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A closed-form solution to estimate space-dependent parameters in heat
and mass transport

Ricky J. R. van Kampen1,2, Amritam Das3, Siep Weiland3 and Matthijs van Berkel1

Abstract— This paper presents a closed-form solution to
estimate space-dependent transport parameters of a linear one
dimensional diffusion-transport-reaction equation. The infinite
dimensional problem is approximated by a finite dimensional
model by 1) taking a frequency domain approach, 2) linear pa-
rameterization of the unknown parameters, and 3) using a semi-
discretization. Assuming full state knowledge, the commonly
used output error criterion is rewritten as the equation error
criterion such that the problem results in linear least squares.
The optimum is then given by a closed-form solution, avoiding
computational expensive optimization methods. Functioning of
the proposed method is illustrated by means of simulation.

I. INTRODUCTION
Heat and mass transport phenomena are widely studied

in the domain of physics and chemistry. Examples include,
but are not limited to, transport of thermal energy through
nuclear fusion reactors [1], the study of the groundwater-
surface interaction systems [2], and heat or moisture trans-
port in buildings [3]. These phenomena are typically mod-
eled around an operating point by linear parabolic partial
differential equations (PDEs), commonly known as diffusion-
transport-reaction equations [4]. In most physical diffusion-
transport-reaction systems the -exact- parameters are often
unknown. Hence, data-driven estimation of the unknown
physical parameters is necessary to determine a model which
can be used for simulation, analysis, prediction, and control.

Historically, the utilization of measured data to determine
an estimate of -physical- parameters is known as an inverse
problem [5], [6]; in contrast to forward problems where
the model is used to generate data. Specifically, determin-
ing unknown physical parameters in dynamical systems
is often considered as an optimization problem where an
error criterion based on the mismatch between model and
measurements is minimized. To this end, there are typically
two sub-fields in PDE estimation: 1) grey-box identification
where unknown parameters are estimated by minimizing
the difference between a pre-selected model (class), e.g., a

1DIFFER - Dutch Institute for Fundamental Energy Research, Energy
Systems and Control group, De Zaale 20, 5612 AJ Eindhoven, The Nether-
lands {R.J.R.vanKampen,M.vanBerkel}@differ.nl

2Eindhoven University of Technology, Dept. of Mechanical Engineering,
Control Systems Technology group, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

3Eindhoven University of Technology, Dept. of Electrical Engineering,
Control Systems group, P.O. Box 513, 5600 MB Eindhoven, The Nether-
lands {am.das,s.weiland}@tue.nl

Acknowledgment: DIFFER is part of the institutes organisation of NWO.
This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and
training programme 2014-2018 and 2019-2020 under grant agreement No
633053. The views and opinions expressed herein do not necessarily reflect
those of the European Commission.

PDE with unknown diffusion, and measured data [7], [8];
2) parameter learning which resorts to machine learning like
techniques to avoid pre-selection of model-class [9], [10].
In both cases the underlying infinite dimensional models are
generally approximated by finite dimensional models.

The standard method to estimate the unknown parameters
is the output error criterion, i.e., taking the -weighted- sum
of the squared error between the measurements and model
output, primarily solved with iterative optimization methods
[6]–[8], [11], [12]. These suffer from two problems: 1) they
are solved iteratively, which is time consuming and in many
cases the problem is non-convex, i.e., no guarantee for con-
vergence to an optimal solution; 2) as only the output error
is optimized and the unknown parameters are unconstrained,
the parameters can start oscillating even when the output
error is zero due to spatial aliasing of the state, which is
estimated simultaneously. The latter is generally resolved
by regularizing the unknown parameters [13]. However, this
regularisation is often artificial, as there is usually no a
priori information on how the unknown parameters change
as function of space. Hence, here we propose a different
approach by separating the two problems. First, we estimate
the solution of the state over space based on a finite number
of measurements. This allows us to transform the output
error in an equation error criterion. By transforming this
criterion into the frequency domain, we can derive a closed-
form expression for the unknown parameters based on the
estimated states, which is the novelty of this paper. Hence,
we can uniquely and directly -without iteration- determine
the diffusivity, convectivity, reactivity, and the source -as
function of space-, simultaneously. Combining this with
advances in 1) modern frequency domain signal processing
to reduce noise and removing the initial condition [14],
[15]; 2) recent innovations in dealing with experimentally
unknown boundary conditions [16]; 3) a wide variety of
functions to spatially parameterize transport [17]. This results
in a highly versatile and fast method to acquire reliable
estimates of the spatially varying parameters. This is in
strong contrast to direct solutions proposed in the literature
which are based on (piecewise) constant parameters [18] and
often only consider diffusion [19], [20].

II. PROBLEM FORMULATION

The estimation of space-dependent physical parameters in
heat and mass transport is performed based on the following
specifications.

a) Model-class: A class of linear parabolic PDEs is
considered in a one dimensional bounded spatial geometry
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to model the spatio-temporal dynamics of heat and mass
transport. For all x ∈ X := [xb, xe] ⊂ R and t ∈ T :=
[t0,∞) ⊆ R≥0, the class of PDEs is defined as

∂z

∂t
= D(x)

∂2z

∂x2
+ V (x)

∂z

∂x
+K(x)z + P (x)s(t). (1)

Here, the state z : X × T → R is a multi-variable function
(that can describe temperature or mass concentration) and
(1) is understood point-wise in x ∈ X and t ∈ T with z
evaluated as z(x, t). The physical transport parameters are
diffusivity D : X → R>0, convectivity V : X → R, and
reactivity K : X → R. The external input is denoted by
s : T→ R. Furthermore, the spatial distribution of the input
is given by the function P : X→ R.

For well-posedness, the PDE is constrained by two bound-
ary conditions at locations xb and xe. Moreover, the initial
condition z(·, t0) is assumed compatible with the model and
its boundaries.

b) Measured Data: Corresponding to the heat and mass
transport phenomena, location specific values of the state
function z are measured over time and available as data. Let
there be M > 0 sensors that measure z at the locations
given by the set of points XM := {x̌1, x̌2, . . . , x̌M} ⊂ X.
The measured output signals are ym(t) = z(x̌m, t) for all
t ∈ T, with m ∈ {1, . . . ,M}. The input s(t) is assumed to
be known or measured for all t ∈ T.

c) Problem Formulation: In practical applications, the
explicit definitions of space-dependent transport parameters
{D(x), V (x),K(x), P (x)} are often not available. More-
over, the boundary conditions that constrain heat and mass
transport phenomena may depend on the spatially varying
transport parameters, and, hence, remain unknown. In a
similar fashion, in practice, the -exact- initial condition
z(·, t0) may also be unknown. Therefore, this paper takes
the extremum measurements as boundary inputs, however,
other linear boundary conditions are also allowed.

To complete the model in (1), the spatially varying trans-
port parameters {D(x), V (x),K(x), P (x)} have to be esti-
mated based on measured data. This results in the following
estimation problem:

Problem 1. Given the pre-processed data-set (see Remark 2)

D := {y1(t), . . . , yM (t), s(t) | t ∈ [t0,∞)},

estimate the unknown function γ : XE → R4,

γ(x) := col
(
D(x), V (x),K(x), P (x)

)
, (2)

by minimizing a cost function V
(
D, z(x, t; γ)

)
-defined in

Sec IV- over γ such that the solution z(x, t; γ) satisfies the
model (1) with parameters γ in the sense that

∂z

∂t
= row

(
∂2z

∂x2
,
∂z

∂x
, z, s

)
γ, (3)

subject to the boundary conditions and initial condition

z(x̌1, t) = y1(t), z(x̌M , t) = yM (t), z(x, t0) = 0.

Remark 1. Using the extremum measurements as Dirich-
let boundary conditions reduces the estimation domain to

XE := [x̌1, x̌M ] [16]. Moreover, this allows to set-up
the parameter estimation problem without the need of full
knowledge about the actual boundary conditions.

Remark 2. With -advanced- signal processing techniques,
the measured signal can be split into a transients/drift signal
(non-steady-state behavior, e.g. from the initial condition), a
periodic signal (from the excitation) and additive (filtered)
noise [14], [15]. By removing the transient and noise terms
from the original signal, only the periodic signal remains in
the filtered data set D, which is equivalent to z(·, t0) = 0.

III. FINITE DIMENSIONAL FREQUENCY DOMAIN
PROBLEM

Problem 1 is infinite dimensional with no known analytic
solution for z(x, t). Therefore, this section approximates the
infinite dimensional problem by creating a finite dimensional
model following the methodology from [17].

A. Frequency domain approach

Assuming that the discrete Fourier transformed input S(k)
has (excited) frequency bins k ∈ K, Problem 1 can be
studied in the frequency domain without loss of information
(Parseval’s Theorem). Moreover, due to linearity of the
model, Z(x, k) is independent for each excited bin k. The
frequency domain model of (3) is then given by

iωkZ =row

(
∂2Z

∂x2
,
∂Z

∂x
, Z, S

)
γ

Y (k) :=col (Z(x̌2, k), . . . , Z(x̌M−1, k))

(4)

subject to the boundary conditions

Z(x̌1, k) = Y 1(k), Z(x̌M , k) = YM (k),

with discrete Fourier transformed state Z : X×K→ C, input
S : K → C, output Y (k), i2 = −1 and angular frequency
ωk corresponding to the kth-bin.

Remark 3. In excitation experiments only a finite number
of bins are informative, i.e., those bins which are present in
the input S(k) and are above the noise level [14]. Hence,
in practice only a -few- finite number of bins need to be
considered (see [21] for details).

B. Linear parameterization of the unknown functions

For estimation purposes, assume that γ belongs to a func-
tion space Γ that is parameterized by a surjective mapping
Π : Θ→ Γ that is described by a finite sum of basis functions
Br(x) := diag

(
BDr (x), BVr (x), BKr (x), BPr (x)

)
,

γ(x; θ) := [Π(θ)](x) :=

R∑
r=1

Br(x)θr, (5)

with θ = col (θ1, . . . , θR) and θr = col
(
θDr , θ

V
r , θ

K
r , θ

P
r

)
∈

Θ ⊂ R4. With this parameterization, the estimation of γ
amounts to estimating θ ∈ R4R.
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C. Semi-discretization
The infinite dimensional model (4) is approximated by a

central finite difference scheme that converges to the exact
solution for N →∞ [22]. The finite dimensional model is

iωkZ(k) = A(θ)Z(k) +B(θ)U(k)

Y (k) = CZ(k)
(6)

with state vector Z(k) := col (Z(x2, k), . . . , Z(xN−1, k))
at sample xj ∈ Xd ⊂ X, j ∈ {1, . . . , N}, extended input
vector U(k) = col

(
S(k), Y 1(k), YM (k)

)
. Here, A(θ) and

B(θ) contain the boundary conditions, are linear affine in θ,
and defined in [17]. The -observation- matrix C maps states
to output. Altogether, the finite dimensional problem yields

Problem 2. Given the pre-processed data-set

D = {col
(
Y 1(k), . . . , YM (k)

)
, S(k) | k ∈ K}.

Estimate θ by minimizing a cost function V
(
D,Z(k; θ)

)
over

θ such that Z(k; θ) satisfies the model (6).

IV. THE INVERSE PROBLEM
This section describes our methodology to estimate the

unknown weights. In the literature for distributed parameter
systems, different error criteria are proposed to calculate the
parameters. The commonly used criterion is the output error
criterion [6]–[8], [11], [17] and the rarely used equation error
criterion [7] which we will use in the frequency domain to
derive a closed-form solution for the unknown parameters.

A. Output error criterion
The commonly used cost function is the output error

criterion which is the sum of the squared error between
solution z(x, t; γ) for a given γ and measurements y(t), i.e.,

Voe(θ) :=

∫ τ

t0

∫ xe

xb

|y(t)− Cz(x, t; γ(x; θ))|2 dxdt (7)

with observation map C that maps state to output. This
criterion is transformed into the frequency domain such that
the output error criterion for Problem 2 and [17] is given by

Voe(θ) =
∑
k∈K

∥∥∥Yk − C (iωkI −A(θ))
−1
B(θ)Uk

∥∥∥2

, (8)

with shorthand notation Yk = Y (k) and Uk = U(k).
This criterion is nonlinear in θ due to the inverse and
multiplication. As such needs to be iteratively optimized with
often no guarantee for convergence to the global minimum.
As this is generally the case for the output error criterion,
we propose to use the equation error criterion for which a
closed-form solution can be derived.

B. Equation error criterion
In the equation error criterion, the state of the model is

replaced by measurements or estimates of the state [7], such
that for (3), the equation error criterion is defined as

Vee(θ) :=∫ τ

t0

∫ x̌M

x̌1

(
∂y

∂t
− row

(
∂2y

∂x2
,
∂y

∂x
, y, s

)
γ(x; θ)

)2

dxdt.

(9)

This can be simplified in the frequency domain: the integral
over time simplifies to a summation over the excited fre-
quency bins k ∈ K without loss of information (Parseval’s
theorem). Assuming that the states are measured or estimated
by Ẑk, the equation error for Problem 2 simplifies to

Vee(θ) =
∑
k∈K

∥∥∥iωkẐk − (A(θ)Ẑk +B(θ)Uk

)∥∥∥2

. (10)

C. Derivation of the closed-form solution

Consider the equation error criterion in (10) and that A(θ)
and B(θ) are linear affine in θ, then new matrices Ã, B̃ can
be defined as a function of the data Uk and Ẑk such that
A(θ)Ẑk = Â(Ẑk)θ and B(θ)Uk = B̂(Uk)θ (see Appendix).
As a result, (10) can be written as

Vee =
∑
k∈K

∥∥∥iωkẐk − (Â(Ẑk) + B̂(Uk)
)
θ
∥∥∥2

, (11)

with the closed-form solution

θ̂ :=
((
Ā+ B̄

)H (
Ā+ B̄

))−1 (
Ā+ B̄

)H
Ȳ , (12)

where H denotes the Hermitian transpose, Ā, B̄, and Ȳ are
the column concatenation of Â(Ẑk), B̂(Uk), and iωkẐk for
all excited bins k ∈ K, respectively. Hence, the optimal
weighting for θ, and thus γ(x), are determined without using
iterative optimization methods.

Remark 4. The equation error in combination with different
cost functions such as weighted and total linear least squares
also have closed-form solutions [23].

D. State estimation

A unique solution requires knowledge of the state at each
discretization point, i.e. a “space-”continuous measurement.
If N → ∞, the finite dimensional description converges to
the true infinite dimensional solution and an exact solution
can be found.

However, due to limited spatial measurements, the purpose
is to estimate the full state based on these measurements.
This raises the fundamental problem of unknown in-between
sensor behavior. In case of regularized output error [7],
the intermediate relationship in-between measurements is
determined by the regularized functions for the transport
parameters. This technique is reminiscent to the (spatial)
Nyquist–Shannon (NS) sampling theorem. Therefore, a con-
sistent -spatial- signal reconstruction using the NS theorem
is required and currently being worked out. Alternatively,
the states can be inferred by interpolating the measurements
using machine learning techniques -currently being further
worked out- [24], [25]; classic interpolation methods; or
reducing the number of states in the model to match the
measurements. Note that the selected method should be
model free such that the problem remains affine in the
unknown parameters. In the simulation section, we show the
latter two approximation methods in combination with the
closed-form solution.
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V. SIMULATION RESULTS
In this section, two simulation scenarios are presented

demonstrating the merit of the proposed methodology. As the
here proposed method has a closed-form solution that only
requires solving a linear matrix equality, it is expected to be
significantly faster than iterative optimization methods, e.g.,
when compared to [17]. This can be exploited by considering
two scenarios: scenario 1 which estimates {D(x), P (x)}
testing different orders (weights) R of the basis functions
and scenario 2 which tests different interpolation density of
the data when all four functions {D(x), V (x),K(x), P (x)}
are estimated using fixed set of basis functions Br (x) and
their orders R.

A. Data generation

The simulation example is inspired by perturbative ex-
periments in the field of nuclear fusion [26]. The heat
transport, (1), is generally analyzed on the normalized
domain X = [xb, xe] = [0, 1] of the -minor- plasma
radius. Here xb is at the center and xe is at the edge
of the plasma. The corresponding boundary conditions in
the simulation are ∂Z

∂x (xb, ·) = 0 due to (axi)symmetry
and Dirichlet boundary condition Z(xe, ·) = 0 due to a
significant temperature difference between core plasma ~170
million ◦C and edge plasma ~1 million ◦C. Typical functions
used in nuclear fusion are Dsim(x) = 5x3 − 0.005x + 5,
V sim(x) = 15x2 − 0.005, Ksim(x) = −3x, and P sim(x) =

0.2 + 7√
π

exp
(
−(x−0.35)2

(0.1)2

)
+ 5.6√

π
exp

(
−(x−0.6)2

(0.1)2

)
. For the

perturbation of the plasma temperature a microwave source
is used, where the excitation signal S(ω) is a block-wave
of ω0 = 50π with a 70% duty cycle. Here, only the first
five harmonics ωk = kω0, k = 1, . . . , 5 have a significant
contribution and are used for the estimation. The temperature
data is generated by a simulation with a central finite
difference grid of N = 801 sample points.

B. Estimation of {D(x), P (x)} with unknown order R

In scenario 1, the goal is to estimate {D(x), P (x)}
without knowledge on the correct orders (RD, RP ) in (5),
which practically means we do not know the shape of
{D(x), P (x)}. For ease of explanation, we set V (x) =
K(x) = 0 for this example. As the number of sensors plays
an important role, we choose here M = 22 sensors that are
located at x̌m = 0.05+0.04125(m−1), with m = 1, . . . ,M .
This corresponds to the electron cyclotron emission (ECE)
diagnostic that measures in a medium sized fusion reactor.

In principle, any basis function can be used and several can
be tested simultaneously. Here, we use -arbitrarily chosen-
Chebyshev polynomials for both parameters [22].

We vary the orders RD, RP ∈ {1, . . . , 30} and use a
discretization grid that equals the measurement grid Xd =
XM , thus C = I . Naturally, the cost (10) decreases for
increasing RD and RP as shown in Fig. 1. For three different
combinations, i.e., (RD, RP ) = (6, 9), (9, 16), and (22, 24)
the resulting estimates are shown in Fig. 2.

Fig. 2 shows that when the order (RD, RP ) is too low,
e.g., for (6, 9), significant errors occur in the estimates. If
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Fig. 1: The fitting error map Vee(θ) for scenario 1 by
approximating the parameters {D(x), P (x)} with different
number of basis-functions, RD, RP , respectively. Here, the
• annotates the locations (RD, RP ) = (4, 5), (9, 16), and
(22, 24) shown in Fig. 2.
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Fig. 2: The estimated parameters {D(x), P (x)} over XE for
scenario 1 with the number of basis-function (RD, RP ) =
(6, 9), (9, 16) and (22, 24) and their relative error ε(x).

the order is sufficiently high, e.g., for the pairs (9, 16) and
(22, 24), the estimates have the correct value at the sensor
locations as is imposed by the equation error. Consequently,
only the values of γ(x) at the sensor locations should be
considered as a correct result given that the combination of
basis functions and order give sufficient freedom.
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Remark 5. Although the intermediate points between sensor
locations should not be considered in this methodology, γ(x)
is defined at these points and plotted for completeness. As
the comparison of the orders (9, 16) and (22, 24) shows,
the finite dimensional approximation does not pose a unique
solution for γ(x) at the intermediate points. This can be
resolved by increasing the discretization grid, e.g. by inter-
polating the data, which is further investigated in Sec. V-C.

C. Estimation using spatial interpolations of the temperature

In the simulation for scenario 2, we investigate the effect
of interpolations on the estimation. In scenario 2 all the
functions are non-zero and according to Sec. V-A. Here, we
use a sensor grid which corresponds to that of a larger fusion
reactor, i.e., the temperature is measured by M = 60 sensors
located at x̌m = 0.1625m, with m = 1, . . . ,M .

In this scenario, the order of the basis functions is
fixed and only the weights are estimated. Polynomial ba-
sis functions are used for {D (x) , V (x) ,K (x)} and B-
spline functions for P (x) to approximate Gaussians. The
choice of order for the monomial basis functions to estimate
{D (x) , U (x) ,K (x)} is higher than the actual order and is
chosen to be RD = 8, RV = 6 and RK = 3 such that it is
possible to find an exact description. The basis function for
P (x), BBr (x) is designed using the De Boor’s algorithm [27]
with 58 equally distributed control points, thus RP = 58.

Three estimations are presented where, 1) the discretiza-
tion grid equals the measurement grid N1 = M , 2) the
measurement data is interpolated over space to generate
artificial spatial measurements, i.e., N2 = 2(M − 1) + 1,
and 3) more interpolation points, i.e. N3 = 10(M − 1) + 1.
The data is interpolated using cubic splines.

The estimation results are shown in Fig. 3. Overall,
the estimated parameters {D(x), P (x)} closely match with
the simulated parameters, while {V (x),K(x)} are es-
timated with a significantly lower accuracy. Estimating
{V (x),K(x)} requires a higher accuracy of the discretiza-
tion grid. Therefore, interpolating the data increases the
accuracy (see results for N2), however, over-interpolation can
affect the estimation accuracy negatively (see results for N3).

VI. CONCLUSIONS & DISCUSSION

This paper presents a novel method to efficiently estimate
the unknown space-dependent transport parameters, based on
a closed-form solution of the equation error criterion. The
closed-form solution is formulated as a linear matrix equality
such that high density grids can be solved computationally
efficient. As a result, if the states z(·, t) are known, the
parameters are estimated uniquely with the desired accuracy
by taking a sufficiently dense discretization grid.

In practice, measurements are often only provided at a
limited set of spatial locations. This is generally resolved
by (i) applying regularization or restrictions on the unknown
parameters or (ii) as we have done here by “interpolating”
the measurements to increase the grid density. There are
three reasons why we prefer approach (ii): 1) As we are
estimating the unknown parameters, prior information on the

-smoothness of- parameters is generally unavailable, whereas
smoothness on the states is required due to the underlying
parabolic PDE; 2) the states as function of space can easily
be -visually- inspected for correctness and validated by
taking additional spatial measurements; and 3) a closed-
form solution can be used which significantly speeds up the
process and avoids convergence to a local minimum.

APPENDIX

The matrices used in (11) are given by

Â
(
Z(k)

)
:=
[
LD1 , L

V
1 , L

K
1 ,0, . . . ,

LDR , L
V
R , L

K
R ,0

](
I4R ⊗ Z(k)

)
,

B̂
(
U(k)

)
:=
[
0, gD1 , h

D
1 ,0, g

V
1 , h

V
1 ,0,0,0, f

P
1 ,0,0, . . . ,

0, gDR , h
D
R ,0, g

V
R , h

V
R ,0,0,0, f

P
R ,0,0

](
I4R ⊗ U(k)

)
,

where ⊗ denotes the Kronecker product and 0 the zero
vector/matrix of the appropriate size. The central finite
difference matrices L with grid sample ∆x > 0 are

LDr :=
1

(∆x)2
B̃Dr


−2 1
1 −2 1

. . . . . . . . .
1 −2

 ,

LVr :=
1

2∆x
B̃Vr


0 1
−1 0 1

. . . . . . . . .
−1 0

 , LKr := B̃Kr .

Here, B̃Dr , B̃Vr and B̃Kr are diagonal matrices of dimension
(N − 2) × (N − 2) with the diagonal entries BDr (xj),
BVr (xj), BKr (xj) evaluated at each grid point xj ,
j ∈ {2, . . . , N − 1}. The vectors for the input and boundary
conditions are gDr := col

(
BD

r (x2)
(∆x)2 , 0, . . . , 0

)
, gUr :=

col
(
−B

V
r (x2)
2∆x

, 0, . . . , 0
)

, hDr := col
(

0, . . . , 0,
BD

r (xN−1)
(∆x)2

)
,

hUr := col
(

0, . . . , 0,
BV

r (xN−1)
2∆x

)
, and fPr :=

col
(
BPr (x2), . . . , BPr (xN−1)

)
.
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Fig. 3: Estimated parameters {D(x), V (x),K(x), P (x)} over XE for scenario 2 and the relative error ε(x) between the
simulated parameter and the estimated parameter. The subscript 1, 2, 3 denote if the estimates are based on the measurements
N1 = M , or the interpolated measurements N2 = 2(M − 1) + 1 or N3 = 10(M − 1) + 1, respectively.
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