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Abstract

Understanding and control over plasma instabilities and contraction phenom-

ena in reactive flows is essential to optimize the discharge parameters for plasma

processing applications such as fuel reforming and gas conversion. In this work, we

describe the characteristic discharge modes in a CO2 microwave plasma and assess

the impact of wave coupling and thermal reactivity on the contraction dynamics.

The plasma shape and gas temperature are obtained from the emission profile and

the Doppler broadening of the 777 nm Op5S Ð 5Pq oxygen triplet, respectively.

Based on these observations, three distinct discharge modes are identified in the

pressure range of 10 mbar to atmospheric pressure. We find that discharge con-

traction is suppressed by an absorption cut-off of the microwave field at the critical

electron density, resulting in a homogeneous discharge mode below the critical tran-

sition pressure of 85 mbar. Further increase in the pressure leads to two contracted

discharge modes, one emerging at a temperature of 3000 to 4000 K and one at

a temperature of 6000 to 7000 K, which correspond to the thermal dissociation

thresholds of CO2 and CO respectively. The transition dynamics are explained

by a thermo-chemical instability, which arises from the coupling of the thermal-

ionization instability to heat transfer resulting from thermally driven endothermic

CO2 dissociation reactions. These results highlight the impact of thermal chemistry

on the contraction dynamics of reactive molecular plasmas.

Keywords: carbon dioxide, solar fuels, microwave plasma, reactive plasma, thermal

conversion, thermal instability, chemical instability
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1 Introduction

Plasmas in reactive flows have been widely studied for a range of plasma-chemical process-

ing applications such as plasma-catalysis [33,44], fuel reforming [11], and plasma-conversion

of stable molecules such as CO2, H2O and N2 for the production of synthetic fuels and

value-added chemicals [38,42]. Discharge contraction phenomena are common in such dis-

charges, enhanced by both the molecular nature [31] and the moderate to atmospheric

pressure conditions often required in such processing applications. Distinct homogeneous

and contracted modes emerge as the equilibrated states of plasma instabilities, each re-

sulting in distinct discharge parameters and, subsequently, plasma-chemical processing

conditions. A thorough understanding of the underlying contraction mechanisms is re-

quired to aid the development and optimization of plasma-assisted processing, synthesis,

and conversion processes.

Microwave plasma-driven conversion of CO2, aimed at producing CO feedstock for

synthetic fuels [42], is a currently relevant topic of research, motivated by the rising con-

cerns of global warming. Discharge contraction has proven to play an essential role in

optimization of the reactor performance. Energy efficiency values of 70-80 % have been

reported in a vortex stabilized discharge configuration. The optimal conditions were re-

ported to coincide with a plasma transition from a diffuse to contracted discharge mode,

under hypothesized conditions of strong vibrational-translational (VT) non-equilibrium

around 160 mbar [1,6,16] for a power of 1400 W and a CO2 flow rate of 24 slm. Subsequent in-

vestigations on the exploitation of the non-equilibrium character of the microwave plasma

to promote the preferential excitation of the vibrational levels of CO2 were however not

successful [3–5,9,16]. The conditions under which high efficiency was achieved have not been

reproduced to date. In recent experiments which closely follow the original design, up to

50 % energy efficiency was reported under conditions that point to a state close to local

chemical equilibrium [13,41].

While the efficiencies of these sets of experiments and the proposed operating con-

ditions vary significantly, the plasmas contraction dynamics as a function of pressure

are very similar [45]. The optimal conditions for plasma conversion are found in the same

pressure range of 100 mbar to 200 mbar [17,45], coinciding with a discharge mode transition.

Despite these commonalities in the contraction behavior, the implications of the mode

transitions on the plasma conditions remain largely unclear, since currently established

theories of plasma contraction fail to describe the occurrence of these discharge modes.

A transition mechanism based on shifting non-equilibrium character of the discharge

with increasing pressure is described by Fridman and Kennedy [16,17], initiated by VT-

relaxation with increasing pressure and resulting in a shift from a vibrational non-

equilibrium to quasi-equilibrium conditions [17]. Recent reports show that a VT-nonequilibrium

can be ruled out for moderate pressure steady state conditions [13,41,45], which dismisses

the non-equilibrium driven contraction mechanisms. Den Harder et al. [13] proposes a
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pressure-induced transition as a result of a transitions from collisionless to collisional

conditions. This mechanism relies on the wave propagation cut-off at the critical den-

sity nc in low pressure conditions where the momentum transfer frequency of electrons

with heavy particles (collision frequency νm) is below the angular driving frequency ω.

Recently reported electron density measurements [45], however, show that both discharge

modes are over-dense (ne ą nc). This rules out a collisionality-induced contraction mech-

anism. Therefore we conclude that the contraction dynamics of the CO2 microwave

discharge has not been explained to a satisfactory degree. Particularly the effect of com-

position and associated changes in the thermodynamic properties of the plasma medium

have not been considered in previous work.

The discharge contraction mechanisms are only well established for simple plasma

systems in noble gases and nitrogen. The mechanisms of contraction have been described

based on experimental [24,25] and modeling [19,28,34,36] efforts. For molecular gasses the two

necessary conditions for contraction are non-uniform gas heating and the onset of molec-

ular ion formation, which is followed by effective dissociative molecular ion recombina-

tion [31]. The non-uniform heating is driven mainly by the thermal-ionization instability,

a mechanism that relies on positive feedback between an increase in temperature and

stimulation of the ionization rate (via an increase of the reduced field (E{n) parame-

ter) [28,31,35], resulting in a self-intensifying electron density growth. At low pressures, a

dominance of ambipolar diffusion over volume recombination prevents contraction [14,28].

While these general mechanisms of contraction are also anticipated for more complex

molecular discharges [34,36], they fail to address the influence of chemical reactions in reac-

tive plasmas, particularly the consequences of significant thermally driven heavy-particle

conversion and electronegativity [19].

Only recently the implications of chemical reactions on discharge mode instabilities

were first described in a numerical study on reactive H2´O2´N2 mixtures in a DC dis-

charge [47]. The authors show by assessment of the coupling between plasma- and chemi-

cal kinetics, that the plasma thermal instability couples to a plasma chemical instability

(PCI). The thermo-chemical heat exchange in the plasma, as a result of endothermic and

exothermic reactions, is found to induce stability and instability, respectively, via the

thermal-ionization mechanism. Also, plasma chemical instability is shown to be moder-

ated by electron attachment processes. Both of these aspects are very relevant in CO2

discharges. The thermal dissociation of CO2, a highly endothermic process, and the shift

in electronegativity in a partly decomposed CO2 mixture as a result of the attachment

to molecular oxygen, become important in CO2 plasma with gas temperatures exceeding

2000 K [43]. Even so, while the reactive nature of the CO2 microwave plasma likely influ-

ences the contraction dynamics significantly, this aspect has remained largely unexplored.

The main purpose of this paper is to formulate a consistent description of the observed

discharge modes of the CO2 microwave plasma in the range of 50 mbar to 1000 mbar. The

plasma is characterized in terms of its geometric shape, gas temperature, and power den-
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Figure 1: Illustration of the experimental setup, including the field applicator and the
main plasma reactor components. The microwave source and impedance matching com-
ponents are omitted. The view ports on either side of the waveguide provide optical
access for the emission-based plasma diagnostics.

sity, obtained from optical emission profiles and the Doppler broadening thereof using the

777 nm Op5S Ð 5Pq oxygen triplet emission. The evolution of these discharge parameters

is interpreted in terms of the thermodynamic and dielectric properties of the discharge

medium as a function of temperature. Two mechanisms are identified that explain the

discharge modes; based on the coupling of the plasma-chemical instability and thermal

instability, and resulting from the intricacies of plasma wave-coupling in high-frequency

fields. The critical parameters for the onset of these mechanisms are identified, and its

implications on the plasma parameters will be discussed. Furthermore, improved under-

standing of the instability and contraction mechanisms in reactive microwave plasmas

are used to provide retrospective insight in the plasma conditions of previously reported

CO2 conversion experiments.

2 Experimental

The plasma is generated by 2.45 GHz microwaves using a WR340 waveguide-applicator

configuration with vortex-stabilization. This plasma source configuration is extensively

researched in context of gas processing applications [5,6,13,20,45].

An illustration of the field applicator configuration and discharge tube are shown

in Fig. 1. The vacuum vessel consists of a quartz tube, 27 mm inner diameter and

transparent for microwaves, and intersects the wide sides of the waveguide in the direction

parallel to the TE10 field mode. Two nozzles are mounted tangentially in an injection

manifold at the tube entrance in order to create a vortex flow. This stabilizes the plasma

on the tube axis and provides gas-dynamic insulation of the plasma from the wall [21,45].
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A waveguide short is fixed at a distance of a quarter wavelength from the tube axis.

The standing wave created in this configuration has an anti-node that spatially coincides

with the reactor tube, which is beneficial for plasma-wave coupling. An automatic 3-

stub motorized impedance matching device (S-TEAM HOMER) provides both real-time

impedance matching to the plasma conditions and power measurements. The incident

(Pi) and reflected (Pr) power measurements have a specified error below 5 %. The power

absorbed by the plasma Pabs “ Pi´Pr, assuming there are no losses to the environment.

A coupling efficiency pPi ´ Prq{Pi exceeding 99.9 % is achieved under a wide range of

operating conditions. Under matched conditions the reflected power can therefore be

neglected. Two view ports mounted in the short sides of the waveguide on opposite sides

of the quartz tube provide optical access for the optical diagnostics, which are used to

measure the gas temperature measurements and the plasma emission intensity profile.

The geometric dimensions of the discharge are obtained from the full-width at half

intensity of the 777 nm oxygen triplet emission using the same approach as described in

Wolf (2019) [45]. A narrow spectral band-pass filter is used to isolate these emission lines

and recorded with a CCD sensor. Radially resolved intensity profiles are obtained by

applying a discrete inverse Abel transform using the Hansen and Law method [22].

The relation between the 777 nm emission intensity I777 and electron density ne can

be described in good approximation by [45]:

I777pr, zq 9 nepr, zq (1)

since it is driven mostly by electron impact excitation, and scales with the population

rate of the upper state upper state nenOkee. Here nO is the ground state atomic oxygen

density and kee is the rate constant of electron impact excitation of the transition. Both

the reduced field (E{n) and gas temperature Tgas are found to have only weak axial

and radial dependency in comparison to the electron density profile in our experimental

conditions. Furthermore we have assumed in Eq. 1 that the O production is dominated by

heavy-particle reactions over electron-impact reaction, which is likely at gas temperatures

values above 3000 K. While this assumption is expected to break down only at lower gas

temperature values (p ă 100 mbar), the resulting error in the plasma size values remains

limited to a factor
?

2 in the extreme case where all oxygen production is driven by

electron-induced processes [45].

The power transferred from the electric field to the plasma electrons is described by

Joule heating. For an oscillating field with radial frequency ω, a peak field amplitude E0,

and electron conductivity σ, the power density is described by [31]:

PΩ “
σE2

0

2
“
E2

0

2

e2

meνm

ν2
m

ν2
m ` ω

2
ne (2)

Here νm and ne represent the electron-neutral mean collision frequency for momentum
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transfer (collision frequency) and the electron density respectively. Both E0 and νm are

assumed constant over the plasma, which is supported by simulations of the field coupling

to the microwaves for plasma conditions presently studied [20]. By substituting Eq. (1) into

Eq. (2) and normalization of the spatially integrated power density to the total absorbed

power, an explicit expression of the spatially resolved power density is obtained.

PΩpr, zq “
Pabs

2π
ť

r,z
Ipr, zqr dr dz

Ipr, zq, (3)

Gas temperature measurements in the plasma are obtained from the Doppler broad-

ening of the 777 nm oxygen triplet lines, analogous to Ref. [ 45]. The three emission

peaks are resolved and the Doppler broadening is taken from the Gaussian component.

The pressure broadening mechanisms is in good approximation Lorentzian. Only Van

der Waals broadening is significant under the present operating conditions. A rough es-

timate obtained with the impact approximation, following Kunze (2009) [26], indicates a

Lorentzian component of around 1 pm, which is small compared to the Doppler broaden-

ing and in good agreement with experimentally observed values in the full measurement

range.

The measurements are spatially resolved in the lateral direction by projection on a

linear optical fiber array. The axial coordinate is scanned using a translation stage. The

collected light is dispersed using a Littrow-configuration spectrometer (2nd order of a

1180 lines{mm grating, f = 2.25 m, slit diameter: 50 µm) and detected using a CCD

camera. The low emission intensity of the low pressure plasma conditions required an

averaging over three 60 s exposures to keep the fitting errors below 5 % of the measured

value. An important implication of this time-averaged measurement is that temperature

values can only be obtained for steady-state plasma conditions.

3 Results

Three fundamental discharge modes are identified in the CO2 microwave plasma between

50 mbar and atmospheric pressure. The visual appearance of the modes, including also

a hybrid regime, are shown in Fig. 2. In previous publications [13,16,17,20], discharges (i)

and (ii) are commonly referred to as the diffuse mode, and discharges (iii) and (iv) as

the contracted mode. Since the mode classification described in this paper expands on

the these definitions, we adhere to a new nomenclature. From low to high pressure (left

to right in Fig. 2) the discharge modes are referred to as (i) the homogeneous mode, (ii)

a low confinement mode (L-mode) and (iv) a high confinement mode (H-mode). The

hybrid discharge state (iii) shows simultaneous features of both the L-mode and H-mode

plasmas.

• In the homogeneous mode the discharge emission exhibits a homogeneous appear-
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(i) homogeneous (ii) L-mode (iii) hybrid (iv) H-mode

Figure 2: Photos of 4 characteristic states of the vortex-stabilized CO2 microwave plasma
with increasing pressure from left to right. The associated lateral emission intensity
profiles are displayed above. The intensity is normalized in each image to maximize
contrast.

ance, with a luminous intensity that is constant over the discharge (Fig. 2(i)). This

mode is visually distinguished from the others by a relatively flat lateral luminosity,

which indicates a flat or even hollow radial emission intensity profile. While the

discharge tends to expand to the full volume of the discharge tube, the plasma is

axially contained by the extent of the waveguide and radially by the vortex flow.

• The low confinement mode (L-mode) contracts in both the axial and radial direction

with respect to the homogeneous discharge mode. The lateral emission is character-

ized by a Gaussian profile (Fig. 2(ii)). The filament diameter varies between 10 mm

to 20 mm depending on the power and pressure, which is related to the local skin

depth [45].

• The high-confinement mode (H-mode) has the appearance of a narrow elongated

filament with a radius of 2 mm to 4 mm, spanning the entire waveguide height

(Fig. 2(iv)). The discharge radius remains skin depth limited, which is found to scale

with input power but is independent of pressure [45]. Apart from radial contraction,

axial elongation of the discharge column is another distinctive characteristic of the

H-mode plasma.

• The hybrid regime is a transition state in which the plasma filament simultaneously

exhibits features of both L- and H-mode plasmas along the axial discharge coordi-

nate (Fig. 2(iii)). As the pressure increases, the onset of the H-mode occurs first in

the center of the filament and grows outwards towards the tips.

Power density profiles in Fig. 3 are obtained from plasma emission profiles at a fixed

power input of 860 W using Eq. (3). The progressive states of discharge contraction with

rising pressure are more clearly visualized in this manner.
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Figure 3: Power density profiles of a microwave discharge in CO2 as a function of pressure,
with an input power of 860 W. The distinct discharge regimes are indicated below.

The evolution of plasma dimensions, power density and the gas temperature in the

center of the plasma are provided in Fig. 4. The mode transitions are marked by abrupt

changes in the radial and axial dimensions of the filament, as indicated in Fig. 4(a-b).

The threshold pressures of transitions between the discharge modes for a fixed power

input depend mostly on pressure. In general, an increase of input power results in a

decrease in the pressures where the transitions occur. The flow rate is found to weakly

influence the discharge parameters, which is in line with previous observations on flow

dependence of gas temperature, geometry and electron density [39,45]. Therefore the gas

flow is not further considered in the remainder of this paper. As will be shown later, the

decoupling of the plasma processes and flow dynamics enables treating the plasma as a

heat source by means of the power density.

The elongation observed in the H-mode are likely a result of surface waves formation,

considering its resemblance to surface-wave induced elongation in surface-wave sustained

microwave discharges [15]. Surfatron and Surfa-guide reactors plasma columns are known

to extend far beyond the boundaries of field applicator [32]. Since the plasma must be

sufficiently collisional (νc ą ω) and conductive to effectively couple the fundamental

TE10 wave-guide mode to the surface waves [30], the strong increase of the ionization

degree observed in the transition from L-mode and H-mode conditions [45] may explain

the observed elongation observed at the onset of the H-mode. A simultaneous rise in

microwave radiation observed outside of the applicator at this, particularly in conditions

of higher power and pressure, indicate leakage of power to the environment induced by

coaxial coupling of the TE10 field mode. An important implication of elongation and

the resulting coupling losses associated with the H-mode discharge is that a highest

overall state of discharge confinement is reached under hybrid plasma conditions, where

the filament is both radially contracted and axially contained. The peak temperature

values in the hybrid conditions around p2 to p3 may be explained by the optimal state

of contraction and coupling efficiency in this regime. We note that the later may lead
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Figure 4: Evolution of plasma parameters for rising pressure, including the diameter
(a) and length (b) of the plasma filament, the average power density (c) and the gas
temperature (d)
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ature cross sections are obtained at locations in the center of the waveguide (I), at the
edge (III), and halfway (II)

an power leakage at high pressure, which in the exrtreme case of atmospheric conditions

constitutes an estimated 10% of the input power. This effect not presently accounted for

in the power density values in Fig. 4(c). Other causes of the temperature reduction with

rising pressure may also include changes in the heat transfer mechanisms or macroscopic

gas-dynamic flow patterns.

The gas temperature measurements presented in Fig. 4(d) show that the H-mode and

L-mode conditions are associated with distinct gas temperature ranges. The L-mode

plasma has a gas temperature of approximately 3500 K to 4000 K, while the H-mode

conditions occur at a temperature of 5500 K to 6500 K, as illustrated by the shaded

regions. The distinction in temperature between the modes is most evident at low values

of Pabs as a result of the considerably higher transition pressure. The plasma remains

below 4000 K up to the transition pressure of 200 mbar, after which a sharp in crease in

temperature is observed.

The distinct H-mode and L-mode gas temperatures in the center of the discharge also

extend throughout the discharge. The spatially resolved temperature profile measure-

ments shown in Fig. 5(a) and (d) show flat spatial temperature distributions for both

L-mode (3000 K to 4000 K) and H-mode (5500 K to 6500 K) plasmas. The temperature

distribution of the intermediate hybrid conditions (Fig. 5(b)) shows radial temperature

profiles associated with the H-mode in the central region of the filament (z = 19 mm to

25 mm), while the temperature profiles in the edges show an L-mode temperature profile.

The co-existence of both L-mode and H-mode conditions along the axis of the filament

hybrid mode may be explained by spatial variations in the applied field strength caused

by view ports and access ports for the quartz tube in the waveguide. Note that the lowest

power input in the confined regime leads to the highest power density, which is probably

related to field enhancements associated with plasma impedance changes under matched
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conditions.

In conclusion, the distinct temperature ranges observed for L-mode and H-mode dis-

charges demonstrate that the governing mechanisms are closely related to the gas temper-

ature. Power and pressure, on the other hand, do not directly influence the temperature

of the discharge modes, and rather function as independent control parameters by deter-

mining which mode comes to expression (Fig. 8).

From Fig. 3 and Fig. 4(d) we observe that the power density has a non-linear rela-

tionship with respect to the gas temperature. In the L-mode, the power density increases

exponentially by an order of magnitude with rising pressure, while the gas temperature

only increases by a third, from roughly 3000 K to 4000 K. To put these observations in

perspective, we will now discuss the properties of CO2 under chemical equilibrium con-

ditions. To do this, we first calculate the thermodynamic equilibrium properties of CO2

for the temperature range observed in the experiments, i.e. composition and the specific

heat capacity of the reactive system. As a starting point, the enthalpy of the equilibrium

mixture is calculated under assumption of ideal mixing,

hmix “
ÿ

xiHi (4)

where Hi is the enthalpy of each species i in the mixture with mole fractions xi. The

thermodynamic coefficients for the dominant neutral species (e.g. CO2, CO, O2, O and

C) are obtained from the NASA Glenn library [29] for a temperature range of 200 K to

20 000 K. Ions and electrons are not considered in the calculations, since the plasma has a

low ionization degree (10´4) and a gas temperature below 6500 K which is well below the

first ionization threshold of CO2 at 15 000 K [46]. Although plasma-driven processes such

as electronic excitation are known to influence the thermodynamic properties [7,8] under

LTE conditions (where Te “ Tvib “ Trot “ Ttrans), such contributions can be neglected un

first approximation based on the assumption that the heavy particle kinetics dominate

over the electron-induced chemistry. This is warranted since the plasma deviates from

chemical equilibrium, with Te 1-2 eV and is only weakly ionized.

Following the procedure detailed in Ref. [45], xi of the equilibrium state are calculated

by minimization of the Gibbs free energy for given pressure and temperature. The specific

heat capacity cp is defined for a fixed pressure as

cp “
Bhmix

BT

∣∣∣∣
p

, (5)

which includes both the heat capacity of the gas species associated with the internal

and translational degrees of freedom (frozen), and a reactive component which involves

the heat of formation required to bring the mixture to a state of local thermodynamic

equilibrium composition at a given temperature T . The specific energy input in ther-

modynamic equilibrium, qtepp, T q, required per initial CO2 molecule to reach a state of
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thermodynamic equilibrium by isobaric heating trajectory from T0 to Tgas is obtained by

integration over cp.

qte “
MCO2

eNA

ż Tgas

T0

cppT qdT (6)

Here MCO2 is the molar mass of CO2, NA is Avogadro’s constant and e is the elemen-

tary charge. Figure 6a shows the calculated thermodynamic equilibrium properties of

the heated gas at pressures of 10 mbar, 100 mbar and 1000 mbar. Both the composi-

tion and specific heat capacity of the thermodynamic equilibrium mixture are very much

temperature-dependent, which is a results of the distinct thermal dissociation thresholds

associated with each molecular species in the mixture. Above 2000 K the CO2 mix-

ture progressively decomposes with rising temperature, producing increasingly smaller

molecules. Between 3000 K to 4000 K the mixture is dominantly composed of CO, O2

and O. Above 7000 K to 8000 K the mixture becomes mono-atomic, composed of mostly

O and C. As the gas pressure increases, the thresholds of thermal dissociation shift to

higher temperatures in agreement with Le Chatelier’s principle [40].

Figure 6b shows that the total specific heat capacity (frozen + reactive component) for

CO2 is largely determined by the reactive contribution. The calculated values correspond

reasonably well to literature values [40,46], both in terms of the absolute values and the

peak occurrence. The two peaks in the specific heat around 3000 K and 6000 K correspond

to the thermal dissociation thresholds of CO2 and CO, respectively [46]. The difference

between the frozen and reactive contributions to the specific heat capacity represents the

energy invested in the dissociation of molecular species. The evolution of the temperature

in response to the specific energy input qte is calculated using Eq. (6) and shown in

Fig. 6c. The span in specific energy input associated with these stable temperature

regions corresponds to the bond-energies of the CO´O bond (5.51 eV) and C´O bond

(11.16 eV).

The gas temperature, associated with the L-mode and H-mode plasma conditions,

coincides with regions of high cp, as indicated in Fig. 6. It therefore appears that the

observed temperature plateaus around 3000 K and 6000 K correspond to the dissociation

thresholds for CO2 and CO, respectively. This notion is corroborated by the plateaus

that emerge in the relation between the gas temperature and the power density in Fig. 7.

Thermodynamic regions of high reactive heat capacity result in a weak correlation power

density and gas temperature. This suggests that the plasma medium is cp-controlled

and in a state close to chemical equilibrium with the gas temperature. The commonly

observed peak temperature values of 6000 K to 7000 K in moderate to high pressure CO2

microwave plasmas [5,13,45] and plasma CO2 torches [10,27,39] fit in this interpretation. This

apparent temperature barrier around 6000 K to 7000 K follows from the large energy

input (from 10 eV to over 20 eV per molecule according to Fig. 6c) required to bridge this

temperature range including equilibrium reactions.

12



10 3

10 2

10 1

100

m
ol

e 
fra

ct
io

n
CO2

O

C

O2

CO

(a)

0

5

10

15

20

25

c p
 (k

J/k
g/

K)

total

frozen

(b)

1000 2000 3000 4000 5000 6000 7000 8000 9000
gas temperature (K)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

q t
e (

eV
/m

ol
ec

ul
e)

(c)

10 mbar
100 mbar
1000 mbar
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heat capacity including equilibrium reactions (total) and excluding equilibrium reactions
(frozen), c) specific energy input per molecule of reactant CO2 in relation to the mixture
temperature, relative to 300 K. The shaded areas indicate the experimentally observed
L-mode and H-mode temperature regimes.
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4 Discussion

The characterization of discharge in the previous section lays the foundation for a classi-

fication of the discharge modes. Two governing mechanisms are proposed, which rely on

the interplay between collisionality νc{ω and wave absorption, and the thermodynamic

properties of the plasma medium as a result of its reactive nature. An overview of the

subatmospheric modes of CO2 microwave plasma are illustrated in Fig. 8. The transition

pressures (p1 to p3) define the parameter space of the discharge in terms of pressure and

power, as illustrated in the lower panel in Fig. 8.

The homogeneous discharge mode results from a cut-off in the plasma wave dispersion

properties at low pressure. The wave-propagation cut-off imposes a limit on the electron

density to its critical value nc when the collisionality is low in relation to the driving

frequency (νm{ω ă 1) [2,13,23,31], where νm is the momentum transfer frequency of the

electrons with heavy particles, ω is the driving frequency and nc “ ε0meω
2{e2 is the

frequency dependent critical density. Since the imaginary value of the wave-number

becomes purely imaginary in a low-collisional super-critical (ne ą nc), the dispersion

cut-off leads to reflection of microwaves at the over-dense plasma boundary. This inhibits

further electron density growth and effectively imposes under-dense conditions (ne ă nc)

in the center of the plasma as long as (νm{ω ă 1). In some cases this may even lead to

hollow profiles. For a driving frequency of ω “ 2.45 GHz the electron density is limited

to nc “ 6ˆ 1017 m´3 in low-pressure conditions.

The collision frequency calculations for homogeneous mode conditions (Tgas “3000 K

to 4000 K, ne “ nc “ 7 ¨ 1018 m´3, Te = 1 eV to 2 eV) shows that νm ă ω in this regime,

with calculations following the approach by Wolf (2019) [45]. The transition criterion

(νm “ ω) predicts a critical pressure between 60 mbar to 90 mbar, which is in line with

the experimentally observed value of approximately 85 mbar. The critical pressure is

almost constant with rising input power. This behavior is a characteristic of the critical

density limited regime, resulting from the limit the latter imposes on the power density
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(which scales with ne according to Eq. 2) with rising input power. The observed PΩ

values in Fig. 4 indeed remains constant with rising power, consequently leading to fixed

temperature and collisionality values, and ultimately a critical pressure which does not

depend on Pabs.

While the electron density of the homogeneous mode regime has not been directly

measured, the spatial extent of the plasma indicates that the electron density is around

its critical density of 6ˆ 1017 m´3. The skin-depth in the under-dense regime (δ “ c{ωpeq

is approximately 2 cm at the critical density. The radial plasma dimensions, as observed

from the emission profiles in Fig. 4a, remain below this skin-depth value. This shows

that the plasma is not skin-depth limited in this regime. The absence of contraction in

the homogeneous mode appears to be a directly related to the associated electron density

limit. The discharge contraction phenomenon relies heavily on self-intensifying electron

density growth [28,31,35] such as the thermal-ionization instability. It appears that the

electron density limit imposed by the wave-dispersion cutoff suppresses the contraction

in high frequency discharges in the homogeneous regime. This this implies that the cut-off

behavior which applies in low-collisional AC plasmas suppresses the thermal-ionization

contraction instability, even at elevated pressures, until collisional wave absorption sets

off.

The mechanism that governs the L-mode to H-mode transition instability differs fun-

damentally from the critical-density moderated thermal-ionization instability mechanism

described above. In contrast to the homogeneous mode, both L-mode and H-mode plas-

mas are in a collisional, contracted state [45]. A correlation is found between the stability

of the discharge in the two contracted modes and the enhanced heat capacity of the re-

active gas mixture (c.f. Fig. 6(c)) at their respective gas temperatures. This observation

can be explained by a coupling between the plasma-chemical balance and the thermal in-

stability via thermal-ionization mechanism, as proposed by Zhong (2019) [47] for plasmas

in reactive gas flows. The specific heat increase of the reactive plasma as a function of

temperature results in a weak temperature response and moderation of thermal-ionization

contraction instability, resulting in a thermal stability of the plasma. Conversely, the un-

stable nature of the transition between the L-mode and H-mode, characterized by a low

reactive specific heat and a rapid increase in gas temperature with a small perturbations

in input conditions, enhance the thermal-ionization instability. This thermo-chemical cp-

controlled stability corroborates the previously proposed stabilizing effect of endothermic

reactions on reactive plasmas [47], as the stable plasma conditions in both the L-mode

and H-mode appear to be a consequence of the strongly endothermic nature of the CO2

dissociation process. Table 1 provides a summary of governing mechanisms and typical

parameters associated with each mode.

This cp-controlled stability mechanism predicts a number of distinct contracted dis-

charge modes equal to the distinctly separated dissociation and ionization thresholds of

the working gas. In the case of CO2, the large separation of the bond energies of CO2
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Table 1: Overview of discharge parameters and mechanisms associated with the distinct
discharge modes

homogeneous L-mode H-mode

appearance diffuse contracted contracted
pressure thresholds <p1 p1 ă p ă p2 >p3

gas temperature <3000 3000-4000 5500-6500
stabilization mechanism ne cut-off limit cp-controlled cp-controlled
νm{ω

[45] ă 1 1´ 2 1´ 10
ne{nc

[45] ď 1 10´ 100 100´ 1000

(5.51eV) and O2 (5.15eV) and the much higher bond energy of CO (11.2eV) lead to the

two contracted discharge regimes. In comparison, N2 only has a single dissociation thresh-

old at approximately 7000 K [12], which seems to agree with temperature measurements

of 7000 K reported in N2 microwave plasmas at a pressure of 800 mbar [18].

The chemical equilibrium calculations underlying the preceding analysis provide valu-

able insight into the nature of the discharge modes and the governing mechanisms, despite

disregarding the potential effects of electron-driven kinetic processes. However, processes

such as electron impact dissociation, dissociative recombination and attachment may

incur composition changes that lead to deviations from chemical equilibrium, and subse-

quently, lead to complicated kinetic effects on plasma-instability [19,47]. A rise in oxygen

concentration, for instance, may enhancement of attachment reactions, which may both

stabilize the thermal instability by suppressing the electron density growth, while si-

multaneously enhancing destabilizing oxidation processes via exothermic heat release [47].

Such complicated dynamics are also anticipated in CO2 plasmas since heated CO2 in

chemical equilibrium is known to acts as an electronegative gas at 3000 K and becomes

recombination-dominated above 5000 K [43]. This suggests that the H-mode and L-mode

plasmas are governed by distinct charged particle kinetics. In the temperature regime of

the L-mode, the electron balance is likely influenced significantly by electron attachment

due to the presence of O2. This pathway is lost in the H-mode conditions as a result of

the low O2 concentrations at the associated gas temperatures. The constant ionization

degree and plasma diameter as a function of the pressure for a fixed power in the H-mode

indicates a dissociative-recombination controlled charged particle balance [45], with the

dominant molecular ion (e.g. CO+). The dominant charged particle kinetics in relation

to the contraction dynamics in complex reactive plasmas such as CO2 is however still not

fully understood. This asks for detailed plasma-kinetic modeling where both the effect

of plasma processes and gas dynamics on the composition should be considered.

Now that the basic mechanisms underlying of the moderate to atmospheric pressure

discharge modes in CO2 has been established, the implications of the discharge parameters

on the performance of plasma-induced CO2 conversion can now be discussed. We have

previously proposed that the optimal discharge pressure in terms of energy efficiency,
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commonly reported between 100 mbar to 200 mbar for microwave CO2 discharges [13,16,17],

is related to the L-mode to H-mode transition [45]. The similarities in contraction dynamics

identified in the same study, between the recent reported on high temperature conversion

and the original high efficiency results, show that the plasma temperature in Ref. [6] was

likely similar. This suggests that the contribution of thermally driven conversion in the

highly efficient plasma conditions that yielded 70-80 % energy efficiency was much more

significant than initially recognized. The high gas temperature inherently linked to the

H-mode and L-mode of CO2 rules out the non-equilibrium interpretation that relies on

low translational temperatures to drive vibrational excitation and dissociation via the

Treanor effect.

The present work shows that the contracted discharge modes emerge as a property

of the reactive plasma, governed by the distinct dissociation thresholds of the molecular

species. Therefore, the prevailing non-equilibrium plasma interpretation used to explain

the favorable plasma conditions around 100 mbar to 200 mbar [1,6,16,17,37] is unlikely, given

the importance of thermally driven chemical reactions on these types of discharge modes.

The favorable conditions for efficient plasma-driven conversion in CO2 in the 100 mbar

to 200 mbar range can be explained by a shift in the dominant thermal heavy particle

kinetics in the discharge. The L-mode plasma conditions lead to increased CO production

with rising pressure, while the rising selectivity to atomic carbon in H-mode plasmas and

the increase in subsequent recombination pathways in the discharge afterglow lead to

diminishing returns. More generally, the reduction in the energy efficiency observed for

increasing pressure may also be attributed to the enhancement of 3-body association

reactions, (O ` O `M) and (O ` CO `M) or the coaxial field losses observed at high

operating pressures.

The thermodynamic energy efficiency limit of around 50% for thermal conversion [13],

calculated in a closed system where all oxygen radicals associate to O2, agrees well with

the energy efficiency values up to 50% reported for recent experiments. An advanced

super-ideal quenching scenario is described in which the efficient O + CO2 reactions

are promoted over oxygen recombination [16]. In this manner, by optimization of the

cooling trajectory of the plasma products, a thermal dissociation process efficiency of

over 70% is achievable [16,41]. This underlines the potential of thermal conversion and the

importance of the cooling trajectory therein in optimizing the energy efficiency in CO2

microwave plasmas. Efforts to understand and improve the overall plasma conversion

performance, therefore, require careful optimization of the dissociation process in and

around the plasma in conjunction with the subsequent cooling trajectory.

5 Conclusion

This work presents a first systematic experimental investigation into the nature of the

discharge modes of CO2 microwave plasmas in subatmospheric conditions. The contrac-

18



tion dynamics and the final stable contracted states have been investigated, providing

insights into the discharge modes, the underlying mechanisms of formation, and their

critical parameters of onset.

A homogeneous mode and two contracted modes have been identified between 50 mbar

and atmospheric pressure. The homogeneous conditions are explained by a critical-

density limit, imposed by the cut-off frequency of wave propagation, and suppressing

the discharge contraction until a pressure where collisional conditions are reached. Mul-

tiple contracted modes are found to arise under conditions of high reactive heat capacity,

governed by a thermo-chemical instability that arises from the coupling of the thermal-

ionization instability and the thermally driven chemical conversion in the plasma. For

CO2 plasma, the endothermic nature of the thermally driven CO2 and CO dissociation

reactions are found to lead to the stable operating conditions of the L-mode and H-mode,

respectively. The difference in the appearance of these contracted modes results from the

evolution of charged particle kinetics in response to the shifting chemical composition.

Modeling with detailed chemical kinetics is required to quantify the observed contraction

dynamics.

We hope that the mechanisms of plasma instability and discharge mode formation

described in this work will aid in the understanding and further development of tech-

nological plasmas for plasma-chemical applications. Specifically, the nature of the CO2

contraction dynamics shows that previously reported results on highly efficient microwave

driven plasma conversion of CO2 likely rely on thermal conversion as the primary disso-

ciation mechanism. Optimization of the CO2 conversion process in microwave plasmas,

therefore, asks for an approach where the plasma conditions are optimized for thermal

conversion in conjunction with the cooling trajectory of the plasma products.
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