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Abstract

Pair plasmas, collections of both matter and antimatter particles of equal mass, represent a

paradigm for the study of basic plasma science, and many open questions exist regarding these

unique systems. They are found in many astrophysical settings, such as gamma-ray bursts, and

have recently also been produced in carefully designed laboratory experiments. A central research

in plasma physics is instability; however, unlike their more common ion-electron siblings, pair plas-

mas are generally thought to be stable to cross-field pressure gradients in homogeneous magnetic

fields. It is shown here by means of kinetic full-f simulations that, when a pressure gradient is first

established, the Gradient-driven Drift Coupling mode is destabilized and becomes turbulent. Force

balance is eventually achieved by a combination of flattened pressure profile due to turbulent trans-

port and establishment of a magnetic field gradient, saturating the growth. During the unstable

phase, key physics can be captured by a δf gyrokinetic description, where it is shown analytically

and numerically that parallel particle motion results in a coupling of all electromagnetic field com-

ponents. A fluid model derived therefrom accurately predicts linear eigenmodes and is used to

resolve global profile effects. For laser-based electron-positron plasma experiments, prompt insta-

bility is predicted with growth times much shorter than plasma lifetimes. Similarly, growth rates

are calculated for the planned APEX experiment as well as gamma-ray burst scenarios, suggesting

that the instability may contribute to the early evolution of these systems.
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I. BACKGROUND

Most of the visible universe exists in a plasma state, where matter is ionized and can

self-interact via electric and magnetic fields. Such interaction can take the form of waves [1]

or instabilities [2, 3]; the latter arise from the growth of perturbations, which eventually sat-

urate either due to a depleted energy source or due to nonlinear energy transfer, potentially

leading to turbulence [4]. A large variety of plasma instabilities exists in disparate systems,

both astrophysical and in the laboratory, and the drive physics can rely on pressure [5, 6],

current [7], or velocity-space inhomogeneities [8, 9].

A special class of plasmas are those comprised simultaneously of matter and antimatter

particles. In nature, electron-positron pair plasmas tend to be produced during highly ener-

getic events, such as gamma-ray bursts (GRBs) [10]. In laboratory experiments, antiprotons

have been studied intensively [11], but not at densities sufficient to produce a pair plasma,

whereas collective effects and plasma behavior in electron-positron systems is an active topic

of research. There, advances in laser-induced plasmas have been utilized [12–15]; a key con-

sideration is the propensity for collective effects [16] and especially instability, such as the

Weibel instability [9]. The latter is believed to be widely occurring, but requires opposing

streams of plasma.

A Maxwellian pair plasma is not usually considered to be unstable. A preparatory the-

oretical study [17, 18] in the context of the planned APEX magnetic confinement device

[19, 20] seems to confirm this expectation. It demonstrates that no instability occurs in

a homogeneous guide field in the presence of density or temperature gradients when only

electrostatic Φ and shear-magnetic A‖ fluctuations are considered, i.e., compressional mag-

netic fluctuations B‖ are ignored. Instability may be obtained by introducing guide field

curvature [21], which will be present in APEX. Similarly, Ref. [22] considers instability of

axisymmetrically confined pair plasmas.

When including B‖ fluctuations in the analysis, new physics can enter the fray. In particu-

lar, the Gradient-driven Drift Coupling (GDC) instability [24], which was first seen in studies

of magnetic reconnection [23], is driven by density or temperature gradients ωn ≡ Lz/Ln or

ωT ≡ Lz/LT , respectively, and couples the E×B drift with the ∇B‖ drift to produce both

a stable and an unstable mode branch. Here, Lz denotes the macroscopic normalization

length scale and Ln (LT ) the background density (temperature) scale length. In addition
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to driving instability and turbulence, GDC activity was observed to enhance reconnection

rates.

The physical mechanism of the GDC can be described as follows. Consider a magne-

tized plasma – pair or ion-electron – immersed in a magnetic guide field B0 along z and

a density/temperature gradient along x. If a perturbation of the electrostatic potential Φ

forms along the third direction at a wavenumber ky, it produces an E×B drift along x that

advects plasma from regions of lower and higher density/temperature. This results in a

density/temperature perturbation at ky, which corresponds to a compressional perturbation

B‖. As a consequence, a ∇B‖×B drift arises, separating charges and reinforcing the original

Φ perturbation, thus producing instability. The interplay between the two drifts gives rise

to term drift coupling.

Irrespective of whether ion-electron or pair plasmas are considered, this mechanism works

even at very low normalized electron pressure β ≡ 8πne0Te0/B
2
0 ≪ 1 for scenarios with

little or no background magnetic shear; here, ne0 and Te0 denote the background electron

density and temperature, respectively. B0 is assumed to be homogeneous unless stated

otherwise. Note that this implies that the equilibrium is, generally, not force-free, as density

and temperature gradients are not offset by a variation of B0. It is to be stressed that in

an exactly force-balanced equilibrium, where the guide field scale length LB balances the

pressure gradient scale length Lp per 1/LB = −(β/2)/Lp, the GDC mode becomes marginal

[28]. However, as will be shown here, the process by which a system achieves force balance

can entail GDC excitation and saturation in a turbulent state that persists for a significant

period of time.

In the context of magnetic reconnection turbulence in the solar corona [25], GDC activity

may boost volumetric heating rates [24]. Another application arises in experiments at the

Large Plasma Device, where discharges with Lz = 17m, substantial β ∼ O(0.01), and large

pressure gradients ωn ∼ ωT ∼ O(100), exhibit fluctuation characteristics consistent with

turbulence driven primarily by the GDC [26].

The remainder of this paper is structured as follows. In order to determine whether the

assumptions (gyrokinetic approximation and δf with an equilibrium not in force balance)

made in previous work [24] introduce artificial features, full-f fully kinetic simulations of

an electron-positron system are described in Sec. II. In that setup, GDC instability and

turbulence are observed before a combination of turbulent flattening of the driving gradient
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and establishment of a magnetic field gradient lead to a disabling of the GDC drive. Build-

ing thereupon, a solution of the GDC dispersion relation for a simple and mathematically

transparent electron-positron plasma system is derived analytically in Sec. III, elucidating

the impact of parallel particle motion; the result is shown to agree with gyrokinetic simula-

tions. A simple fluid model is obtained in Sec. IV, which recovers linear gyrokinetic results.

Finally, Sec. V describes a number of physical systems and how GDC activity may impact

observables therein: a laser-induced, a magnetically confined, and a GRB electron-positron

plasma.

II. KINETIC FULL-f SYSTEM

The Vlasov-Maxwell system of equations is solved for the full distribution function for

a collisionless electron-positron plasma immersed at time t = 0 in a homogeneous guide

field B0, with a density profile as given in Fig. 1 and constant temperature throughout

the domain; β = 0.1 and a Debye length of λD = 0.3 normalized to the gyroradius ρ are

chosen. Variation in the direction z along B0 is not resolved. This is justified a posteriori

by demonstrating in Sec. III that the kz = 0 mode dominates; note, however, that in theory

one may envision the nonlinear coupling of different kz modes, which may complicate this

situation. Such a scenario describes situations where a plasma of finite volume is quickly

injected into a magnetic field, a situation of relevance to both natural and laboratory plasma

systems.

These kinetic simulations for the full distribution function were carried out using a fully

electromagnetic particle-in-cell simulation model in a slab geometry [27]. The (x, y, vx, vy, vz)

phase space is initialized with a density profile nonuniform along x and uniform along y,

whereas a uniform temperature is assumed throughout the domain. A spectral method is

used for solving Maxwell’s equations, which allows for Fourier mode selection in the periodic

y coordinate. The domain size in the x-y direction is taken to be 128×64 cells, and 20480

particles per cell were used.

Note that no physical meaning is assigned here to the amplitude, structure, and phases

of the initial condition; the same applies to all simulations throughout this paper. Thus,

the time that initially passes before the instability fully develops is of no relevance to the

results reported here.
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FIG. 1. Profiles of the parallel magnetic fluctuation (upper), i.e., excluding the homogeneous guide

field B0 = 1, and the electron density (lower). Black lines correspond to the initial profiles, while

red and blue lines are data at time t = 50 of the base simulation and one with A‖ artificially

removed, respectively. Quasilinear flattening of the driving density gradient is observed, and the

system is near force balance at t = 50.

As the system evolves, instability can clearly be seen in Fig. 2 (black lines), where ampli-

tudes grow by more than one order of magnitude during the initial phase of the simulation.

In the logarithmic panel, a second, separate simulation with only one finite ky mode is in-

cluded for comparison as a red dotted line, allowing for a somewhat cleaner estimate of the

linear growth rate. In units of the thermal velocity vth = (Te0/m), with mass m, divided by

Ln, the growth rate thus reads 2γ ≈ 0.13; by comparison, the prediction from gyrokinetic

theory and the fluid model detailed in Sec. IV (approximately matching the density gradient

profile width) lie around 2γ ≈ 0.40. Throughout the linear growth phase, which stretches

over only one order of magnitude due to computational expense, noise from the initial con-

dition as well as quasilinear flattening pollute the result; the former is due to the eigenmode
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FIG. 2. Logarithmic (upper) and linear (lower) plots of the field energy in full-f kinetic simulations,

showing linear growth and saturation (black lines). In the upper panel, a red dotted line shows

growth in a separate simulation that includes only one finite ky, corresponding to the fastest-

growing wavenumber; a dashed blue line marks a fit to obtain the corresponding growth rate,

as discussed in the text. The dotted green line in the lower panel refers to a simulation with A‖

suppressed, while the solid pink line instead removes B‖ at runtime. Growth and saturation thereof

only occur in the former case.

not having fully converged in time, the latter refers to a self-consistent lowering of the den-

sity gradient as fluctuation levels grow—both can be expected to cause a reduction in the

apparent growth rate. Considering these factors, growth is therefore roughly consistent in

magnitude with the instability being of GDC type. This is further supported by the fact

that no drift along y is observed in the simulation, conforming with the GDC property of

zero or small frequencies ω ≪ γ.

These findings in isolation are merely suggestive; however, a variety of other properties

point towards GDC as the underlying mechanism. As the GDC – for its kz = 0 mode
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branch – relies solely on the interplay of Φ and B‖ fluctuations, tests can be designed that

help determine the nature of the instability at hand. Shown as a dark yellow dotted line

in the linear (lower) panel of Fig. 2 (almost exactly overlying the back line) is a separate

simulation where perpendicular magnetic fluctuations A‖ were artificially removed, clearly

demonstrating insensitivity to this change; conversely, another simulation, shown in the

same figure as a pink line, was performed with self-consistent A‖ but artificially suppressed

B‖, leading to no instability or turbulence. These findings are again consistent with GDC

properties, as is the fact that the growth rate scales with β, as confirmed by a separate

simulation at β = 0.05.

In Fig. 1, red and blue lines correspond to profiles of B‖ (not including the background

field B0 = 1) and the total density for the full and the A‖-suppressed simulation, respectively,

at a moment in time when growth of the fluctuations has ended. Again, no difference is

observed when removing A‖. Furthermore, the new field gradient and flattened density

gradient, respectively ωn = Lz/Ln ≈ 0.12 and ωB = Lz/LB ≈ −0.0097 when fitted in the

range −5 ≤ x ≤ 5, are within 20% of being force-balanced for the present value of β = 0.1,

as that condition reads −βωn = ωB [28].

As an aside, regarding the situation in the Large Plasma Device, where simulations

in non-balanced equilibria capture experimental trends in helium plasmas, two possible

explanations could be investigated. First, a small radial mismatch between the magnetic

field and steep-density-gradient regions can lead to a significant deviation from force balance.

Second, at plasma injection, a density gradient exists, but there is no initial field gradient;

the fluctuation characteristics on which the validation study in Ref. [26] focuses may well

be created during the saturation onset or persist for significant periods past that point, as

the data in Fig. 2 at t > 40 suggests.

Quasilinear flattening of the density profile, in combination with the quasilinear establish-

ment of a magnetic-field gradient causes the turbulent drive to turn off; this, however, does

not preclude other saturation physics from being at play [26]. In particular, the existence of

a mirror GDC, or a pseudo-eigenmode [29] variant thereof, would allow energy transfer to

stable eigenmodes to contribute to saturation under the right conditions [30], a possibility

that may be investigated further in the future.

These full-f kinetic simulations have demonstrated that a pair-plasma system initially

not in force balance will evolve by exciting GDC instability, whose turbulent transport then
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adjusts the pressure and magnetic field profiles until the system is force-balanced and linearly

stable. In light of this finding, the focus is now shifted to the pre-equilibration phase, where

the δf approximation is valid.

III. GYROKINETIC TREATMENT AND PARALLEL DYNAMICS

Strong magnetization separates the cyclotron motion from GDC time scales, which for

electron-positron plasmas are on the order of the transit time Lz/vte, where vte ≡ vth is

the electron thermal velocity. Using the gyrokinetic approximation [31], one may then

eliminate the Larmor time scale and effectively reduce orbital particle motion to a ring with

distributed charge density. The normalized equations for the implementation used here are

described in Ref. [23], to which the reader is referred for further detail. For the purpose

of studying electron-positron plasmas, a number of simplifications may be introduced: The

electron and positron species, respectively denoted by e and p, have identical mass m and

background density but can also be assumed to have identical background temperatures due

to the pair creation process as well as an efficient equilibration process. One may thus set

me = mp = ne0 = np0 = Te0 = Tp0 = vte = vtp = 1. Furthermore, identical gyroradii

ρe = ρp = 1, normalized gradients ωT e = ωTp = ωT = Lz/LT and ωne = ωnp = ωn = Lz/Ln,

and background distribution functions F0e = F0p = π−3/2 exp(−v2‖−µB0) are implied, where

v‖ and µ are the velocity coordinate along z and the magnetic moment, respectively. Lastly,

the electric charges are qp = 1 = −qe. Note that simply using a different mass unit makes all

subsequent results directly applicable to any other pair plasma, such as proton-antiproton.

In a homogeneous magnetic field, one may set B0 = 1 throughout the periodic domain.

Linear modes in a collisionless electron-positron plasma are then described by the Vlasov

equation for species j

iωcgj = −
[

ωn +

(

v2‖ + µ− 3

2

)

ωT

]

F0ikyχj −
√
2v‖ikzgj −

√
2v‖qjF0ikzχj . (1)

Here, ωc is the complex mode frequency in units of vth/Lz with negative (positive) sign of the

real part ω denoting electron (positron) frequencies; gj is the perturbed modified distribution

function, relating to its unmodified counterpart via gj = fj +
√
2qjv‖J0(λj)A‖F0; moreover,

kx,y,z refer to the wavenumbers in the x (along ωn,T ), y (perpendicular to x and z), and

z directions, normalized as kx,yρe and kzLz, suggesting kz ≪ kx,y in physical units. The
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generalized potential reads

χj = J0(λj)Φ−
√
2v‖J0(λj)A‖ +

2

qj

J1(λj)

λj

µB‖ = J0Φ−
√
2v‖J0A‖ +

2

qj
J̄1µB‖ , (2)

where J0,1 denote Bessel functions of argument λj = qjk⊥(2µ)
1/2, with k⊥ = (k2

x + k2
y)

1/2.

As J0 = J0(λj) is an even function, it has no species dependence due to qj = ±1, and one

may eliminate said dependence for the other Bessel function by defining J̄1 ≡ J1(λj)/λj.

The field equations can be written as

Φ =
(

k2
⊥λ

2
D + 2(1− Γ0)

)−1
π

∫

J0(gp − ge)dv‖dµ , (3)

B‖ =

(

− 2

β
− 4(Γ0 − Γ1)

)−1

2π

∫

J̄1(gp + ge)µdv‖dµ , (4)

and

A‖ =
(

k2
⊥ + βΓ0

)−1 πβ√
2

∫

J0(gp − ge)v‖dv‖dµ . (5)

In addition to the Debye length λD in units of ρe, the quantities Γ0,1 ≡ exp(−k2
⊥)I0,1(k

2
⊥)

with the Bessel functions I0,1 have been introduced in these equations.

Inserting the Vlasov equation into the field equations and defining α ≡ −ωc/(
√
2kz), one

obtains three coupled equations containing integrals of the form

∞
∫

−∞

va‖e
−v2

‖

v‖ − α
dv‖ and

∞
∫

0

e−µµaJ b
0 J̄

c
1dµ ,

(with a, b, and c denoting positive or zero integer numbers) where the former can be solved

through rewriting in terms of the plasma dispersion function and using a large-argument

expansion

Z(α) ≡ 1√
π

∞
∫

−∞

e−v2
‖

v‖ − α
dv‖ ≈ −α−1 − α−3/2− 3α−5/4 . (6)

This requires that the mode of interest be purely growing (ω = 0) at a rate γ much larger

than the parallel wavenumber kz, a condition fully justifiable for the parameter cases studied

here based on direct simulations. In addition, the Z function expansion is only required for

the case of kz 6= 0. The µ integrals can be solved exactly, producing different combinations

of Γ0 and Γ1. Further defining Ω1 ≡ (Γ0 − Γ1)ωn − [2k2
⊥(Γ0 − Γ1) − Γ0]ωT and Ω2 ≡

(Γ0 − Γ1)ωn − [2k2
⊥(Γ0 − Γ1)− 2Γ0 + Γ1]ωT , the set of coupled field equations becomes

(

k2
⊥λ

2
D + 2(1− Γ0)

)

Φ = −2ky
ωc

Ω1B‖ +
2k2

z

ω2
c

Γ0Φ +
2kz
ωc

Γ0A‖ , (7)
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(

− 2

β
− 4(Γ0 − Γ1)

)

B‖ = −2ky
ωc

Ω1Φ− 2kykz
ω2
c

Ω2A‖ +
4k2

z

ω2
c

(Γ0 − Γ1)B‖ , (8)

and
(

k2
⊥ + βΓ0

)

A‖ =
βkykz
ω2
c

Ω2B‖ −
βkz
ωc

Γ0Φ− 3βk2
z

ω2
c

Γ0A‖ . (9)

Solving this set produces a quartic equation for ω2
c ,

{

4k2
yΩ

2
1ω

2
c + 4k2

z(Γ0 − Γ1)
[(

k2
⊥λ

2
D + 2− 2Γ0

)

ω2
c − 2k2

zΓ0

]

(10)

+

(

2

β
+ 4Γ0 − 4Γ1

)

[(

k2
⊥λ

2
D + 2− 2Γ0

)

ω4
c − 2k2

zΓ0ω
2
c

]

}

·
{

k2
⊥

[

ω4
c

(

k2
⊥λ

2
D + 2− 2Γ0

)

− ω2
c2k

2
zΓ0

]

+ βΓ0

[

ω4
c

(

k2
⊥λ

2
D + 2− 2Γ0

)

− ω2
c2k

2
zΓ0

]

+ ω2
c2βk

2
zΓ

2
0 + 3βk2

zΓ0

[

ω2
c

(

k2
⊥λ

2
D + 2− 2Γ0

)

− 2k2
zΓ0

]

}

=

{

ω2
cΩ14kykzΓ0 + Ω22kykz

[

ω2
c

(

k2
⊥λ

2
D + 2− 2Γ0

)

− 2k2
zΓ0

]

}

·
{

βkykzΩ2

[

ω2
c

(

k2
⊥λ

2
D + 2− 2Γ0

)

− 2k2
zΓ0

]

+ ω2
cΩ12βkykzΓ0

}

,

which can be solved exactly. First, however, it is instructive to focus on the case of kz = 0,

for which the GDC growth rate becomes

γ =
2kyΩ1

[(k2
⊥λ

2
D + 2− 2Γ0)(2/β + 4Γ0 − 4Γ1)]1/2

. (11)

For practical applications, perpendicular length scales are often much larger than the gyro-

radius, or k⊥ ≪ 1, leading to

γ =

√
2ky(ωn + ωT )

k⊥
√

(2 + 1/β)(2 + λ2
D)

. (12)

This expression provides a transparent exposition of essential physics: the GDC is destabi-

lized equally by density and temperature gradients, scales as β1/2 due to B‖, one of the two

contributing fields, being proportional to β, and is stabilized by the Debye length.

Figure 3 illustrates the validity of Eq. (12) for independent parameter variations in β, λD,

kx, and ωn,T : it shows the predicted growth rates (solid lines) to be in excellent agreement

with the individual data points from gyrokinetic simulations using the full linear operator

for the unsheared slab, assuming no force balance. Simulations were performed with the

Gene code [32, 33], with up to 128 parallel, 32 parallel velocity, and 8 magnetic moment

grid points. At kz = 0, the full linear eigenvalue system was solved, returning the unstable
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FIG. 3. Parametric dependencies of the dominant kz = 0 GDC instability for scans of the normal-

ized pressure β, the Debye length λD, the wavenumber kx, and the driving gradients ωn,T . Black

solid lines represent the solution given in Eq. (12), while red squares denote gyrokinetic simula-

tion results; good agreement is observed throughout these scans—at even higher kx, however, the

low-k⊥ approximation will break down.

and stable GDC branches at ±|γ| in addition to a large number of marginally stable modes

at γ ≈ 0. The base physical parameter set reads β = 0.001, λD = 0.01, kx = 0, kz = 0,

ωn = ωT = 1 at ky = 0.001.

One of the advantages of using the gyrokinetic approach over the fully kinetic simulations

in Sec. II is that the linear operator can be inverted, allowing the extraction of growth rates

to machine precision without pollution by noise from initial conditions or other effects.

The picture becomes more complex once finite kz are taken into consideration. As Fig. 4

shows, γ is reduced with increasing kz, a finding which is expected to hold for ion-electron

plasmas, as well [26]. While direct simulation and the fastest-growing solution of Eq. (10)

agree well for these parameters (β = 0.01, λD = 0, kx = 0, ωn = ωT = 500 at ky = 0.1), the
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FIG. 4. GDC growth rates vs. parallel wavenumber kz, showing the stabilizing effect of parallel

dynamics. The black solid line represents the solution to the dispersion relation Eq. (10), red

squares are gyrokinetic simulations, and the red dotted line is a fit to the corresponding simulation

data points, see the text. Also shown as blue crosses are gyrokinetic simulations where A‖ was

artificially removed.

existence and dependencies of other growing roots in conjunction with the large-argument

expansion of the plasma dispersion function make it necessary to pay close attention to

ordering when considering other regions of parameter space.

Also included in the figure is a fit (red dotted line) to the simulation data. For the

present parameters, one may reduce Eq. (10) to a quadratic equation in ω2
c , and further

ordering considerations allow for the growth rate to be written as γ2 ≈ a− bk2
z . Clearly, the

simulations are obeying this relation.

To isolate the impact of A‖ fluctuations at finite kz, results from simulations artificially

setting A‖ = 0 are shown as blue crosses in Fig. 4, demonstrating that unlike for the kz = 0

case, A‖ now couples into the GDC via a ∇B⊥ drift, adding another drift-coupling level.

This aspect may be at least partially responsible for the A‖ signatures seen in the helium

plasma simulations of Ref. [26].

A physical picture of the finite-kz GDC modifications emerges. For the small-β limit,

the primary effect results from the neutrally stable electrostatic drift wave now enabled in

Eq. (7). Another, similar compressional magnetic wave can be ignored due to Φ ≫ B‖. The

electrostatic wave effectively reduces the amplitude of Φ available to the GDC mechanism,

resulting in partial stabilization. By adding A‖ into the picture, the Φ term in Eq. (9) –
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FIG. 5. GDC growth rates as functions of force-balance scaling parameter η. Shown are cases

of equal density and temperature gradients (black), only a density gradient (red), and only a

temperature gradient (blue). In all cases, the mode becomes marginal as force balance is achieved

at η = 1.

corresponding to current density produced by charges scattered by electric field fluctuations

– governs shear-magnetic fluctuations; using it to replace A‖ in Eq. (7), it reduces the

electrostatic wave amplitude, mitigating its stabilizing effect on the GDC. For the above

choice of k2
⊥ = β, the relative strengths of these Φ and A‖ effects differ by a factor of two,

clearly in agreement with the red squares and blue crosses in Fig. 4.

Note that the subdominant finite-kz GDC, as opposed to the dominant kz = 0 branch,

is only likely to play a role in cases where large normalized gradients occur, such that

immediate stabilization of the GDC at even the lowest kz in the system does not occur. One

such example is given in Ref. [26], where the second parallel harmonic of the GDC was seen

to be unstable.

Given the findings of Sec. II, it is instructive to determine how the equilibrium magnetic

field may affect the mode. Figure 5 shows linear GDC growth rates for different gradient

settings, as the force balance condition is continuously adjusted via a scaling factor η in

ωB = −ηβ(ωn + ωT ), such that force balance is fully achieved at η = 1. Consistent with

the results reported in Ref. [28], the instability vanishes as η → 1, with small finite γ values

resulting from finite numerical resolution. Importantly, the data also suggests that even

a modest amount of continuous forcing away from diamagnetic equilibrium is sufficient to

allow maintaining a GDC-unstable state.

14



FIG. 6. Stabilizing impact of background magnetic shear ŝ on the growth rate. For the present

choice of ωn = ωT = 100, the normalized shear required for full stabilization is much smaller than

the driving gradients.

Returning to the case of η = 0, the impact of background magnetic shear is studied. The

growth rate scaling seen in Fig. 6 with the normalized shear ŝ = Lz/Ls confirms the strongly

stabilizing effect of ŝ; these simulations were performed at β = 0.001 and ωn = ωT = 100, in

the low-k⊥ limit of ky = 10−3 and kx = 0 (note that higher kx are included in the simulation

due to a twist-and-shift parallel boundary condition). Clearly, only very moderate shear

is required to fully suppress GDC growth, suggesting that this instability may only exist

in unsheared systems. However, note that a possible path to mode excitation in sheared

geometry exists for higher wavenumbers [34].

Having obtained a more thorough understanding of the underlying GDC physics, the

next step is to design a reduced model capturing the most pertinent effects.

IV. REDUCED FLUID MODEL

One of the shortcomings of the analysis in Ref. [26] is that in a radially periodic local

flux tube, the GDC will invariably develop at radial system size, necessitating restrictive

assumptions to avoid unphysical boundary effects. While a global gyrokinetic framework

with B‖ fluctuations is presently under development [35], it is possible to tackle the radially

global case with a fluid model based on the drift-kinetic equations, thus circumventing the

complexities of treating the Larmor-radius-scale physics.

As a starting point, a simple local fluid model is formulated, containing the mechanisms
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for GDC in pair plasmas. Again assuming identical temperature and density profiles of

the species j, ignoring parallel dynamics (and thus A‖ fluctuations), and focusing on the

drift-kinetic limit of k⊥ ≪ 1, the nonlinear normalized gyrokinetic equations read

∂tfj = −
[

ωn +

(

v2‖ + µ− 3

2

)

ωT

]

F0ikyχj +
∑

k′

(

k′
xky − kxk

′
y

)

χj(k
′)fj(k − k′) , (13)

Φ =
π

k2
⊥(2 + λ2

D)

∫

(fp − fe)dv‖dµ , (14)

B‖ =
π

−2/β − 4

∫

µ(fp + fe)dv‖dµ , (15)

with χj = Φ+ µB‖/qj. Using the respective definitions for density and temperature fluctu-

ations,

nj = π

∫

fjdv‖dµ (16)

and

T⊥j = π

∫

(µ− 1)fjdv‖dµ , (17)

one can compose the following four-field model by integrating Eq. (13) over velocity space,

with and without weight µ:

∂tnj = −iky

[

ωnΦ +
1

qj
(ωn + ωT )B‖

]

(18)

+
∑

k′

(

k′
xky − kxk

′
y

)

[

Φ(k′)nj(k − k′) +
1

qj
B‖(k

′) (T⊥j(k − k′) + nj(k − k′))

]

,

∂tT⊥j = −iky

[

ωTΦ +
1

qj
(ωn + 3ωT )B‖

]

(19)

+
∑

k′

(

k′
xky − kxk

′
y

)

[

Φ(k′)T⊥j(k − k′) +
1

qj
B‖(k

′)

(
∫

(µ2 − µ)fj(k − k′)d3v

)]

,

Φ =
np − ne

k2
⊥(2 + λ2

D)
, (20)

B‖ =
T⊥p + T⊥e + np + ne

−2/β − 4
. (21)

Notably, the nonlinearity of the second equation of this set still contains a velocity-space

integral. A more thorough analytical and numerical treatment will be necessary to obtain

proper closure characteristics; simply dropping the term or integrating it under the as-

sumption of a Maxwellian velocity space leads to numerical instability – even at drastically

reduced time steps – and rapid growth without bound at a rate orders of magnitude greater

than the linear growth rate.
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FIG. 7. Φ contours of the global GDC eigenfunction as evaluated by the fluid model; B‖, not

shown here, has a similar structure but is phase-shifted by π along y. The black line in the lower

half of the plot symbolizes the profile of ωn(x), falling off to zero towards the ends of the box and

peaking at a value of one at the center. Colors represent mode amplitude Φ in arbitrary units.

Linearizing these equations, one may straightforwardly recover the correct driftkinetic

linear growth rate in Eq. (12). Had one not retained T⊥j fluctuations and built a model

based on nj alone, the correct instability physics would not have emerged.

A simple global version of the linearized version of these equations is obtained by trans-

forming to real space in x, adding numerical diffusion, and imposing gradient profiles that

fall off at the boundary. Aside from the nonlinearities dropping out, the only change to the

equations is that now, all fields are functions of (x, ky), that ωn = Lz/Ln and ωT = Lz/LT

contain the (arbitrary) x structure of the density and temperature gradient profiles, and

that the kx factors in k⊥ are now replaced by ∂x operators.

The result from evaluating this new set can be seen in Fig. 7, where the model is evaluated

for the same physical parameters as those in Sec. II but for the density gradient profile

indicated by the black line. The eigenfunction in the x-y plane, as indicated by the colors,

stretches to the width of the gradient profile—a reduction in this width has a stabilizing

impact on the growth rate, as is to be expected.

Overall, global simulations lead to the following conclusions. First, the width of the

eigenmode along x is constrained only by the profile shape. Second, linear growth rates

match gyrokinetic flux-tube results for sufficiently large box sizes in the appropriate k⊥ ≪ 1

limit.
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While additional work will be necessary for a better understanding of saturation and

nonlinear dynamics, this framework can be used to benchmark linear global gyrokinetics.

V. APPLICATION TO PHYSICAL SYSTEMS

Having derived a general growth rate expression for the dominant kz = 0 GDC and

having verified the same against direct simulations in Sec. III, one may estimate the impact

of GDC growth on various physical systems. Growth rates are primarily set by values of β

and the Debye length (in units of the gyroradius)—see also Ref. [36]. Note that the following

applications are inherently exploratory, and more sophisticated, extensive modeling will be

necessary for true quantitative predictions.

While its unsheared but curved magnetic fields require additional study, one may inves-

tigate the limits relevant to the APEX experiment, which are large λD and small β. For

estimated APEX parameters least conducive to GDC growth, λD ∼ 1000 and β ∼ 10−10, and

assuming ωn = Lz/Ln = ωT = Lz/LT , the growth rate is given by γ = (8β)1/2/λD = 2.8×10−8

in units of vth/Ln. Focusing on different regions in the dipole field, changes in β ∼ 10−9

and λD ∼ 30 lead to much faster growth at γ = 3.0×10−6. Thus, a characteristic GDC

growth time in APEX may be on the order of 0.01 − 1 s, which could be detectable given

projected plasma lifetimes of up to a few seconds. Note that this presumes that pair in-

jection is sufficiently fast that pressure gradients are fully established before the magnetic

field can react. Extending the present work to an unsheared dipole field will enable more

quantitative predictions of GDC turbulence in this device.

Before venturing into the two subsequent, relativistic applications, it is both appropriate

and necessary to offer a brief discussion of the physics at high velocities approaching the

speed of light c. The scope of this work precludes a fully special-relativistic treatment;

while publications on relativistic gyrokinetics exist [37–39], they cover only the initial stages

of the derivations required to arrive at the equations on which the present work is based.

Regardless, certain considerations allow an assessment of the impact of relativistic energies

on the physics at hand. Cases where thermal velocities in the rest frame of the plasma are

vth . 0.1c can be treated non-relativistically, and results merely have to be modified by a

bulk Lorentz factor Γ. Situations with relativistic vth > 0.1c are more difficult to assess—

however, work on other instabilities (see, e.g., Ref. [40]) suggests that growth rates mostly
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scale no more strongly than linearly in Γ. For the examples studied below, this implies

corrections of order O(1). As the present work merely aims to assess via order-of-magnitude

estimates whether GDC growth may be relevant, no relativistic corrections are included

here, deferring such model improvements to future work.

Reference [16] describes the creation of an electron-positron plasma by means of a target

interaction by a laser-induced electron beam. This experimental scenario similarly lends

itself to the GDC – implicitly providing a possible test of GDC activity in weakly magnetized

plasmas – with the appropriate limits of λD ≪ 1 and β ≫ 1 reducing Eq. (12) to γ =

(ωn+ωT )/
√
2. It is to be noted, however, that for these β values, A‖ can couple to the B‖-Φ

system even at kz = 0, making high-precision quantitative predictions more difficult.

In the rest frame, the electron-positron plasma on its flight path has a temperature of

T0 ∼ 3×107 eV (and thus vth at approximately the speed of light) and gradient length scales

on the order of 100µm, resulting in a GDC growth time of about 10−13 s in the co-moving

frame. Even at a bulk Lorentz factor ofO(10), GDC growth occurs at a rate much faster than

the time-of-flight of about 10−9 s, implying the possibility of measuring the GDC-prompted

growth of fluctuations along the flight path. While quantitative predictions will require

nonlinear simulations, this discrepancy in time scales, along with a sufficiently large initial

perturbation level, suggests that fluctuations – either in the linear or in a nonlinear phase –

would be observable. At the end of the flight path, Ref. [16] shows beam cross-sections of the

electron and positron densities. By performing equivalent measurements at the beginning

of the flight path, the change in fluctuation amplitude can be quantified and related to the

above GDC prediction, taking into account beam divergence [41]. Experimentally, this test

will require the addition of a magnetic field for the flight path—a field strength of 1T would

lead to marginal magnetization (i.e., gyroradii of system size), with larger fields or larger

plasma volumes providing safer routes to GDC validation. Given the non-equilibrium nature

of such experiments, force balance does not become a consideration here.

As a third application, GRBs offer a greater challenge, as different GRB phases – some-

times associated with competing physical models – can correspond to vastly different pa-

rameter regimes. Thermal velocities lie between 0.1 and 1 in units of the speed of light, and

gradient scale lengths may range from 106 to 1018 cm. Using the aforementioned limit of

large β and small λD, GDC growth times span the enormous range of 10−5 to 108 s. Future

investigation focusing on specific GRB phases – such as the collision of expanding electron-
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positron shells – will have to reveal when GDC growth may be occurring for sufficiently long

periods to imprint fluctuation signals. If this should indeed be the case, the tendency of

finite-kz GDC to couple into A‖ may add another layer of complexity to the Weibel-based

synchrotron radiation process.

Also note that newer models of GRB outflows rely on baryonic winds [42], where the

evaluation of GDC growth rates or the subsequent formation of turbulent fluctuations would

require direct numerical evaluation, which are left for future investigation.

VI. CONCLUSIONS

By means of full-f kinetic simulations, it has been demonstrated that GDC instability

and turbulence can be excited when a Maxwellian pair plasma with a pressure inhomogeneity

is placed in a homogeneous magnetic guide field. In the scenarios investigated here, where

ωn/ωT > 0, the GDC mode is the only instability driven by a density or temperature

gradient. Force balance will ultimately be achieved by a combination of flattening of the

pressure gradient due to GDC-turbulence-induced transport and the formation of a magnetic

field gradient. In a fully force-balanced equilibrium, the GDC growth rate becomes zero.

For cases with strong magnetization, gyrokinetic theory and simulations capture all rel-

evant GDC physics. In particular, the linear growth rate for the dominant kz = 0 mode

branch in the absence of force balance can be evaluated as

γ =

√
2ky(ωn + ωT )

k⊥
√

(2 + 1/β)(2 + λ2
D)

for small perpendicular wavenumbers. When resolving finite-kz physics, the fields Φ and B‖

additionally couple to shear-magnetic fluctuations A‖, causing partial stabilization of the

GDC; similarly, the instability only exists when the background magnetic shear is small.

Based on these considerations, a reduced fluid model has been derived which reproduces

gyrokinetic predictions in the appropriate limits and which can be deployed in cases with

radially varying gradient scale lengths.

Applying these findings to terrestrial electron-positron experiments yields potentially dy-

namically relevant growth times. For the APEX device, this requires turbulence to develop

during and soon after plasma injection, as at later times force balance will suppress the

instability drive. In the case of laser-induced plasma studies, such as those reported in
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Refs. [13, 16], force balance is of no concern; here, a mechanism for identifying GDC ac-

tivity is suggested via spatial beam characterization at different positions along the flight

path. When considering naturally occurring electron-positron plasmas in gamma-ray bursts,

growth times cover a wide range, from a millisecond to a multi-year timescale, necessitat-

ing further work to determine the potential impact of the GDC and possible observation

characteristics.

One next step will be to assess how GDC instability imprints turbulence simulations of

the systems investigated above. The resulting predicted fluctuation signatures can then be

validated against observation data.
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