. This increase in N2 will lead to thermalization shortly after 

70 𝜇𝑠, which could not directly be measured due to the abruptly dropping Raman intensity. The 

rapid gas heating after 50 𝜇s is also observed in recent work on N2 pulsed microwave plasma [67], 

where the gas heating stops at around 1000 K and the non-equilibrium is sustained.  

An interesting point of discussion is the actual amount of vibrational driven dissociation occurring in 

the three studied plasmas, something difficult to quantify without extensive state-to-state models. 

However, on basis of the population fractions in the asymmetric stretching mode for CO2 and CH4 we 

can argue that it is minimal: for successful vibrational-driven dissociation a significant fraction of 

molecules must have one or more quanta in this vibrational mode. The population fractions in this 

mode only reach ~5%, which likely is not sufficient to overcome the losses to other vibrational 

modes occurring at higher vibrational levels. For N2 this is not the case, as there is only one mode of 

vibration that reaches much higher temperatures and population fractions. However, only N-atoms 

can be formed, which readily recombine so that no net chemistry can occur. 
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Having established the heating dynamics of vibrational and gas kinetic modes, we shall analyze the 

heat equilibration via VT relaxation involving parent molecules as well as dissociation products for 

each of the three molecules. 

Nitrogen 
The observed rapid heating in the nitrogen plasma could typically be explained by a vibrational or 

thermal instability [68], in which the large amount of energy stored in the molecule’s vibrations 

quickly relaxes due to the positive feedback loop between VT relaxation and temperature. However, 

the VT timescales for pure N2 are orders of magnitude longer than the pulse length for the 

temperature regime under discussion: at 750 K the typical VT time in N2 is 400 ms [19]. Clearly, the 

heat generation at 𝑡 > 50 𝜇s must be caused by other processes than molecular VT relaxation. An 

efficient and well-studied thermalization mechanism in N2 plasma is N2-N VT relaxation [17][69][70]. 

Nitrogen atoms are much more efficient in quenching metastable vibrational (and electronic) states 

than molecular nitrogen and have consequently often been identified to play a key part in heating N2 

plasma. The rates of N2-N VT relaxation are non-zero above v=10 and rise rapidly with both higher 

quantum number and gas temperature [32]. The relevance of this heating channel in our particular 

plasma is assessed based on N concentration measurements. 

The atomic nitrogen concentration is estimated following the method described by Coitout et al. 

[71]. It involves measurements of the decay rate of the Second Positive System (SPS) afterglow 

emission. In the afterglow, where no energetic electrons exist, the main population channel of the 

radiative N2 (C3Πu) state is the pooling reaction:  

 N2 (A3Σu
+) + N2( A3Σu

+) → N2(C3Πu) + N2(X1Σg). eq. 2 

In the afterglow there is no excitation of the N2 (A3Σu
+) state while quenching occurs predominantly 

by atomic nitrogen. Quenching of N2(A3Σu
+) reduces the production of N2(C3Πu) and thus the 

emission intensity of the SPS. The results of the model presented by Coitout et al. are used to 

convert the measurements of afterglow decay rate into atomic nitrogen concentration. This model 

couples the N2 (C3Πu), (B3Π g), ( A3Σu
+) and (X1Σg) states as well as the N density through 

radiative transfers, pooling reactions, quenching and collisional transfer. It yields a straightforward 

way of obtaining N densities from the N2(C3Πu) radiative decay.  
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Figure 9: (a) The decay of the SPS emission measured in the afterglow for a plasma pulse duration of 90 𝜇s and 30 𝜇s, 

respectively. (b) The absolute density of atomic nitrogen computed from the SPS emission decay as a function of plasma 

pulse duration. An increase in nitrogen atom density is clearly observed throughout the pulse.  

Figure 9(a) shows the emission intensity in the afterglow for a 30 and 90 𝜇s plasma, clearly exhibiting 

a faster decay for longer pulses. The atomic N density obtained from the decay rates is shown in 

Figure 9(b). These, together with the vibrational and gas temperatures, enable us to quantify the 

heat coming from N2-N VT reactions. The high vibrational levels (10<v<40) are most important for 

these reactions as shown in [17]. However, these levels are not directly measurable due to their 

relatively small population. Hence the same VDF as in the work of Guerra et al. (ref [17], fig. 4a) is 

assumed, since the gas temperature and vibrational temperatures are very similar before the 

heating commences. The atomic N density in this calculation is set at 1021 m−3, corresponding to a 

dissociation fraction of ~1%. The energy leaving vibrational modes per volume per second, or the 

vibrational cooling, is computed as: 

 𝑃𝑉𝑇 = ∑ ∑[𝑁2(𝑣)] [𝑁] 𝑘𝑣,𝑣′Δ𝐸𝑣,𝑣′

𝑣′𝑣

. eq. 3 

Here, [𝑁2(𝑣)] is the density of N2 vibrational state 𝑣, [N] is the atomic N density, 𝑘𝑣,𝑣′ is the rate for 

the specific collision from 𝑁2(𝑣) to 𝑁2(𝑣’), calculated with the equations described in [32] for 1000 

K, and Δ𝐸𝑣,𝑣′ is the energy that is lost to heat in such a collision. Finally, the vibrational cooling rate 

is assumed equal to the gas heating rate. This calculation results in a gas heating rate of 25 Kμs−1, 

which is to be compared with the observed ~100 Kμs−1 (Figure 8). Given the uncertainties in the 
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analysis that come mainly from the estimated atomic N density and details of the VDF, we conclude 

that atomic N formation and its subsequent quenching of internally excited N2 dominates the gas 

heating in N2 plasma.  

Methane 
The equilibration timescale of Tvib and Trot in CH4 is close to the characteristic timescale of VT 

relaxation at 25 mbar and 300 K, which was reported to be 50 𝜇s [20], suggesting VT relaxation to 

dominate at forehand. We compute the vibrational cooling as [37]: 

 −
𝑑𝐸𝑣𝑖𝑏

𝑑𝑡
=  

𝑑𝐸𝑔𝑎𝑠

𝑑𝑡
=

1

𝜏𝑉𝑇
(𝐸𝑣𝑖𝑏(𝑇𝑣𝑖𝑏) − 𝐸𝑣𝑖𝑏(𝑇𝑔𝑎𝑠)) 

eq. 4 

Here, 𝐸𝑣𝑖𝑏(𝑇𝑣𝑖𝑏) is the energy in vibrations, evaluated at the measured vibrational temperature and 

𝐸𝑣𝑖𝑏(𝑇𝑔𝑎𝑠) the energy in vibrations if the gas was in equilibrium. Furthermore, the temperature 

dependent VT relaxation, 𝜏𝑉𝑇 , is described by a general scaling relation:  

 log10(𝜏𝑉𝑇 𝑝) = (𝑎 𝑇
1
3 − 𝑏). 

eq. 5 

Here, a and b are experimentally determined coefficients, T is the temperature in K, and p is the 

pressure in bar. Temperature dependent VT times are taken from Wang & Springer [72]. The result is 

shown in Figure 10. 

 

Figure 10: Gas heating from VT relaxation calculated for methane on basis of the measured vibrational temperature 

evolutions as a function of time. It confirms that VT relaxation in CH4-CH4 collisions is the dominant heating mechanism.  
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The figure shows an underestimation of the calculated gas temperature compared to the 

measurements, which increases to about 300 K after 70 𝜇s. Nevertheless, 70% of the observed 

temperature rise can be attributed to VT relaxation. The remaining heating is probably induced via 

energetic dissociative excitation products, which amounts to 20±5% of the power input throughout 

the pulse. Moreover, the dissociation products and resulting higher hydrocarbons quench methane 

vibrational excitation even more efficiently, underlining another complicating factor for vibrational 

chemistry in CH4 plasma. Particularly ethane, identified as one of the main reaction products [36], 

quenches the vibrations of CH4 resonantly [41]. For example, 0.5% ethane concentration shortens VT 

times by approximately a factor 40. 

Bolsig+ calculations were performed, which indicate that lowering the electron temperature for CH4 

during ignition will lead to more power being deposited in the vibrational modes of CH4, and thus to 

a higher vibrational temperature. The time limitations of VT relaxation in a 100% selective case were 

estimated by running the calculation of Figure 10 with a 50% higher vibrational temperature. This 

results in an equilibration time of 50 𝜇s, thereby showing that VT relaxation would limit vibrational 

non-equilibrium in CH4 plasma even if 100% selectivity were achieved.  

Carbon dioxide  
The importance of VT relaxation for gas heating in CO2 is analyzed similarly as for CH4. State-to-state 

mechanics are ignored and the overall VT relaxation is computed by assuming one vibrational 

temperature and one VT rate, like in work by Simpson et al. [16] and Carnevale et al. [37]. 

Complicating in this approach is our observation of the different temperatures for the asymmetric 

versus the bending and symmetric stretch vibrations. We simply ignore the higher temperature of 

the asymmetric stretch mode and the complexities in VV and VT transfer arising from it. This is 

justified by the relatively small amount of energy contained in the asymmetric stretch mode, an 

observation made in our previous work reported by Van den Bekerom et al. [44].  

The CO2 VT times as a function of temperature are calculated using the fitting coefficients of 

Simpson et al. [73]. Figure 11 shows the result of the calculation for CO2 in a comparison with the 

measured temperatures. It is noted that the parameters established in Carnevale et al. [37] yield  

similar results.  



19 
 

 

Figure 11: VT relaxation in CO2 simulated for the measured T12 trace. T3 is not shown since it is not being considered in this 

calculation. Comparison with the measurement of the rotational temperature shows that the simulated gas heating is ~50% 

slower than in the experiment. 

Comparison of the simulated VT relaxation with the observed gas heating shows that the simulation 

underestimates the gas heating time constant by ~50%. Dissociation products in CO2 plasma may 

shorten effective VT times, similar as was discussed for CH4 and N2. Atomic oxygen is approximately 

an order of magnitude more potent in quenching vibrations than CO2 itself [38]. Still, a dissociation 

fraction of ~10% is required to decrease the effective VT times sufficiently to correctly predict the 

measured gas temperatures. Such degree of dissociation is not reached since no spectral features of 

products are seen in the rotational Raman measurements: atomic oxygen Raman lines at 

158 cm−1 and 226 cm−1 Raman shift [74], seen in continuous CO2 plasma, were not observed. 

Dedicated efforts to measure the vibrational Raman signature of CO also proved fruitless. Both 

spectral signatures would lie within the detection limit of the system, which is around 5% at these 

conditions, indicating the low degree of dissociation locally.  

While product-accelerated VT-relaxation does not contribute significantly to gas heating, the 

formation of products can be significant: electron-impact excitation and dissociation release 

significant heat per reaction. This channel is therefore concluded to generate the remaining heat, a 

conclusion that is in line with the selectivity assessment of Figure 6, where up to 50% of electron 

energy could be spent in electronic excitation initially.  
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General conclusions 

Pulsed microwave plasma was studied for efficient reforming of the stable and abundant molecules: 

N2, CH4, and CO2. Electron, vibrational and rotational temperatures, measured by Thomson and 

Raman scattering, were used to obtain a detailed insight in the heating dynamics in the breakdown 

phase of these microwave plasmas. Strong vibrational non-equilibria were observed during this 

phase of the discharge. Despite differences in energy transfer mechanisms and mode equilibration 

timescales, all three gases were observed to heat up within 0.1 ms. 

The electron temperature in methane and nitrogen plasma were observed to decrease over time, 

from 2.8 to 1.4 eV in the case of CH4 and from 1.8 to 1.1 eV in N2. Where no Thomson signature was 

observed, the time trace of the electron temperatures in CO2 and N2 was estimated by assuming 

similar ionization frequencies. These electron temperatures are too high for preferential vibrational 

excitation in N2, CO2 and CH4, and indicate that 10-40% of the input energy is transferred to 

electronic excitation in all three gases in the first 50 𝜇s of the pulse.  

Dissociation products are generally efficient vibrational quenchers. O, N, and C2H6 are all efficient in 

quenching vibrations of their parent molecules. This is the main heating mechanism in the nitrogen 

plasma, where nitrogen atoms were identified as cause for the observed gas heating. For CO2 and 

CH4, no significant product formation could be observed within the duration of the plasma pulse to 

see effect on the gas heating. 

On basis of these considerations, we generalize the promises and limitations of vibrationally driven 

plasma chemistry. In our experiments, the non-equilibrium was always limited to less than 100 𝜇s. It 

is noted that reactor pressure and power density govern the timescale for relaxation and gas 

heating. Lowering the pressure will extend the timescale but will also impact the timescales of 

transport and chemistry. Nitrogen already shows very promising results under the present 

conditions, with high vibrational temperatures and significant dissociation. Here the challenge will 

be in separating the excitation and dissociation, as to prevent the quenching through product 

formation. For CO2, control of the electron temperature would be a solution for a longer lasting and 

more significant non-equilibrium. In CH4 we observed that VT relaxation is the dominant heating 

mechanism, which can only be suppressed by actively cooling the gas. Perhaps more sophisticated 

approaches could negate the identified limitations and broaden the window of opportunity for 

vibrational excitation. These include the aforementioned sodium seeding to increase electron 

densities and e-V selectivity as well as plasma ignition in a supersonic expansion to actively cool the 

gas. 
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