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ABSTRACT 

The carbon dioxide and steam co-electrolysis in solid oxide cells offers an efficient way to store 

the intermittent renewable electricity in the form of syngas (CO+H2), which constitutes a key 

intermediate for chemical industry. The co-electrolysis process, however, is challenging in terms 

of materials selection. The cell composites, and particularly the fuel electrode, is required to exhibit 

adequate stability in redox environments and coking that rules out the conventional Ni cermets. 

La0.75Sr0.25Cr0.5Mn0.5O3 (LSCrM) perovskite oxides represents a promising alternative solution, 

but with electrocatalytic activity inferior to the conventional Ni-based cermets. Here we report on 

how the electrochemical properties of a state-of-the-art LSCrM electrode can be significantly 

enhanced by introducing uniformly distributed Pt nanoparticles (18 nm) on its surface via the 

atomic layer deposition (ALD). At 850 °C, Pt nanoparticle deposition resulted in a ~62% increase 

of the syngas production rate during electrolysis mode (at 1.5 V), whereas the power output was 
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improved by ~84% at fuel cell mode. Our results exemplify how the powerful ALD approach can 

be employed to uniformly disperse small amounts (~50 μg·cm-2) of highly active metals to boost 

the limited electrocatalytic properties of redox stable perovskite fuel electrodes with efficient 

material utilization. 
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GRAPHICAL ABSTRACT 

 

 

SYNOPSIS 

ALD deposited Pt nanoparticles for boosting CO2-H2O co-electrolysis towards the efficient 

conversion of greenhouse gases and renewable electricity into raw material for chemicals 
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INTRODUCTION 

Rapid greenhouse gas emissions from fossil fuels is the primary source of global warming, which 

escalates the shift towards eco-friendly fuel matrix powered by renewable energy.1 Producing 

renewable electricity from solar and wind resources is intermittent, and thus, effective systems for 

storing the energy for continuous supply is required. The use of renewable energy for the 

production of synthetic fuels might be an efficient solution for a sustainable future, since the 

investments required to modify the existing infrastructure are avoided and carbon dioxide 

emissions could be stabilized.2–4 In particular, solid oxide electrolysis cells (SOECs) have been 

drawing more attention as a viable system to convert CO2 and H2O, at adequate reaction rates, into 

syngas (CO+H2) which is a key intermediate for the synthetic fuel production via Fischer Tropsch 

reaction.4–6 

The traditional SOECs adopt identical materials to the solid oxide fuel cells (SOFCs) that primarily 

involve a Ni-based cermet as the fuel electrode (cathode), yttria-stabilized zirconia (YSZ) as the 

electrolyte and (La,Sr)MnO3 perovskites for the oxygen electrode (anode). The Ni-YSZ cathode 

in SOEC, however, is exposed to a variable oxygen partial pressure environment and thus, is 

ultimately decaying due to the coarsening of the Ni particles.7,8 To restrain Ni oxidation a reducing 

agent, such as H2 or CO, is co-introduced to the cathode atmosphere, hence increasing process’ 

cost and complexity.5,9 

In view of this, redox stable perovskites (ABO3) materials with mixed ionic-electronic conducting 

properties (MIEC) have been examined as the cathodic electrodes in SOECs. Specifically, 

lanthanum chromates, such as La1−xSrxCr1−yMnyO3-δ (LSCrM), constitute a class of perovskites 

which exhibit MIEC properties and redox stability, combined with an adequate tolerance to CO2 
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as compared to the traditional nickel-based electrodes.10–13 Under the direct electrolysis of CO2, 

the LSCrM based fuel electrode has been well-adapted, but the performance of the cathode is 

limited by higher polarization resistance and limited catalytic activity than Ni-based cermet.14 The 

p-type conductivity of LSCrM (38 S cm-1 at pO2 > 10-10 atm) drastically declines under reducing 

bias due to the reduction of Cr4+/Mn4+ to Cr3+/Mn3 in parallel with the development of oxygen 

vacancies.15,16 Hence, the LSCrM exhibits higher ionic conductivity, whereas its electrical 

conductivity significantly decreases at reducing atmospheres. To date, the outright performance of 

LSCrM for co-electrolysis has not still reached the performance of Ni-based cermets.5,17 

To enhance electrochemical properties of the perovskites, the introduction of catalytically active 

metal nanoparticles onto the surface of the electrodes has been widely employed.5,17 The most 

common routes for preparing these nanostructures are the infiltration and exsolution processes. 

Both methods have been proven to significantly decrease the polarization resistance and increase 

the catalytic properties of the fuel electrode.18,19 Nevertheless, the above techniques display 

important drawbacks which still hold back upscale. Infiltration is a rather poor technique in terms 

of reproducibility, requiring a number of intermediate steps while there is not sufficient control 

over the particle size and distribution.20 For, examples infiltration process of  Pt particle in 

La0.2Sr0.25Ca0.45TiO3 electrode results in a bimodal distribution of larger particle size ranging 

between 100-150 nm.21 By exsolution, on the other hand, unique and stable architectures of 

uniformly distributed nanoparticles can be formed.6,22 The active phase, however, should be doped 

in the solid solution of the oxide support, thus decreasing the degrees of freedom in the electrode 

design. Moreover, during exsolution only a small part of the active phase is released upon 

reduction, which increases the fabrication cost of the cell, particularly in the case noble metals.23,24 
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Regarding the macroporous structure of cathode with high surface area, atomic layer deposition 

(ALD) can be a valid alternative to decorate the macroporous structure of the cathode by Pt 

nanoparticles. ALD is a deposition method based on the cyclic dosing of vapor-phase species 

reacting with the substrate in a self-limiting fashion. ALD is commonly adopted for the preparation 

of thin films, albeit the deposition of metals is characterized by the nucleation of small islands in 

the initial stages of the process.25 This characteristic feature can be applied to prepare metallic 

nanoparticles for catalysis.26 Due to the self-limiting nature of the reactions, ALD allows for digital 

control over the amount of metal deposited.27,28 Furthermore, it is also suitable for deposition on 

the porous and 3D-complex substrate on which it can result in well-dispersed nanoparticles with 

high conformality on surface features and high reproducibility.29–31 ALD works related to the 

modification of SOFC electrode have been already reported in literature to tune the  

electrochemical activity of oxygen electrode but not for the fuel electrode.32,33,34 The high control 

over the metal loading also allows to vary the coverage area of the surface, and thus, the exposed 

area of underlying perovskite to the gas-solid interface, which in turn is crucial for O2- species 

exchange during the co-electrolysis process. Moreover, ALD has the potential to make compatible 

atomic-scale precision with industrial-scale production,27 for which the control over the amount of 

Pt deposited is an advantage in view of the cost reduction. Therefore, ALD provides a potential 

solution to overcome the engineering issue associated with the deposition of metal nanoparticles 

on porous perovskite-based electrodes in order to improve their electrocatalytic properties. 

Here we report on ALD as an alternative method to infiltration for boosting the electrochemical 

properties of LSCrM by introducing Pt nanoparticles onto the fuel electrode’s surface. Platinum 

increases mass/charge transfer exchange rate, and simultaneously is among the optimum catalysts 

towards H2O/CO2 electrolysis.21,35 Pt was one of the extensively studied  metal catalyst for 
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promoting the reverse water-gas-shift (RWGS) reaction to produce syngas.36,37 Further, in case of 

perovskite supported catalyst (lanthanum doped zirconate), Pt reported to show increased CO2 

conversion in electrically assisted RWGS as compared to Ni, Cu, Fe, Pd.38 Hence, by combining 

the well-distributed Pt nanoparticles with the high number of oxygen vacancies of LSCrM an 

active interface for CO2 and H2O reduction is generated, enhancing the efficiency for syngas 

production. Our studies demonstrate how ALD can be a powerful tool for fabricating unique 

nanoarchitectures in solid oxide cells in order to transform low reactivity but abundant molecules 

to chemical feedstock and store the intermittent renewable electricity into chemical bonds. 

 

EXPERIMENTAL 

Material Synthesis  

The LSCrM electrode of a La0.75Sr0.25Cr0.5Mn0.5O3 stoichiometry was synthesized via the citric-

acid combustion process by using lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O, Sigma-

Aldrich, 99.99%), strontium nitrate (Sr(NO3)2, Sigma-Aldrich, 99.99%), chromium(III) nitrate 

nonahydrate (Cr(NO3)3·9H2O, Sigma-Aldrich, 9.99%) and manganese(II) nitrate hydrate 

(Mn(NO3)2·H2O, Sigma-Aldrich, 98%) precursors. The stoichiometric amount of nitrates 

(oxidizer) required was dissolved in deionized water, followed by the addition of citric acid (fuel), 

with metal to fuel mole ratio of 1:1.5. Ammonium hydroxide was added to adjust the pH value 

between 6 and 7. The transparent gel formed after drying the solution at 80°C for 12 h was then 

ignited at 300 °C on a hot plate. The powder obtained after the combustions process was calcined 

at 700 °C for 2 h, followed by sintering at 1100 °C for 2 h. 



8 

Cell Preparation 

The electrochemical performance was evaluated using an electrolyte-supported button-like single 

cell with a configuration of LSCrM (10µm)/GDC(8µm)ScCeSZ (150µm)LSM-YSZ 

(8µm)/LSM (8µm) were fabricated using a screen-printing method. The ScCeSZ (150 µm 

thickness) electrolyte used in the study was commercially purchased from Fuel cell Materials. 

Gadolinium (10 mol%) doped cerium oxide (GDC) was screen printed over electrolyte and fired 

at 1300 °C for 4 h, acting as a buffer layer between the electrolyte and fuel electrode to improve 

the adhesion with the polished ScCeSZ solid electrolyte.22 The fuel electrode of LSCrM was screen 

printed over the GDC buffer layer and dried at 80 °C. Thereafter, the oxygen electrode screen 

printing was carried out using lanthanum strontium manganite (LSM), and Yttria stabilized 

zirconia (YSZ) from fuel cell materials.  The complete cell was fired at 1100 °C for 2 h in the air 

with the heating and cooling rate of 2.5 °C/min. Au paint and mesh was used as a current collector 

during electrochemical studies. 

ALD of Pt 

Platinum was deposited into the porous LSCrM fuel electrode by ALD using a home-built reactor, 

already described in the literature.40,41 The pumping system, consisting of a turbopump connected 

to a rotary pump, enabled to keep the base pressure of the reactor < 10-6 mbar. The walls of the 

chamber were heated to 90 °C while the substrate holder was heated to 300 °C. 

Trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3, 98% purity) purchased from 

Sigma-Aldrich was used as precursor for the process. MeCpPtMe3 was contained in a stainless 

steel cylindrical bubbler heated to 30 °C. Argon gas (> 99.999% purity) was used to carry 
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MeCpPtMe3 vapor from the bubbler to the reactor through a line heated to 50 °C. O2 gas (> 

99.999% purity) used as a reactant was flowed at the pressure of 1.0 mbar. 

The ALD process used was based on the work of Aaltonen et al.42 first to report ALD of Pt using 

MeCpPtMe3 and oxygen. The ALD recipe selected was based on our previous work31 in which an 

LSM-GDC substrate was decorated with well dispersed Pt NPs. The recipe starts by flowing Ar, 

in order to stabilize the pressure inside the chamber to 2.0·10-2 mbar and then dosing MeCpPtMe3 

for 4 s by diverting Ar through the bubbler. Subsequently, Ar is flowed for 3 s to purge the 

precursor line, and the reactor is pumped down for 3 s. Afterward, O2 gas is dosed for 10 s, and 

then the reactor is pumped down for 10 s. 

Pt loading 

In order to determine the loading of Pt after ALD, three samples have been prepared and weighted 

using a Microbalance Cubis MSE 6.6S-000-DM (Sartorius). The average weight for each sample 

has been determined on 9 measurements. ALD has been performed on two substrates for the 

determination of the Pt loading. A bare LSCrM substrate and one Pt/LSCrM substrate have been 

exposed to 850 °C for 4 h for the determination of any weight difference. 

Electrochemical characterization 

The electrochemical studies were carried out on the homemade solid oxide cell reactor with heat 

and gas flow controller. Alumina based cement (Cotronics) was used to seal the cell between the 

anode and cathode chamber. I-V (current-voltage) curves and EIS (electrochemical impedance 

spectra) measurements were carried out using a potentiostat (CompactStat, Ivium Technologies) 

operating at 800 °C and 850 °C. EIS analysis was performed at the OCV within the frequency 

range of  1 Mhz – 1hZ with 20 mV amplitude. The flow of CO2, H2, and air were precisely 
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controlled by the mass flow controllers (Brooks), followed by mixing with the water vapor using 

a controlled heating saturator. The gas line from the humidifier to the reactor in the furnace was 

maintained at 120 °C to avoid the steam condensation. The gas analysis was performed using an 

online infra-red analyzer (Fuji Electric) and micro gas chromatograph (SRA Instruments). 

 

Material Characterization 

The crystallographic phase analysis was studied using X-ray powder diffractometer (Bruker) with 

monochromatic Cu Kα incident radiation produced at 40KV, 25 mA to the diffraction angles (2θ) 

between 20° - 90° with a step size of 0.02°/s. Rietveld refinement of powder XRD pattern was 

performed using FullProf software package. Vesta was used to visualize the 3D crystal structure 

of a refined XRD pattern. To gain insights on the chemical composition of the electrode at the 

surface, X-ray photoemission spectroscopy (XPS) studies were carried out on a Thermo Scientific 

K-Alpha system, equipped with a monochromatic Al Kα x-ray source at 1486.6 eV. To study the 

morphology of the electrodes, scanning electron microscopy (SEM) images were obtained with a 

Supra 40 (Carl Zeiss AG) microscope using an in-lens detector and accelerating voltage between 

3 kV and 4 kV. For the determination of the particle size distribution from the SEM images the 

software ImageJ was used. 
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RESULTS AND DISCUSSION 

Characterization 

The phase analysis of the as-synthesized LSCrM system was determined through room 

temperature X-ray diffraction (XRD) and the results are presented in Figure 1a. The observed XRD 

peaks are in good agreement with the standard ICDD card nos. 01-070-8669 confirming the 

characteristic diffraction pattern of the perovskite phase. The Rietvield refinement of LSCrM 

patterns revealed a single-phase crystal structure of rhombohedral symmetry with R-3c space 

group with no detectable secondary phases or impurities. The XPS spectra depicts the chemical 

composition of the pristine LSCrM electrode (Figure 1b (red line) & Figure S1), confirming the 

synthesis of the La, Sr, Cr, and Mn mixed oxide. The presence of Pt on the perovskite surface 

following ALD is verified by the peaks at 71 eV and 315 eV characteristic of the Pt4f and Pt4d 

energy levels, respectively (Figure 1b (blue line), Figure S2-S3). The SEM images in Figures 1c 

and 1d display the morphology of the LSCrM electrode prior and following ALD process, 

respectively. It can be observed that the smoother granular structure of the electrode is uniformly 

decorated with Pt nanoparticles after the ALD process. 
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Figure 1: a) XRD diffractogram and refined pattern of LSCrM electrode material sintered at 1100 °C for 2 h. b) XPS 

survey of LSCrM substrate (red line) and LSCrM after Pt deposition (blue line); SEM top view image of the LSCrM 

substrate c) before and d) after Pt deposition. 

 

The ALD process used has been demonstrating good reproducibility over time (see Figure S4). 

The number of ALD cycles has been selected to obtain a particle size well below the percolation 

threshold in order to expose a large surface area of the LSCrM to the gas feed. As matter of fact 

our previous report shows that 100 ALD cycles resulted in well dispersed Pt nanoparticles with 

average particle size of 6.5 nm31, therefore we selected the same number of cycles for the work 

reported hereby. Higher magnification SEM images (Figures 2a and 2b) have been acquired to 

determine the Pt particle size distribution (PSD) and the results are shown in Figures 2c and 2d. In 

the as-deposited case, the overall PSD histogram (Figure 2e) reveals an average particle size of 6.5 
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nm with a standard deviation of 1.6 nm. Interestingly those values are in line with our previous 

work where similar characteristics were observed for the metal nanoparticles.31 The SEM images 

(Figures 2a, 2b, and Figure S5 in the Supplementary Information) depict a slightly different 

coverage of Pt in some areas of the LSCrM grains. That growth behavior is not unexpected since 

ALD growth of Pt nanoclusters can be affected by the chemical composition of the substrate due 

to the difference in surface energy but also in the surface kinetics of the process.43  

The Pt nanoparticles in the as-deposited condition have been observed up to 4 μm into the porous 

electrode (see Figure S6 in the Supplementary Information). Nevertheless we cannot exclude the 

presence, deeper into the porous electrode, of smaller Pt nanoparticles which would not be visible 

at the resolution of the SEM. 

 

Figure 2: a), b) Higher magnification SEM images of the as-deposited Pt nanoparticles on LSCrM and c), d) respective 

particle size distribution. The overall distribution e) of the Pt nanoparticles has been determined in four different areas 

of the sample (see Figure S5 in the Supplementary Information). 

By determining the Pt loading on LSCrM after the ALD (Tables S2 and S3 in the Supplementary 

Information) values of 51 ± 2 μg·cm-2 and 50 ± 1 μg·cm-2 on the two different samples are observed, 
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indicating the good homogeneity of the process. Moreover, we measured the weight of the 

Pt/LSCrM sample after exposure at high temperature (850 °C, 4 hr). The weight change observed 

was minor (from 51 ± 2 μg·cm-2 to 48 ± 2 μg·cm-2) implying that the loading of Pt is practically 

constant during the thermal treatment. It should be noted that obtaining similar loading values with 

other techniques is challenging. For instance with infiltration the weight range is between 0.2  and 

2 mg·cm-2, which is from 4 to 40 times higher than the results obtained by ALD in the present 

work.44,45 

 

Figure 3: a), b) High magnification SEM images of the Pt nanoparticles on LSCrM exposed at high temperature (850 

°C) and c), d) respective particle size distribution. The overall distribution after high-temperature exposure e) has been 

determined in four different areas of the sample (see Figure S7 in the Supplementary Information). 

 

The changes in the morphology of the Pt/LSCrM electrode upon exposure to high temperature 

(850 °C, 4 hr) was studied by means of SEM (see Figure S7 in the Supplementary Information). 

This analysis was performed to evaluate what is the effective structure of the Pt nanoparticles 

under operational conditions. As expected, the SEM images display a lower particle coverage due 
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to a higher average size (Figures 3a and 3b) with respect to the pristine Pt-decorated LSCrM 

sample. The average particle size has increased to 18 nm with a standard deviation of 5 nm (Figure 

3e). By assuming a constant Pt total volume, we can estimate the proportion between the number 

of particles prior and after heat treatment. A change in the diameter from 6.5 nm to 18 nm 

corresponds to a decrease of the number of particles by a factor of 21, i.e. about 21 particles of 6.5 

nm are needed to make a particle of 18 nm after Pt agglomeration. This proportion justifies the 

emergence of low particle density areas at the substrate. 

Additionally, the effect of heat treatment on the distribution of Pt into the open volume of the 

substrate has been addressed. Before exposure to high temperature, Pt nanoparticles were observed 

at the cross-section SEM to reach up to 4 μm deep into the surface of the electrode (see Figure S6 

in the Supplementary Information). After the heat treatment Pt nanoparticles seems to penetrate 

deeper into the porous structure, being visible from the top surface to the LSCrM-electrolyte 

interface (see Figure S8 in the Supplementary Information). A possible contribution to the 

appearance of Pt nanoparticles at the bottom of the electrode can also be given by the presence of 

smaller nanoparticles, not visible from SEM, that have been agglomerating upon annealing. 

Nevertheless, XPS surface analysis (Figure S9) of the electrode exhibits a strong decrease of the 

Pt 4f peak upon annealing, supporting the hypothesis of the diffusion of the particles from the top 

to the bottom of the electrode. 

In all cases reported above, namely from the as-deposited sample to the heat-treated, the particle 

size distribution exhibits the right-skewed shape typical of Smoluchowski aggregation.46 This 

suggests that both in the ALD process and in heat exposure, the growth mechanism of Pt 

nanoparticles is governed by the sintering via dynamic diffusion and coalescence. 
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Electrochemical activity 

Figure 4 illustrates the surface and the cross-sectional microstructure of the 

LSCrM/GDC/ScCeSZ/LSM-YSZ/LSM fabricated cell. The LSCrM fuel electrode exhibits a 

highly porous microstructure to facilitate gases diffusion with thickness close to ~10µm. The dense 

buffer layer of GDC depicts a thickness of around 6-8 µm after the sintering procedure. The cross-

sectional SEM image of the LSM-YSZ/LSM oxygen electrode shows adequate adhesion with the 

electrolyte and it is also highly porous to facilitate gas diffusion.6 The XRD analysis was performed 

on the cell before and after Pt deposition, which reflects the diffraction peaks corresponding to 

LSCrM, GDC and YSZ (Figure S10). However, the diffraction peaks belongs to Pt were not 

significant after ALD deposition.  It can be explained by the ultra-low loading of Pt on LSCrM 

electrode, which not sensitive enough to reflect a Pt peak in the X-ray diffraction pattern.  

 

Figure 4: SEM surface morphology and structure of the fabricated cell. 
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Following fabrication, the cell was mounted on the testing reactor, and the Pt deposited LSCrM 

(Pt/LSCrM) fuel electrode was exposed to the synthetic air at 850 °C for 4 hrs. As expected, the 

Pt nanoparticles on the LSCrM electrode undergo agglomeration upon annealing, as shown in 

Figure 3 and Figures S7 and S8 in the Supplementary Information. The electrochemical 

experiments were carried out at 800 °C and 850 °C. The gas balance of mixture in all studies was 

adjusted using He as the carrier gas. In order to check the gas-tightness between two electrodes, 

H2 and air were supplied to the anode and the cathode respectively, and the OCV measured was 

around ~1.0 V, which ensures the adequate sealing between the two chambers. The electrocatalytic 

performance of LSCrM and Pt/LSCrM were evaluated at both fuel cell and electrolysis modes of 

operation. The mixture of the feed gas for the fuel electrode was maintained at 25%H2O - 25%CO2 

- 50%H2, while the air was supplied to the oxygen electrode. The I-V characteristics and 

electrochemical impedance spectra (EIS) are recorded for the cells at different temperatures (800 

°C and 850 °C) and shown in Figure 5.  

The Nyquist plot of EIS data recorded at an open-circuit voltage (OCV) consists of two arcs with 

all samples at different temperatures. From the Nyquist plots, the contribution of Area Specific 

Resistance (ASR) of electrode polarization and ohmic resistance can be separated. The high-

frequency intercept on the real axis represents the ohmic contribution from the electrolyte. The 

difference between low- and high-frequency intercept represent the polarization resistance (RP).  

Table 1 summarizes the obtained Rp value derived from the EIS spectra at OCV. With the increase 

in temperature, both ohmic- and polarization-resistance decreases for electrolyte and electrode 

respectively, indicating the thermal activation process.  Negligible change in ohmic resistance of 

cell with and without Pt was observed at a given temperature.  On the other hand, the electrode 

polarization of cell with Pt deposited LSCrM was 2- and 1.5-times lower than the bare LSCrM 
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electrode at 800 °C and 850 °C, respectively at OCV. Further, the Rp value of Pt deposited LSCrM 

electrode (0.49 Ω·cm2) shows lesser values as compared to the Ni-YSZ cathode (0.69 Ω·cm2)22 in 

an identical operation/configuration condition. Thus the Pt/LSCrM electrode exhibits improved 

electrochemical performance as compared to the pristine LSCrM and standard Ni-YSZ cermet. 

 

Figure 5: Electrochemical Performance of LSCrM with and without Pt deposition under reversible SOFC operation 

at 800 °C and 850 °C. (a) Nyquist plot and (b) I-V polarization curve for 25%H2O-25% CO2-50%H2 feed. 

 

The I-V characteristics in Figure 5 show both positive and negative current indicating the power 

generation (SOFC) or consumption mode (SOEC), respectively. The I-V curve transit recorded at 

the scan rate of 20 mV·s-1 displays a smooth transition between two operational modes 

demonstrates the good reversibility of the cell. In the SOFC region, the energy is generated by 

consuming the fuel (syngas), while in SOEC mode, the syngas is produced by consuming the 

electrical energy. In electrolysis mode (SOEC), at 1.5 V, the observed current densities of 

Pt/LSCrM cell are -0.73 A·cm-2 and -1.26 A·cm-2, at 800 °C and 850 °C, respectively. In contrast, 

the bare LSCrM at 1.5 V exhibits a lower current density of -0.46 A·cm-2 and -0.78 A·cm-2 at 800 

°C and 850 °C, respectively. Upon switching on the same device to the SOFC mode, the power 
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density (P = I·V) of Pt/LSCrM cell was up to 270 mW·cm-2 and 370 mW·cm-2 at 800 °C and 850 

°C, respectively. The power outputs of the cell operating without the Pt nanoparticles was 

80 mW·cm-2 and 201 mW·cm-2 at 800 °C and 850 °C, respectively.  

Table 1: Polarization resistance and total area specific resistance of  LSCrM electrode with and without Pt deposition 

for the different temperature at 800 °C and 850 °C. 

Fuel 

electrode 

Temperature 

(oC) 

Polarization 

Resistance (Rp)  

at OCV (Ω·cm2) 

Total Area Specific Resistance of 

Cell (Ω·cm2) 

  at Fuel cell 
I = 0.2 A/cm2 

at Electrolysis 
I = - 0.2 A/cm2 

LSCrM 800 

850 

0.97 

0.46 

2.31 

1.00 

1.81 

0.84 

 

Pt-LSCrM 800 

850 

0.48 

0.30 

0.88 

0.50 

0.76 

0.49 

 

 

In the co-electrolysis mode, in a similar configuration and operating conditions with electrolyte 

(150 µm) supported cell the Ni-YSZ cermet results in -0.63 A at 1.5 V,22 which is 50% less than 

Pt/LSCrM electrode (-1.26 A at 1.5 V ). Furthermore, in fuel cell mode, the Ni-YSZ based 

electrode reported to show 300 mW cm-2  at 850°C, while Pt/LSCrM in present work shows 

370 mW cm-2.22  Also,  our results are also comparable (~10-20% difference in current density) to 

the Ni-YSZ cermet supported cells where the electrolyte thickness did not exceed 20 µm.7,47–49 

Thus, Pt/LSCrM electrode demonstrates the high electrocatalytic performance as compare to the 

standard Ni-YSZ electrode. 
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The ASR value of the electrode for both electrolysis and fuel cell mode was derived from the I-V 

curve corresponding to ± 0.2 A·cm-2 are reported in Table 1. The ASR value in fuel cell mode 

provides information about the activity of electrode on the usage of fuel to produce energy, i.e. H2 

or/and CO (via Reverse Water Gas shift) oxidation to H2O or/and CO2 respectively. On the other 

hand, the electrolysis ASR value depicts the electrode activity towards fuel generation (H2 and 

CO) by consuming the energy. The LSCrM electrode with Pt-deposition shows the lowest ASR 

value of 0.49 Ω·cm-2 at 850 °C under co-electrolysis mode, 0.35 Ω·cm-2 lower than the bare LSCrM 

in the same condition. Similarly, at 800 °C, the Pt/LSCrM electrode exhibits lower ASR value as 

compared to the bare LSCrM. The lower ASR value can be attributed to the enhancement of 

electrochemical performance for both fuel cell and electrolysis mode, indicating higher 

electrocatalytic activity and electrical conductivity compared to the cell without Pt. 

To determine the syngas formation at the co-electrolysis operation, we performed a transient 

experiment at 850 °C by applying different currents (0.2, 0.3, and 0.6 A·cm-2), and the results have 

been reported in Figure 6. The experiments were carried out using 25%H2O - 25%CO2 - 50%He 

without co-feeding any reducing agent (as CO or H2). Under galvanostatic condition with constant 

removal of O2- from the fuel electrode, the syngas generated as per the reaction as follows: 

𝐶𝐶𝐶𝐶2 +  2𝐻𝐻2𝑂𝑂(𝑔𝑔) + 6𝑒𝑒− → 𝐶𝐶𝐶𝐶 + 2𝐻𝐻2 + 3𝑂𝑂2− 

A stable potential of 1.1, 1.2, and 1.4 V seems to be attained for Pt/LSCrM at 0.2, 0.3, and 

0.6 A·cm-2, respectively. On the other hand, for bare LSCrM, the increase in potential was 

observed for the same applied current. Furthermore, I-R analyzer were used to measure the rate of 

H2 and CO production for the applied current of 0.2, 0.3 and 0.6 A·cm-2. In both samples, the 

higher H2 production rate denotes the dominance of stream electrolysis. At 0.6 A·cm-2, H2 attained 
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a maximum of 3.02 and 2.95 sccm·cm-2, while the CO production stays at a lower level of 1.33 

and 1.21 sccm·cm-2 for the samples with and without Pt, respectively. 

  

Figure 6: a) Effect of time on cell voltage transient during galvanostatic electrolysis of 25%H2O-25%CO2 at 850 °C.  

b) and c) represent the corresponding syngas production rate with H2/CO ratio (ρ) during electrolysis of 25%H2O - 

25%CO2 - 50%He at 850 °C.  

 

The steam and carbon dioxide co-electrolysis constitutes a more complexed system than the 

separate electrolysis processes. since CO can be generated both electrochemically from CO2 (CO2 

+ 2e-  CO + O2-) and catalytically via the reverse water gas shift reaction (RWGS) (CO2 + H2 
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 CO + H2O , ΔΗo = 41.2 kJ·mol-1).44-46 The contribution of each route to CO production is still 

under debate in literature, strongly depending on the operational conditions but with most of the 

studies to agree that the catalytic route is the dominant route. 48–50 To gain further insight into CO 

formation, we conducted background studies for the individual H2O and CO2 electrolysis over the 

Pt-LSCrM electrocatalyst (Figure S11). The attained current densities for the dry electroreduction 

of CO2 were inferior to H2O and CO2-H2O co-electrolysis processes. Nevertheless, the faradaic 

efficiency to CO exceeded 90%, revealing that even though the direct CO2 electroreduction is less 

favorable to H2O electrolysis, it should not be neglected from the CO formation. 

The ratio between  H2/CO (ρ) constitutes an essential parameter of syngas regarding its further 

processing and suitability in industrial processes, in which a ratio between ρ = 1.0 to 3.0 is usually 

preferred.51 Here, the observed ρ values for the two electrodes examined was in the range of 1.9 

to 3.7 (Figures 6b, 6c). Further, the ρ varied from 2.3 to 3.5 with the applied current (or voltage), 

revealing the advantage of using redox stable perovskites for the process which could offer a wide 

variety of syngas for several industrial applications from the same cell reactor. 

Durability Test:  

The short-term stability of the Pt/LSCrM fuel electrode was assessed by performing the co-

electrolysis process for a period of 60 h at -0.2 A and 800 °C in 25%H2O - 25%CO2 - 50%He. The 

electrolysis voltage of the cell shows gradually increase in voltage from 1.2 to 1.3 V during 60 h 

of operation (Figure 7a). To understand this increase in voltage, SEM microstructural analysis on 

cross-section was carried out for the Pt/LSCrM electrode after 60 h of durability study (Figures 

7b, 7c). The adhesion between the electrode and electrolyte interface seems to be unaltered during 

the study. Compared to the sample prior to the co-electrolysis experiments (heat-treated at 850 °C 



23 

for 4 h), the size of the Pt NPs on LSCrM backbone undergoes a negligible change after the 

durability test demonstrating the excellent stability of Pt NPs. The carbon nanofibers observed on 

the electrode after the stability test can possibly explain the increase in voltage. Also, the 

degradation will occur due to the contact loss between Au mesh and electrode at higher operating 

temperatures. Therefore, the carbon deposition and current collection issues contribute to the slight 

degradation during electrolysis, which constitutes no surprise since similar phenomena have been 

reported in solid oxide electrolysis studies.22,52,53  

 

Figure 7: a) Durability study of the Pt/LSCrM electrode for 65 h in co-electrolysis mode in the absence of H2 feed. 

Reaction condition 25%H2O - 25%CO2 - 50% He, at I = -0.2 A·cm-2. SEM micrographs of Pt/LSCrM after stability 

test b) cross-section c) surface morphology. 
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CONCLUSIONS 

ALD of Pt has been applied for boosting the performance of LSCrM cathodes during CO2 and 

H2O co-electrolysis in SOECs. The ALD process used was able to introduce dispersed Pt 

nanoparticles (18 nm average size upon heat exposure) at low loadings (51 ± 2 μg·cm-2) into the 

open volume of the LSCrM perovskite electrode. The electrochemical characterizations showed 

that the deposition of Pt significantly decreases the LSCrM’s polarization resistance, as a result of 

improved electrocatalytic activity and electrical conductivity. In particular the rate of syngas 

production is improved up to 62% (at 1.5V, 850 °C) vs the bare LSCrM electrode during 

electrolysis operation, whereas the peak power output was enhanced by up to 84% in fuel cell 

mode. The results obtained here clearly show the advantage of using Pt ALD on redox stable 

perovskite material for efficient production of syngas at the adjustable ratio of H2/CO. The 

Pt/LSCrM cell displayed adequate durability during continuous operation for 60 h at 850 °C with 

marginal modifications in Pt particle size and population. The present results exemplify how ALD 

can provide an efficient route towards noble metal exploitation in solid oxide cells in order to 

transform renewable power into the raw material for chemical industry. 

 

SUPPORTING INFORMATION 

XPS data of LSCrM prior and following Pt deposition with ALD, SEM images and XRD analysis 

of the examined cells, Analysis of the Pt nanoparticles size distribution, I-V curves obtained during 

steam, carbon dioxide and co-electrolysis with Pt-LSCrM sample. 

 



25 

AUTHOR INFORMATION 

Corresponding authors 

*E-mail: kyriakou@mit.edu, M.Tsampas@differ.nl  

ORCID 

Vasileios Kyriakou: 0000-0002-7088-1160  

Mihalis N. Tsampas: 0000-0002-4367-4457 

 

ACKNOWLEDGMENTS 

This research was carried out within the SynCat@DIFFER program between the Dutch institute 

for fundamental energy research (DIFFER), Eindhoven university of Technology (TU/e) and 

Syngaschem BV and is funded jointly by the Netherlands Organization for Scientific Research 

(NWO) and Syngaschem BV. The authors would like also to acknowledge the TU/e-DIFFER 

impulse program for financial support and Patrick A. Hage for helping with the measurements of 

Pt loading. 

 

REFERENCES  

(1)  Giménez-Gómez, J. M.; Teixidó-Figueras, J.; Vilella, C. The Global Carbon Budget: A 

Conflicting Claims Problem. Clim. Change 2016. https://doi.org/10.1007/s10584-016-

1633-1. 

(2)  Gómez, S. Y.; Hotza, D. Current Developments in Reversible Solid Oxide Fuel Cells. 

mailto:kyriakou@mit.edu
mailto:M.Tsampas@differ.nl


26 

Renewable and Sustainable Energy Reviews. 2016. 

https://doi.org/10.1016/j.rser.2016.03.005. 

(3)  Ebbesen, S. D.; Jensen, S. H.; Hauch, A.; Mogensen, M. B. High Temperature Electrolysis 

in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells. Chemical 

Reviews. 2014. https://doi.org/10.1021/cr5000865. 

(4)  Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S. W.; Krishna Moorthy, S. B. 

Review of Solid Oxide Electrolysis Cells: A Clean Energy Strategy for Hydrogen 

Generation. Nanomater. Energy 2019. https://doi.org/10.1680/jnaen.18.00009. 

(5)  Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, J. A Review of High 

Temperature Co-Electrolysis of H2O and CO2 to Produce Sustainable Fuels Using Solid 

Oxide Electrolysis Cells (SOECs): Advanced Materials and Technology. Chemical 

Society Reviews. 2017. https://doi.org/10.1039/c6cs00403b. 

(6)  Irvine, J. T. S.; Neagu, D.; Verbraeken, M. C.; Chatzichristodoulou, C.; Graves, C.; 

Mogensen, M. B. Evolution of the Electrochemical Interface in High-Temperature Fuel 

Cells and Electrolysers. Nature Energy. 2016. https://doi.org/10.1038/nenergy.2015.14. 

(7)  Graves, C.; Ebbesen, S. D.; Jensen, S. H.; Simonsen, S. B.; Mogensen, M. B. Eliminating 

Degradation in Solid Oxide Electrochemical Cells by Reversible Operation. Nat. Mater. 

2015. https://doi.org/10.1038/nmat4165. 

(8)  Mewafy, B.; Paloukis, F.; Papazisi, K. M.; Balomenou, S. P.; Luo, W.; Teschner, D.; 

Joubert, O.; Le Gal La Salle, A.; Niakolas, D. K.; Zafeiratos, S. Influence of Surface State 

on the Electrochemical Performance of Nickel-Based Cermet Electrodes during Steam 

Electrolysis. ACS Appl. Energy Mater. 2019. https://doi.org/10.1021/acsaem.9b00779. 



27 

(9)  Hydrogen and Fuel Cells: Emerging Technologies and Applications. Choice Rev. Online 

2006. https://doi.org/10.5860/choice.43-3411. 

(10)  Meng, J.; Yuan, N.; Liu, X.; Yao, C.; Liang, Q.; Zhou, D.; Meng, F.; Meng, J. Synergistic 

Effects of Intrinsic Cation Disorder and Electron-Deficient Substitution on Ion and 

Electron Conductivity in La1- XSrxCo0.5Mn0.5O3δ (x = 0, 0.5, and 0.75). Inorg. Chem. 

2015. https://doi.org/10.1021/ic502989c. 

(11)  Bastidas, D. M.; Tao, S.; Irvine, J. T. S. A Symmetrical Solid Oxide Fuel Cell 

Demonstrating Redox Stable Perovskite Electrodes. J. Mater. Chem. 2006. 

https://doi.org/10.1039/b600532b. 

(12)  Sapountzi, F. M.; Brosda, S.; Papazisi, K. M.; Balomenou, S. P.; Tsiplakides, D. 

Electrochemical Performance of La 0.75Sr 0.25Cr 0.9M 0.1O 3 Perovskites as SOFC 

Anodes in CO/CO 2 Mixtures. J. Appl. Electrochem. 2012. 

https://doi.org/10.1007/s10800-012-0459-4. 

(13)  Papazisi, K. M.; Balomenou, S.; Tsiplakides, D. Synthesis and Characterization of 

La0.75Sr0.25Cr 0.9M0.1O3 Perovskites as Anodes for CO-Fuelled Solid Oxide Fuel 

Cells. J. Appl. Electrochem. 2010. https://doi.org/10.1007/s10800-010-0150-6. 

(14)  Yan, J.; Chen, H.; Dogdibegovic, E.; Stevenson, J. W.; Cheng, M.; Zhou, X. D. High-

Efficiency Intermediate Temperature Solid Oxide Electrolyzer Cells for the Conversion of 

Carbon Dioxide to Fuels. J. Power Sources 2014. 

https://doi.org/10.1016/j.jpowsour.2013.11.047. 

(15)  Wan, J.; Zhu, J. H.; Goodenough, J. B. La0.75Sr0.25Cr0.5Mn0.5O3-δ + Cu Composite 

Anode Running on H2 and CH4 Fuels. Solid State Ionics 2006. 



28 

https://doi.org/10.1016/j.ssi.2006.04.046. 

(16)  Tao, S.; Irvine, J. T. S. Synthesis and Characterization of (La0.75Sr 0.25)Cr0.5Mn0.5O3-

δ, a Redox-Stable, Efficient Perovskite Anode for SOFCs. J. Electrochem. Soc. 2004. 

https://doi.org/10.1149/1.1639161. 

(17)  Zhang, X.; Song, Y.; Wang, G.; Bao, X. Co-Electrolysis of CO2 and H2O in High-

Temperature Solid Oxide Electrolysis Cells: Recent Advance in Cathodes. Journal of 

Energy Chemistry. 2017. https://doi.org/10.1016/j.jechem.2017.07.003. 

(18)  Xing, R.; Wang, Y.; Zhu, Y.; Liu, S.; Jin, C. Co-Electrolysis of Steam and CO2 in a Solid 

Oxide Electrolysis Cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ -Cu Ceramic Composite 

Electrode. J. Power Sources 2015. https://doi.org/10.1016/j.jpowsour.2014.10.066. 

(19)  Ruiz-Morales, J. C.; Canales-Vázquez, J.; Marrero-López, D.; Irvine, J. T. S.; Núñez, P. 

Improvement of the Electrochemical Properties of Novel Solid Oxide Fuel Cell Anodes, 

La0.75Sr0.25Cr0.5Mn0.5O3-δ and La4Sr8Ti11Mn0.5Ga0.5O37.5-δ, Using Cu-YSZ-

Based Cermets. Electrochim. Acta 2007. https://doi.org/10.1016/j.electacta.2007.05.060. 

(20)  Onn, T. M.; Küngas, R.; Fornasiero, P.; Huang, K.; Gorte, R. J. Atomic Layer Deposition 

on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell 

Electrode Preparation. Inorganics. 2018. https://doi.org/10.3390/inorganics6010034. 

(21)  Price, R.; Cassidy, M.; Grolig, J. G.; Mai, A.; Irvine, J. T. S. Preparation and Testing of 

Metal/Ce0.80Gd0.20O1.90 (Metal: Ni, Pd, Pt, Rh, Ru) Co-Impregnated 

La0.20Sr0.25Ca0.45TiO3 Anode Microstructures for Solid Oxide Fuel Cells. J. 

Electrochem. Soc. 2019. https://doi.org/10.1149/2.1181904jes. 



29 

(22)  Kyriakou, V.; Neagu, D.; Papaioannou, E. I.; Metcalfe, I. S.; van de Sanden, M. C. M.; 

Tsampas, M. N. Co-Electrolysis of H2O and CO2 on Exsolved Ni Nanoparticles for 

Efficient Syngas Generation at Controllable H2/CO Ratios. Appl. Catal. B Environ. 2019. 

https://doi.org/10.1016/j.apcatb.2019.117950. 

(23)  Thommy, L.; Joubert, O.; Hamon, J.; Caldes, M. T. Impregnation versus Exsolution: 

Using Metal Catalysts to Improve Electrocatalytic Properties of LSCM-Based Anodes 

Operating at 600 °C. Int. J. Hydrogen Energy 2016. 

https://doi.org/10.1016/j.ijhydene.2016.06.088. 

(24)  Jardiel, T.; Caldes, M. T.; Moser, F.; Hamon, J.; Gauthier, G.; Joubert, O. New SOFC 

Electrode Materials: The Ni-Substituted LSCM-Based Compounds 

(La0.75Sr0.25)(Cr0.5Mn0.5-XNi x)O3-Δand (La0.75Sr0.25) (Cr0.5-XNixMn0.5)O3-δ. 

Solid State Ionics 2010. https://doi.org/10.1016/j.ssi.2010.05.012. 

(25)  George, S. M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010. 

https://doi.org/10.1021/cr900056b. 

(26)  Mackus, A. J. M.; Weber, M. J.; Thissen, N. F. W.; Garcia-Alonso, D.; Vervuurt, R. H. J.; 

Assali, S.; Bol, A. A.; Verheijen, M. A.; Kessels, W. M. M. Atomic Layer Deposition of 

Pd and Pt Nanoparticles for Catalysis: On the Mechanisms of Nanoparticle Formation. 

Nanotechnology 2015. https://doi.org/10.1088/0957-4484/27/3/034001. 

(27)  Grillo, F.; Moulijn, J. A.; Kreutzer, M. T.; van Ommen, J. R. Nanoparticle Sintering in 

Atomic Layer Deposition of Supported Catalysts: Kinetic Modeling of the Size 

Distribution. Catal. Today 2018. https://doi.org/10.1016/j.cattod.2018.02.020. 

(28)  Song, Z.; Norouzi Banis, M.; Liu, H.; Zhang, L.; Zhao, Y.; Li, J.; Doyle-Davis, K.; Li, R.; 



30 

Knights, S.; Ye, S.; et al. Ultralow Loading and High-Performing Pt Catalyst for a 

Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. 

ACS Catal. 2019. https://doi.org/10.1021/acscatal.8b04504. 

(29)  Dai, P.; Xie, J.; Mayer, M. T.; Yang, X.; Zhan, J.; Wang, D. Solar Hydrogen Generation 

by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer 

Deposition. Angew. Chemie - Int. Ed. 2013. https://doi.org/10.1002/anie.201303813. 

(30)  Christensen, S. T.; Elam, J. W.; Rabuffetti, F. A.; Ma, Q.; Weigand, S. J.; Lee, B.; Seifert, 

S.; Stair, P. C.; Poeppelmeier, K. R.; Hersam, M. C.; et al. Controlled Growth of Platinum 

Nanoparticles on Strontium Titanate Nanocubes by Atomic Layer Deposition. Small 2009. 

https://doi.org/10.1002/smll.200801920. 

(31)  Hajar, Y.; Di Palma, V.; Kyriakou, V.; Verheijen, M. A.; Baranova, E. A.; Vernoux, P.; 

Kessels, W. M. M.; Creatore, M.; van de Sanden, M. C. M.; Tsampas, M. Atomic Layer 

Deposition of Highly Dispersed Pt Nanoparticles on a High Surface Area Electrode 

Backbone for Electrochemical Promotion of Catalysis. Electrochem. commun. 2017. 

https://doi.org/10.1016/j.elecom.2017.09.023. 

(32)  Choi, H. J.; Bae, K.; Grieshammer, S.; Han, G. D.; Park, S. W.; Kim, J. W.; Jang, D. Y.; 

Koo, J.; Son, J. W.; Martin, M.; et al. Surface Tuning of Solid Oxide Fuel Cell Cathode by 

Atomic Layer Deposition. Adv. Energy Mater. 2018. 

https://doi.org/10.1002/aenm.201802506. 

(33)  Gong, Y.; Palacio, D.; Song, X.; Patel, R. L.; Liang, X.; Zhao, X.; Goodenough, J. B.; 

Huang, K. Stabilizing Nanostructured Solid Oxide Fuel Cell Cathode with Atomic Layer 

Deposition. Nano Lett. 2013. https://doi.org/10.1021/nl402138w. 



31 

(34)  Cheng, Y.; Raman, A. S.; Paige, J.; Zhang, L.; Sun, D.; Chen, M. U.; Vojvodic, A.; Gorte, 

R. J.; Vohs, J. M. Enhancing Oxygen Exchange Activity by Tailoring Perovskite Surfaces. 

J. Phys. Chem. Lett. 2019. https://doi.org/10.1021/acs.jpclett.9b01235. 

(35)  Opitz, A. K.; Nenning, A.; Rameshan, C.; Kubicek, M.; Götsch, T.; Blume, R.; Hävecker, 

M.; Knop-Gericke, A.; Rupprechter, G.; Klötzer, B.; et al. Surface Chemistry of 

Perovskite-Type Electrodes during High Temperature CO2 Electrolysis Investigated by 

Operando Photoelectron Spectroscopy. ACS Appl. Mater. Interfaces 2017. 

https://doi.org/10.1021/acsami.7b10673. 

(36)  Kattel, S.; Liu, P.; Chen, J. G. Tuning Selectivity of CO2 Hydrogenation Reactions at the 

Metal/Oxide Interface. Journal of the American Chemical Society. 2017. 

https://doi.org/10.1021/jacs.7b05362. 

(37)  Porosoff, M. D.; Yan, B.; Chen, J. G. Catalytic Reduction of CO2 by H2 for Synthesis of 

CO, Methanol and Hydrocarbons: Challenges and Opportunities. Energy and 

Environmental Science. 2016. https://doi.org/10.1039/c5ee02657a. 

(38)  Oshima, K.; Shinagawa, T.; Nogami, Y.; Manabe, R.; Ogo, S.; Sekine, Y. Low 

Temperature Catalytic Reverse Water Gas Shift Reaction Assisted by an Electric Field. In 

Catalysis Today; 2014. https://doi.org/10.1016/j.cattod.2013.11.035. 

(39)  Goguet, A.; Meunier, F.; Breen, J. P.; Burch, R.; Petch, M. I.; Faur Ghenciu, A. Study of 

the Origin of the Deactivation of a Pt/CeO 2 Catalyst during Reverse Water Gas Shift 

(RWGS) Reaction. J. Catal. 2004. https://doi.org/10.1016/j.jcat.2004.06.011. 

(40)  Knoops, H. C. M.; MacKus, A. J. M.; Donders, M. E.; Van De Sanden, M. C. M.; Notten, 

P. H. L.; Kessels, W. M. M. Remote Plasma ALD of Platinum and Platinum Oxide Films. 



32 

Electrochem. Solid-State Lett. 2009. https://doi.org/10.1149/1.3125876. 

(41)  Heil, S. B. S.; Langereis, E.; Roozeboom, F.; Van De Sanden, M. C. M.; Kessels, W. M. 

M. Low-Temperature Deposition of TiN by Plasma-Assisted Atomic Layer Deposition. J. 

Electrochem. Soc. 2006. https://doi.org/10.1149/1.2344843. 

(42)  Aaltonen, T.; Ritala, M.; Sajavaara, T.; Keinonen, J.; Leskelä, M. Atomic Layer 

Deposition of Platinum Thin Films. Chem. Mater. 2003. 

https://doi.org/10.1021/cm021333t. 

(43)  Baker, L.; Cavanagh, A. S.; Seghete, D.; George, S. M.; MacKus, A. J. M.; Kessels, W. 

M. M.; Liu, Z. Y.; Wagner, F. T. Nucleation and Growth of Pt Atomic Layer Deposition 

on Al2O 3 Substrates Using (Methylcyclopentadienyl)-Trimethyl Platinum and O2 

Plasma. J. Appl. Phys. 2011. https://doi.org/10.1063/1.3555091. 

(44)  Futamura, S.; Muramoto, A.; Tachikawa, Y.; Matsuda, J.; Lyth, S. M.; Shiratori, Y.; 

Taniguchi, S.; Sasaki, K. SOFC Anodes Impregnated with Noble Metal Catalyst 

Nanoparticles for High Fuel Utilization. Int. J. Hydrogen Energy 2019. 

https://doi.org/10.1016/j.ijhydene.2019.01.223. 

(45)  Jiang, S. P.; Ye, Y.; He, T.; Ho, S. B. Nanostructured Palladium-

La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3-ZrO2 Composite Anodes for Direct Methane and 

Ethanol Solid Oxide Fuel Cells. J. Power Sources 2008. 

https://doi.org/10.1016/j.jpowsour.2008.06.099. 

(46)  Grillo, F.; Van Bui, H.; Moulijn, J. A.; Kreutzer, M. T.; Van Ommen, J. R. Understanding 

and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer 

Deposition: An Avenue to Size Selection. J. Phys. Chem. Lett. 2017. 



33 

https://doi.org/10.1021/acs.jpclett.6b02978. 

(47)  Ebbesen, S. D.; Knibbe, R.; Mogensen, M. Co-Electrolysis of Steam and Carbon Dioxide 

in Solid Oxide Cells. J. Electrochem. Soc. 2012. https://doi.org/10.1149/2.076208jes. 

(48)  Foit, S. R.; Vinke, I. C.; de Haart, L. G. J.; Eichel, R. A. Power-to-Syngas: An Enabling 

Technology for the Transition of the Energy System? Angewandte Chemie - International 

Edition. 2017. https://doi.org/10.1002/anie.201607552. 

(49)  Mahmood, A.; Bano, S.; Yu, J. H.; Lee, K. H. Effect of Operating Conditions on the 

Performance of Solid Electrolyte Membrane Reactor for Steam and CO2 Electrolysis. J. 

Memb. Sci. 2015. https://doi.org/10.1016/j.memsci.2014.09.002. 

(50)  Wang, Y.; Liu, T.; Lei, L.; Chen, F. High Temperature Solid Oxide H 2 O/CO 2 Co-

Electrolysis for Syngas Production. Fuel Processing Technology. 2017. 

https://doi.org/10.1016/j.fuproc.2016.08.009. 

(51)  Cao, Y.; Gao, Z.; Jin, J.; Zhou, H.; Cohron, M.; Zhao, H.; Liu, H.; Pan, W. Synthesis Gas 

Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: 

Effects of Coal Ranks and Methane Addition. Energy and Fuels 2008. 

https://doi.org/10.1021/ef7005707. 

(52)  Tao, Y.; Ebbesen, S. D.; Mogensen, M. B. Carbon Deposition in Solid Oxide Cells during 

Co-Electrolysis of H 2O and CO2. J. Electrochem. Soc. 2014. 

https://doi.org/10.1149/2.079403jes. 

(53)  Chen, K.; Jiang, S. P. Review - Materials Degradation of Solid Oxide Electrolysis Cells. 

Journal of the Electrochemical Society. 2016. https://doi.org/10.1149/2.0101611jes. 



34 

 


