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The Warm Plasma Dispersion Relation, for waves in the electron cyclotron resonance range of frequencies, can be cast

into the form of a bi-quadratic equation for N⊥, where the coefficients are a function of N2
⊥ and an iterative procedure

is required to obtain a solution. However, this iterative procedure is not well understood and fails to converge towards

a solution at the 2nd harmonic resonance layer, in particular at higher densities where the wave can couple to an

electron Bernstein wave. This paper focuses on a solution to the poor convergence of the iterative method, enabling

determination of the topology of the dispersion relation around the 2nd harmonic using a fully relativistic code for

oblique waves. A feed-forward controller is proposed with the ability to adjust the rotation of a step of N2
⊥ within the

complex plane, while also limiting the step-size. It is shown that implementation of the controller stabilizes unstable

solutions, while improving overall robustness of the iteration. This allows the evaluation of the coupling between

the fast extraordinary mode and electron Bernstein waves at the 2nd harmonic electron cyclotron resonance layer, for

non-perpendicularly propagating waves.

I. INTRODUCTION

Many codes exist to evaluate the dispersion of plasma elec-

tron cyclotron (EC) waves, all making use of their unique

set of physics-based models and underlying assumptions.1,2

It has been shown that the cold plasma approximation is suf-

ficient when describing wave propagation for ITER relevant

scenarios, in which O-mode wave injection at the fundamen-

tal harmonic (O1) EC resonance is used.2 Calculation of the

wave power deposition, however, always requires the solu-

tion of the warm plasma dispersion relation. There are many

devices that heat at the 2nd harmonic X-mode (X2) because

of the inaccessibility of the O1 resonance due to the plasma

being critically dense. Also large future reactors might ben-

efit from X-mode wave injection at large angles near the X2

resonance for the purpose of electron cyclotron current drive,

provided gyrotrons capable of generating such high frequen-

cies are available in the future. Evaluation of prolonged wave

propagation near a resonant structure requires warm plasma

effects to be taken into account, by means of assuming a parti-

cle velocity distribution leading to a warm plasma dispersion

relation (WDPR). Between the 2nd harmonic and the right-

handed cutoff warm plasma effects give rise to the presence of

Electron Bernstein Wave modes (EBWs) coupling to the fast

X-mode (FX), creating complex structures within the solution

space. Mapping the topology of the FX- and EBW-dispersion

surfaces is therefore required to increase the understanding of

these structures allowing for the validation and benchmarking

between different codes.2,3 Furthermore a completion of the

mapping of the WPDR would provide a theoretical base, that

allows for its substitution with a neural network that resem-

bles the behavior of the WPDR, while decreasing calculation

a)Electronic mail: E.Westerhof@differ.nl

time. Such a reduction in calculation time would make warm-

plasma ray-tracing suitable for real-time applications.4

The work done for (close to) perpendicular propagating

waves revealed most of the features of the dispersion relation’s

topology. For example, the work of Imre and Weitzner5,6 was

the first to report on the crossing of the X-mode and the EBW-

mode branches at the 2nd harmonic, while also including a nu-

merical evaluation of transmission reflection and absorption in

the corresponding resonant region. It was later shown that the

topology of the dispersion relation in terms of the complex

valued perpendicular refractive index (N⊥) could be evaluated

using concepts from complex function analysis, where it be-

came evident that the FX and the EBW solutions branches

both formed a Riemann-like surface.7 Those surfaces could

recombine to form an avoided crossing thus coupling the FX-

mode and the EBW-mode at the second harmonic, which we

will refer to as the FX2-EBW connection. When coupled the

low field side (lfs) FX-mode is attached to the high field side

EBW (the lfs-FX-EBW branch) and the high field side (hfs)

FX-branch is coupled to the lfs-EBW branch (the hfs-FX-

EBW branch). Although this analysis provided a good under-

standing for purely perpendicular propagating waves, further

assessment of the FX2-EBW connection still needs to be done

for waves under an oblique angle with respect to the toroidal

magnetic field. Since EBWs are longitudinal waves that are

generated by electrons coherently gyrating around their guid-

ing centre it is expected that for some oblique wave angle the

coupling between the FX-mode and EBWs is lost.

The structure of this paper is as follows. In section 2 a brief

description of EC wave dispersion is given, that focuses on

the way roots to the dispersion relation can be found. As will

turn out, the presented root-finding method does not always

converge to a solution and hence requires an improvement in

the form of a feed-forward controller. This improvement is

explained in Section 3. Section 4 addresses the topology of

the WPDR in terms of a normalized magnetic field and nor-
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WPDR Topology at 2nd harmonic resonance 2

malized density, similar to,7 focusing on the relation between

the FX2-EBW coupling with plasma density, temperature and

parallel refractive index. Section 5 elaborates on the optical

thickness of the plasma in the X2 resonant domain, to discuss

the relevance of a proper working root-finding method for ac-

curate power deposition calculations in ray-tracing codes. To

illustrate the relevance of the improved solution method, a ta-

ble is provided here in which for a wave coming from the low

field side the optical depth is specified at which different so-

lution methods are found to break down. Finally, a summary

and conclusions are provided.

II. ELECTRON CYCLOTRON WAVE DISPERSION

A. Fully relativistic case

Mapping of the WDPR is done by using the warm plasma

routines from the 3D TORAY-FOM ray trace code.8,9 In

TORAY-FOM beam propagation is evaluated using a set of

multiple rays, where each individual ray is evaluated accord-

ing to geometrical optics, using the perpendicular refractive

index N⊥ determined by evaluating the WPDR. For evaluation

of the dispersion of electromagnetic waves in the EC range we

can ignore the negligibly small ion contributions to arrive at

the general dispersion relation:

D ≡ |ε +N2(k̂k̂− I)|= 0. (1)

The cold approximation of the dielectric tensor ε - where tem-

perature effects to the dispersion of the EC wave are neglected

- allows one to find two well known modes that are distin-

guished by the orientation of the electric field component of

the injected wave (
−→
E1) w.r.t. the magnetic field direction inside

the plasma (
−→
B0). The ordinary mode (O-mode) where E1 ‖ B0

and the extraordinary mode (X-mode) where E1 ⊥ B0. With

the dielectric tensor ε chosen to take warm plasma effects into

account, an infinite number of solutions exist in terms of N⊥
for wave propagation. Apart from the ordinary an extraor-

dinary modes, the remainder of the solutions are known as

Electron Bernstein Waves and have initially been discovered

in 1958 by I.B. Bernstein.10

To find both of X-mode and EBW solutions we use the fully

relativistic dielectric tensor as published by Farina, in which

the dielectric tensor is constructed in a manner that allows for

evaluation at any order for the Bessel function expansion of

the finite Larmor radius effects.11 In the present work we have

set the finite Larmor radius expansion to 5 which is more than

enough to account for warm plasma effects around the 2nd

harmonic resonance, for temperatures up to a few 10’s of keV

as relevant for tokamak fusion reactors.

The dispersion relation can be regarded as a function of the

from D(N2
⊥,N2

‖ ,Te,X ,Y ), where X = (
ωpe

ω )2 and Y = ωce
ω repre-

sent the normalized plasma (electron) density and normalized

magnetic field strength respectively. The X,Y-plane forms the

Clemmow-Mullaly-Allis (CMA) parameter space which we

will refer to as the CMA-plane throughout this paper. The re-

mainder of parameters and further definitions are as follows:

electron temperature Te, refractive index N ≡ kc/ω , perpen-

dicular refractive index N⊥, parallel refractive index N‖, wave

vector k, unity wave vector k̂, angular wave frequency ω , elec-

tron plasma frequency ωpe ≡
√

neq2
e/meε0, electron cyclotron

frequency ωce = |qe|B/me, magnetic field B, electron density

ne, electron mass me, electron charge qe, and permittivity of

vacuum ε0.

B. Finding roots to the dispersion relation

The dispersion relation as presented in Equation 1 can be

rewritten in the following form to find roots of N2
⊥ as a func-

tion of (N2
‖ ,Te,X ,Y ):

A(N2
⊥)N

4
⊥+B(N2

⊥)N
2
⊥+C(N2

⊥) = 0. (2)

Detailed expressions for the coefficients are given in the ap-

pendix and are chosen such that around the fundamental har-

monic and taking into account only the lowest significant or-

der in the Larmor radius expansion of the Bessel functions,

the coefficients are fully independent of N2
⊥ resulting in a true

biquadratic equation for N2
⊥.9,12 The inclusion of higher har-

monic resonances and the multi order expansion of the Bessel

function results in the coefficients A, B and C themselves be-

ing functions of N2
⊥. This requires an iterative procedure for

solving the dispersion relation. An initial N2
⊥,0 is assumed to

calculate the complex coefficients A, B, and C to arrive at two

roots for N2
⊥,1 of the resulting bi-quadratic equation.11,13 One

of which corresponds to O-mode propagation and the other

to X-mode propagation and EBWs combined. To properly

distinguish solutions between these modes the discriminant

(B2
i − 4AiCi) is checked whether it alters between quadrant 2

and 3 within the complex plane as an indication that the sign

describing the desired mode has to be changed in the numer-

ical evaluation of the square root function, in order to remain

on the proper Riemann surface. The newly found value is

then used for the recalculation of the coefficients in an itera-

tive manner:

N2
⊥,i+1 =

−Bi ±
√

B2
i −4AiCi

2Ai

, (3)

where the implicit coefficients are defined as:

Zi ≡ Z(N2
⊥,i) Z = A,B,C. (4)

The solution for N2
⊥ is said to be converged to a solution when:

|N2
⊥,i+1 −N2

⊥,i|< tolerance. (5)

This method of iteratively solving the bi-quadratic form of the

dispersion function is currently used not only used in the 3D

multi-ray TORAY-FOM code, but the method also resides in

the quasi-optical beam tracing code GRAY14 and the real-time

capable TORBEAM code4,15. In the case of an undamped

wave the iterative method quickly converges towards a solu-

tion. This convergence towards a solution however, does not
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WPDR Topology at 2nd harmonic resonance 3

rest on a theoretical basis and should not be considered trivial.

In fact, near the second harmonic resonance, where the imag-

inary part of the square of the perpendicular refractive index

is larger than zero, Im{N2
⊥}> 0, conditions for finding a solu-

tion become more stringent as the FX- and EBW-solutions ap-

proach each other. It is in this region that the iterative method

fails to converge. In order to allow for a complete mapping of

the WPDR and accurate warm plasma ray tracing around the

2nd harmonic electron cyclotron resonance, modifications to

the iterative method are required that ensure convergence to-

wards the solution-branch as followed along a wave trajectory.

Alternatively, one could use a different root finding algorithm

such as the Muller method.16,17 As we will show in the next

section, the origin of the failure to converge to the desired so-

lution can be relatively straightforwardly corrected in a robust

manner. This makes us prefer the improved iterative method.

III. IMPROVING THE ITERATIVE METHOD

The inability of the iterative method to converge towards a

solution is most profound around the second harmonic elec-

tron cyclotron resonance structure, where the imaginary part

of N2
⊥ becomes significant compared to its real part. Espe-

cially at plasma densities low enough for low-field side (lfs)

X-mode injection to reach the 2nd harmonic electron reso-

nance but high enough for the FX2-EBW coupling to exist,

convergence to the desired solution does not take place. In fact

an overshoot of the solution creates oscillating values of N2
⊥

during iteration escaping the local domain of the desired so-

lution and ending up at a different, undesired solution-branch

to the bi-quadratic equation. This Section evaluates the itera-

tive method as a dynamical system addressing the stability of

solutions in Section III A, where subsequently a controller is

proposed in Section III B that influences the iterative method

by means of altering the step-size by means of a parameter λ
and the step-direction within the complex plane of N2

⊥ through

a rotation angle ξ . The proper setting of these parameters for

a robust convergence of the iterative method is further detailed

in Section III C and Section III D, respectively.

A. stability

The trajectory traced out by the subsequent steps in the iter-

ative solution of the bi-quadratic equation can be regarded as

a trajectory of a dynamical system, thus allowing to apply the

mathematical concepts of stability of dynamical systems. An

approach is to evaluate solutions and their surrounding topol-

ogy by means of their gradient (N2
⊥,i −N2

⊥,i−1) in the complex

plane. A solution can then be classified as stable (unstable)

when the gradient converges (diverges) around the solution.

To understand the lack of convergence for the lfs FX-mode

branch, three distinct cases are plotted in figure 1 for a con-

stant normalized density of X = 0.4 and pure perpendicular

wave propagation N‖ = 0 at an electron temperature Te of 3

keV. Solutions to the dispersion relation are found by imaging

separately the zero crossings of the real and imaginary parts of

D in the complex N2
⊥ plane. Since a proper solution to the dis-

persion relation requires both real and imaginary parts of D to

be equal to zero, solutions are identified by the intersection of

the contours of Re{D} = 0 (black solid line) and Im{D} = 0

(black dotted line). The gradients of the iterative method are

visualized using a quiver plot, where the arrows indicate the

speed and direction of convergence.

The sub-figures in 1, A, B and C correspond to a normalized

magnetic field Y of 0.5, 0.512 and 0.54 respectively and are

chosen such that in A the imaginary part of N⊥ equals zero

and that in B the imaginary and real part of N2
⊥ are almost

equal to each other. In C Re{N2
⊥} is largely negative while

Im{N2
⊥} is small, thus - after taking the root - leaves us with

a solution to the dispersion relation in terms of N⊥ that has an

imaginary part that is larger than its real part.

It becomes evident that for the undamped wave at figure 1.A

we have our solution in the centre of a converging vector field,

hence our solution is stable and initial values for N2
⊥ within the

local vicinity of this solution converge efficiently towards the

solution. In the case of figure 1.B the solution is marginally

stable: close-by evaluations of the solutions gyrate around the

solution without converging towards the centre. At figure 1.C

the iterative method strongly diverges away from the solution.

It should be noted that for the observed cases the gradient field

near the solution is continuous, even for the negative domains

of both the real and imaginary part of N2
⊥. This enables the

stabilisation of solutions for every initial guess for N2
⊥ that

lies in its local domain w.r.t. surrounding solutions.

B. Adding a Controller

In an effort to improve the convergence towards a lo-

cal solution a controller was constructed that alters the step

(∆N2
⊥,i+1(UC) = N2

⊥,c −N2
⊥,i) taken in every iteration:

N2
⊥,c =

−Bi ±
√

B2
i −4AiCi

2Ai

. (6)

The length of the step is altered by a parameter λ and its di-

rection is rotated by angle ξ such that a converging vector

field around the solution is obtained:

−→
N 2

⊥,i+1 =
−→
N 2

⊥,i +λ
−→
R (ξ )(

−→
N 2

⊥,c −
−→
N 2

⊥,i). (7)

Using a vector definition for the complex valued N2
⊥,i:

−→
N 2

⊥,i ≡





Re{N2
⊥i}

Im{N2
⊥i}



 , (8)

and a 2D rotation matrix:

−→
R ≡





cos(ξ ) −sin(ξ )

sin(ξ ) cos(ξ )



 . (9)

The definition for
−→
N 2

⊥,i in combination with the 2D rotation

matrix
−→
R leads to a rotation with angle ξ in the complex
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WPDR Topology at 2nd harmonic resonance 4

0.1 0.2 0.3

0.0

0.1

Im
{N

2
}

A

0.1 0.0 0.1
Re{N2 }

0.2

0.3

B

3.9 3.8 3.7
0.0

0.1

C

FIG. 1. Solutions along the lfs FX-branch (X = 0.4, N‖ = 0,Te = 3 keV), being coupled to the EBW-branch going to a cutoff

showing: A) good convergence for small Im{N⊥} (Y = 0.5), B) marginal stability of the solution for Im{N⊥} ≈ Re{N⊥} (Y =

0.512) and C) instability of the solution for Im{N⊥}>> Re{N⊥} (Y = 0.540). Solutions of the dispersion relation are located

at the crossing of the Re{D}= 0 (black solid) Im{D}= 0 (black dotted) contour lines. The blue arrows indicate the direction

and step size of the iteration, starting from each of the grey dots. Associated dataset available at

http://dx.doi.org/10.5281/zenodo.4095258.20

plane. Note that (λ ,ξ ) = (1,0) yields
−→
N 2

⊥,i+1 =
−→
N 2

⊥,c and

thus, does not alter the iteration step with respect to the origi-

nal iteration scheme (equation 3).

To obtain a stable and robust iteration, a feedback loop

is constructed that adjusts the parameters λ and ξ based on

the corresponding local iterative topology of complex N2
⊥.

Since λ dictates the step-size this generally influences only

the speed of convergence, provided there is no overshoot lead-

ing to unstable behaviour and it will be fixed at a small but

finite number. As mentioned, the rotation angle ξ is intended

to correct the direction of the iteration into the direction in

which the solution is expected. Although the direction from

the initial location towards the solution cannot be known on

forehand, the topology of the iterative vector field is smoothly

varying along a wave branch such that a reasonable estimate

of the required rotation angle is obtained from the angle that

would have stabilized the nearby, previous solution. Figure 2

illustrates this procedure when using the iterative method to

converge to solution N2
⊥,a+1, initiating from the solution N2

⊥,a
as obtained in the previous position along the wave branch or

ray-trajectory. In the iteration the uncontrolled step directions

∆N2
⊥,a+1(UC) are rotated over an angle ξa which is obtained

from the angle between the initial uncontrolled step direction

from the previous iteration ∆N2
⊥,a(UC) and the line between

the starting point of that previous iteration N2
⊥,a−1 and its fi-

nal value N2
⊥,a. This ensures that the iteration now converges

towards the solution. To clarify, three steps are shown in the

figure as i = 1,2 and 3 where i = 1 is the initial guess equal to

the previous solution. Stabilisation of the iteration using the

obtained ξa results in the iterative method to convergence to

the next solution N2
⊥,a+1. After arriving at the new solution a

new value of ξ is obtained to calculate N2
⊥,a+2 and so on. ξ

is changed after every solution and is kept constant while the

iteration converges from one solution to the next.

C. Decreasing step-size

Before evaluating the full controller the effect of merely

adjusting the step-size controlled by λ to smaller sizes is an-

alyzed. Such a reduction in λ reduces overshoot and extends

the domain in Y in which the iterative method still converges

towards the lfs-FX-EBW solution branch. To illustrate this,

a point is taken within the X2 resonance relevant parameter

space where FX-EBW branch coupling occurs, that lies close

to the point where the FX- and EBW-mode connect (X = 0.3
at 3 keV for N‖ = 0). This ensures the lfs-FX and hfs-FX so-

lution branches lie close together, creating challenging condi-

tions in the topology of the step-directions within the complex

plane of N2
⊥.

Results of the iterative method in this point of parameter

space are shown in Figure 3 for different step-sizes λ show-

ing the corresponding points (Y ,N⊥) where the method fails

to converge. It becomes evident that at the original step-size

(λ = 1) convergence breaks far before the solution becomes

unstable because evidently as the locations λ = 0.5,0.1 and

0.01 suggests, a smaller step-size would allow the conver-

gence of the solution to continue much further into the 2nd
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WPDR Topology at 2nd harmonic resonance 5

𝑁⊥,a+12

𝑁⊥,a2

𝑁⊥,a−12

𝜉𝑎+1 

𝜉𝑎 

𝜉𝑎+1 

𝐼𝑚{𝑁 ⊥2
}

𝑅𝑒{𝑁⊥2}

(𝑈𝐶) 𝛥𝑁⊥2,a+1 𝜉𝑎   
 

 

𝑖 = 1 

𝑖 = 2 

𝑖 = 3 

FIG. 2. Illustration of the controlled iterative method to

obtain solutions of the dispersion relation along a wave

branch. Solutions to the dispersion relation along a ray

trajectory (or a scan in Y) are marked by black dots and with

subscript a(±1). The red lines between the dots represent the

trajectory of the iteration steps between those solutions using

the controlled iterative method. The solution N2
⊥,a+1 at the

a+1 point along the branch is obtained by starting from the

solution at the previous point N2
⊥,a and rotating the

uncontrolled step ∆N2
⊥,a+1(UC) (in blue) by ξa which is

obtained from the angle between the initial uncontrolled step

direction from the previous iteration (∆N2
⊥,a(UC) in blue)

and the line between the starting point of that previous

iteration N2
⊥,a−1 and its final value N2

⊥,a.

harmonic resonance layer along the lfs FX-EBW branch. Fi-

nally due to the solution becoming (marginally) unstable - as

previously shown in Figure 1.B - a decrease in step-size no

longer suffices to extend the traceable part of the branch (blue

dashed line). To continue branch tracing from this point on-

ward a controller adjusting the rotation angle of the iteration

step is essential.

0.50 0.51
Normalized magnetic field ( ce/ )

0

1

2

N

= 0.01
= 0.1

= 0.5
= 1

FIG. 3. Lfs FX-EBW branch in blue (Re: , Im: )

obtained using different step-sizes λ , where smaller step

sizes allow for a prolonged tracing along the branch up till

the solution becomes unstable somewhere around Y = 0.51,

hence a part of the branch cannot be found (blue dotted line)

without controller. Hfs FX-EBW branch in red (Re: ,

Im: ). (X = 0.3, Te = 3 keV, N‖ = 0 and dY = 2 10−5).

Associated dataset available at

http://dx.doi.org/10.5281/zenodo.4095258.20

D. Rotation of the Step-direction

The performance of the controller is evaluated in two ways.

First, the topology of the iteration dynamics in the complex

N2
⊥ plane is shown, for multiple angles of ξ , which shows that

initial values within the local region around a solution con-

verge for a specific angle ξ . This allows us to confirm the

ability that this solution can be made stable using the corre-

sponding angle ξ . Secondly we investigate the performance

of the methodology presented in figure 2 by tracing solution

branches around the X2 electron resonance from both the low-

and high-field side.

To evaluate the effect of ξ on a solution and its potential

to stabilize it, the exemplary set of parameters that has been

used earlier, to address the effect of λ (Figure 3) is used. On

this branch around Y = 0.51 - where the original method fails

to converge - the dynamics of the iterative method are exam-

ined. In Figure 4 this examination comprises of comparing

the topology of the step-directions within the complex plane

of N2
⊥ (blue arrows) with the complex residue, which must

be zero for a valid solution. Thus the zero-crossings of the

real (full) and the imaginary (dotted) part of the residue are

shown. An actual solution is represented as the crossing of

these lines. In Figure 4A no stabilisation is enabled (ξ = 0).

The lfs FX-EBW solution (on the left of the complex plane) is

unstable and iterations from points close by tend to converge

away from it, possibly ending up at the hfs FX-EBW branch

solution. The lfs-FX solution can however be stabilized by the

introduction of a rotation of the step-direction, where an ξ of

-98◦ decreases gyration around the lfs-FX solution the most

(Figure 4B), while at the same time rendering the hfs-FX so-

lution unstable. Furthermore convergence towards the hfs-FX

can also be improved by stabilizing the gyration around this

solution using a clockwise rotation ξ = 48◦ (Figure 4C).
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FIG. 4. The lfs FX-EBW solution (located on the bottom left of each individual figure) and hfs FX-EBW solution (located on

the top right of each individual figure) as determined from the crossing of the zero-crossing lines the real (full black curves) and

imaginary (dashed black curves) pars of the bi-quadratic equation. Arrows in blue indicate the direction of a step of the iterative

method starting from each gray dot, for corresponding stabilisation angles: A) (ξ = 0◦ no stabilisation) where the lfs-FX

solution is unstable, the hfs-FX solution is stable and solutions from the vicinity of both solutions seem to end up at the hfs-FX

solution. B) (ξ =−98◦) stabilizes the lfs-FX solution while rendering the hfs-FX solution unstable. C) (ξ = 48◦) improves the

stability of the hfs-FX solution w.r.t. ξ = 0◦. The two solutions used in this figure lie close together because X = 0.3 and

Y = 0.51 are close to the point where the FX-mode and EBW-mode coincide. Associated dataset available at

http://dx.doi.org/10.5281/zenodo.4095258.20

Whereas Figure 4 indicates that a rotation of steps in the

complex plane is able to stabilize a solution, branch tracing

must be performed to confirm whether the feedback setup as

in Figure 2 stabilizes the entirety of a solution branch during

ray tracing. For clarification, where branch tracing refers to

the tracing of a solution branch of the dispersion relation while

varying one or more input parameters (PD) {X ,Y,Te,N‖} ∈ PD,

the term ray tracing refers to the following of a ray trough 6D

(position, wave vector) {
−→
s ,
−→
k } ∈ PR space where elements in

PD are functions of PR. So in order to evaluate the feasibility of

the method used to stabilize the iterative method, branch trac-

ing should suffice. Numerical performance with respect to ray

tracing step size depends also on the relations between PD and

PR. Branch tracing is performed over the normalized magnetic

field Y , keeping X ,Te and N‖ constant. The most interesting

branch for N⊥ as a function of Y is the EBW-connected lfs-

FX branch as it has been shown that unstable solutions exist

(Figure 1) and that those can be stabilized (figure 4). The hfs

FX-EBW branch, although not unstable, shows more robust

convergence.

Figure 5A shows both of these branches at X = 0.3 and

T = 3 keV for perpendicular propagation obtained from the

iterative method. Aside from the continuous behaviour of the

branches an evaluation of the residue indicates that the con-

troller - with stabilisation angle ξ as shown in Figure 5B -

successfully stabilizes the solution. This is achieved in combi-

nation with a step-sizes of λ = 0.1 and dY = 2 10−4. Note how

the point in Y where the solution becomes unstable (|ξ |> π/2

in gray) matches with the location of the loss of convergence

for small step-sizes λ that is shown in Figure 3. Further in-

spection of the controller’s state variable ξ outside the 2nd

harmonic resonance layer indicates that a controller is only

necessary for EBW waves. An Electron Bernstein wave that

goes to cutoff requires a stabilisation angle of 180◦ whereas

EBWs propagating at high N⊥ in between EC resonances can

become marginally stable. Those regions are however not in-

teresting from a practical point of view as these waves are

strongly damped and cannot be accessed from outside the

plasma. Lastly it should be stated that ordinary mode prop-

agation does not benefit from a controller as described in this

paper, as the iterative method already shows fast and robust

convergence towards the O-mode solution.

IV. EXTRAORDINARY MODE TOPOLOGY AT THE 2nd

HARMONIC RESONANCE LAYER

This section addresses the coupling of the FX-mode to the

EBW-mode, which can be described using complex function

analysis where both the FX-mode as well as the EBW-mode

form a Riemann like surface within the CMA-plane. First the

degenerate case of perpendicular wave propagation (N‖ = 0)
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FIG. 5. A: Solution branches as obtained by the controlled

iterative method. B: Corresponding stabilisation angle ξ ,

where the gray area indicates instability of the solution

(|ξ + k2π|> π/2,k ∈ Z). The lfs-branch (blue) goes to EBW

cutoff after passing the second harmonic and the hfs-branch

(red) connects to the EBW-mode. Associated dataset

available at http://dx.doi.org/10.5281/zenodo.4095258.20

is regarded in Section IV A, where - unlike previous studies

- branch-cuts are placed parallel to the normalized magnetic

field Y coordinate within the CMA-Plane. Then for a con-

stant normalized plasma density X the coupling between the

FX-mode and the EBW-mode is evaluated. Subsequently in

Section IV B the domain in X where the modes are coupled

will be mapped for oblique waves where N‖ 6= 0.

A. FX-Branch connection to the EBW-mode

To allow for the continuation of the work of mapping the

WPDR and as an extension of the validation of the controller

constructed in Section III we zoom in at the points where

the FX-mode and the EBW-mode coincide, as these ’branch’

points form the boundaries between a detached FX-mode and

EBW-mode and wave propagation where these modes are

connected.18 From preceding work using weakly relativistic

codes and a lowest order approximation of the Bessel func-

tion for purely perpendicular propagating waves the disper-

sion tensor could be rewritten in the form of a bi-quadratic

equation containing solely the X-mode solution and a single

EBW-mode solution. This was convenient as the two roots to

this bi-quadratic equation represent the FX-mode and EBWs

separately. Hence coinciding FX- and EBW-branches could

be found by solving Re{∆} = 0 and Im{∆} = 0, with ∆ be-

ing the discriminant of the resulting bi-quadratic equation.7,19

Although this method cannot be used for the fully relativistic

dielectric tensor including higher order finite Larmor radius

terms, nor for oblique waves, the controller designed in Sec-

tion III provides accurate solutions of our implicit bi-quadratic

equation. From preceding work three branch points that are

close to the R-cutoff meet the criteria for coincidence of FX-

and EBW-mode. However only two will be evaluated in this

paper as they fall within the 2nd harmonic cyclotron resonance

layer, whereas the third is associated with the first harmonic

(Y ≈ 1 for small X). These points are labeled P1 ≡ (X1,Y1) and

P2 ≡ (X2,Y2), and are ordered such that X1 < X2 and Y1 < Y2.

For the sake of clarity, within7 point P1 was labeled b2 and P2

was labeled b3.

To convey the qualitative features of the FX2-EBW cou-

pling, plots are made of N⊥ as a function of Y for constant

normalized density X . Figure 6 contains six of these plots for

the normalized density at P1: X1 = 0.283 (B) and close to P1:

X = X1 ± 0.02 (A,C) at a temperature of 3 keV for a purely

perpendicular propagating wave. The sub-figures D,E and F

of 6 are equivalent to A, B and C but for the normalized den-

sity at P2 where X2 = 0.487. The qualitative features of the

different branches N⊥(Y )|X ,Te,N‖ are summarized below.

Figure 6A X < X1: FX-mode waves are able to propagate

past the X2 electron resonance layer from either side

of the plasma. The propagation of the EBW mode is re-

stricted to a narrow region around the 2nd harmonic res-

onance layer, where the Re{N⊥} approaches zero and

the mode becomes critically damped as it crosses the

resonance layer.

Figure 6B X1: The modes coincide at Y1, defining the branch

point P1.

Figure 6C and 6D X1 < X < X2: The crossing of the two

wave branches is avoided by a coupling of the FX and

EBW branches such that a FX wave propagating from

the lfs connects to the critically damped part of the

EBW branch, whereas the hfs-FX branch connects to

the EBW branch going to high values for N⊥ on the lfs

of the 2nd harmonic resonance layer.

Figure 6E X2: The modes coincide close to the R-cutoff at

Y2 defining the branch point P2 such that the lfs- and

hfs-FX branch reconnect again.

Figure 6F X > X2: The FX branch enters the R-cutoff before

being able to connect to the EBW-mode.

Close to the branch points where the modes coincide, the gra-

dient of both the real part and imaginary part of the perpen-

dicular refractive index (
∂N⊥
∂Y

) appears to go to infinity for FX-

and EBW-waves inbound from the low field side. This gradi-

ent is related to the group velocity ( ∂ω
∂k⊥

), where the group

velocity tends to go to zero in these points:

∣

∣

∣

∣

∂ω

∂k⊥

∣

∣

∣

∣

∝

∣

∣

∣

∣

∂N⊥
∂Y

∣

∣

∣

∣

−1. (10)

This suggests that reflection of both waves will occur at these

points. This is confirmed by the analysis of Imre and Weitzner,

where it is shown that mode coupled reflection - where lfs-

FX wave reflect along the lfs-EBW branch and vice versa

- is highest for pure perpendicular wave propagation at low

plasma temperatures and small length scales.6
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FIG. 6. Solution branches showing the different possible connections between the FX and EBW branches ( Re{N⊥},

Im{N⊥}) with the lfs-FX branch indicated in blue and the lfs-EBW branch in red. Case A illustrates normal propagation

along the FX-branch for a density X = X1 −0.02 just below the critical one. B illustrates the branches for the critical density X1

showing the coincidence of the FX and EBW solutions at the branch point P1. C: shows the avoided crossing of the branches

for a slightly higher density X = X1 +0.02. Similarly, D shows a case with avoided crossing just below the second critical

density with X = X2 −0.02. In the latter two cases the lfs-FX becomes an EBW in the resonant region and runs into the EBW

cut-off there. E shows the case with X = X2 where the FX and EBW branches coincide now at the branch point P2. For still

higher densities, X = X2 +0.02, F shows how the X-mode reaches its cutoff before crossing the EBW branch. Associated

dataset available at http://dx.doi.org/10.5281/zenodo.4095258.20

B. FX2-EBW connection for non-perpendicularly
propagating waves

For oblique waves where N‖ 6= 0 the FX-EBW connection

vanishes once the wave angle w.r.t. B0 becomes too large. In

Section IV A it is shown that the domain in which these two

modes couple are bounded by the points P1 and P2. Analysis

of sections of the FX- and EBW- branches over the normal-

ized magnetic field is done by finding values for X , Te and N‖
where the modes coincide, similar to figure 6B and E. This

allows the determination of P1 and P2 for nonzero N‖ up till

an order of 10−3 accurately. This accuracy was achieved in

combination with a dy and N⊥ of the order 2 10−5 and 10−4,

respectively.

In Figure 7 the locations of the branch points P1 (red) and P2

(blue) are shown in the CMA-plane as a function of N‖ and for

a constant temperature of 9 keV. For waves with an increas-

ingly larger angle w.r.t. the normal of the magnetic field B0,

P1 and P2 converge toward each other, creating more stringent

conditions for the FX-EBW coupling. In the case of 9 keV the

coupling ceases to exist at N‖ = 0.2237 as the branch-points

merge together. Concurrently the R-cutoff (black line) shifts

to a lower normalized magnetic field or equivalently a lower

normalized plasma density for larger N‖, in accordance with

the cold plasma approach:

Xcuto f f ∝ (1−N2
‖ ). (11)

Note, that for a given temperature the collection of branch

points trace out a closed curve in (X ,Y,N‖) space, such that

a wave trajectory crossing the surface spanned by this curve

will be on the coupled FX-EBW branch. The curve displayed

in Figure 7 is the projection of this curve on the (X ,Y )-plane.
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FIG. 7. Locations of P1 (red) and P2 (blue) and the R-cutoff

(black) in the CMA-plane as function of N‖ at 9 keV. At

N‖ = 0.2237 the branch-points merge and the FX2-EBW

coupling vanishes. Associated dataset available at

http://dx.doi.org/10.5281/zenodo.4095258.20

The exclusion of the FX2-EBW connection due to a par-

allel wave component was found to depend on the degree of

relativistic broadening. In Figure 8 the locations of the branch

points P1 and P2 are shown with their corresponding CMA co-

ordinates X and Y in the left and right figure, respectively. The

vertical axis represents the parallel refractive index. To illus-

trate trends in the data, lines in the graph are added as linear

interpolation of data (dots) where the left side of the curves

correspond to P1 and the right side correspond to P2 until they

merge together in the centre of the curve. The curves dis-

played are thus the projections of the curves formed by the

collection of branch points on the (X ,N‖)- and (Y,N‖)-plane,

respectively. The area below the curves represents the domain

(X ,Y ,N‖) where the FX-EBW connection exists. It can be seen

that at higher temperatures the FX2-EBW connection exists

for increased oblique wave propagation (at 3 keV: N‖ = 0.153,

at 9 keV: N‖ = 0.227 and at 15 keV: N‖ = 0.266). The profile

of the Y coordinate shifts uniformly due to relativistic broad-

ening, whereas the curve representing the relation between X

and N‖ changes shape as the temperature decreases, since X1

alters minimally while X2 shifts along with the R-cutoff.

Along the horizontal line where N‖ = 0, the 2nd order poly-

nomial fit for X1,2 and Y1,2 as proposed in7 can be compared

to the position of the branch points as evaluated for the fully

relativistic case in the present work. Results from the polyno-

mial fits are shown by markings below the X-axis in figure 8

where the corresponding temperature is indicated by the same

color. This reveals that the fit proposed does not match the

fully relativistic data for temperatures above the warm plasma

regime (e.g. > 5 keV), as could be expected from their use

of a first order estimate for the relativistic γ . However, what

is interesting is that they predict a shift in X1 for temperature

whereas the fully relativistic approach indicates that there is

no shift.

V. X2 WAVE ABSORPTION AS DETERMINED BY THE
ITERATIVE METHOD

In this section the relevance of the improvements made on

the iterative method for ray tracing and power deposition cal-

culations is addressed. This is done by estimating the optical

depth of the 2nd harmonic resonance layer that is reached at

the point where the original, unstable iterative method begins

to fail for waves injected from the low-field side.

A. Determination of the optical depth

Transfer of energy between waves and plasma is generally

described by an absorption coefficient α ∝ Im{N⊥} and the

optical depth of a wave:

τ =
∫ L(s)

0
α(s)ds. (12)

Under the assumption that wave propagation occurs at con-

stant electron density, the change in position (s) can be ex-

pressed as a function of Y using a typical length scale for the

magnetic field gradient as:

LB ≡ B0

|∂B0/∂ s| . (13)

Combined with an expression for the absorption coefficient

α(Re{−→k }) = 2 Im{k⊥} that holds for perpendicular propa-

gating waves and k⊥ = N⊥ω/c the optical depth τ(Y ) can be

expressed as a integral over Y:

τ = 2
ω2

c
LB

∫ L(Y )

0

Im{N⊥}(Y )
Y

∂Y. (14)

The absorbed power fraction fP ≡ Pabsorbed/Pwave can be eval-

uated as:

fP = 1− e−τ . (15)

The optical depth depends linearly on a tokamak’s axial mag-

netic field strength B0 where ω2[rad/s] = 2π 56[GhZ/T]B0 and

on a tokamak’s specific major radius as LB ≈ R0. The optical

depth τ will therefore be normalized for the product of these

parameters, including temperature Te as:

τ̃ =
τ

LB B0 Te

. (16)

B. Failure of the iterative method and power deposition

Quantification of the performance of the controlled and un-

controlled iterative method is established by means of loca-

tions of Y that are correctly evaluated for a particular method.

This is convenient as for a waves originating from the low

field side, the risk of overshoot of the solution becomes in-

creasingly an issue as ξ approaches | 1
2
π|, after which the so-

lution becomes unstable (see figure 5). Hence three locations

in Y for constant X ,Te,N‖ are chosen following definitions as

given below.
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FIG. 8. Locations of the branch-points for X- (left) and Y-coordinate (right) as a function of N‖ for different plasma

temperatures. Markings below the X-axis represent the P2 fit from7 for the corresponding temperatures used in the figure. Dots

in the figure represent the data-points used to construct the (dashed) lines by linear interpolation. Associated dataset available at

http://dx.doi.org/10.5281/zenodo.4095258.20

Ya: The uncontrolled iterative method fails to converge using

the original step-size λ = 1.

Yb: The uncontrolled iterative method fails to converge using

a reduced step-size λ = 0.1.

Yc: The controlled method finds a solution where Im{N⊥} >
Re{N⊥} and the wave becomes critically damped.

The corresponding optical densities at the locations labeled

above are subsequently defined as τ̃i for Yi where i = a,b,c,

and are evaluated for the remainder of the parameters that ap-

ply to wave dispersion. In Section III C it has been explained

that by reducing step-size λ solution within the stable domain

of the branch can still be found. Therefore Yb and correspond-

ing τ̃b provides information whether a reduction of step-size

could be sufficient to accurately account for wave absorption.

The ability of the iterative method to find a solution was based

on the successful convergence after 100/λ iteration steps and

the ability to meet a tolerance of 10−4 with the definition of

’tolerance’ as in defined previously in equation 5. Further-

more analysis of the optical depth can be restricted to purely

perpendicular propagating waves as oblique waves are gen-

erally absorbed by the plasma over shorter magnetic gradient

lengths than pure perpendicular waves.

It has been shown that for low plasma densities (typically

X < 0.25) no controller is necessary to stabilize the solution.

For X in the vicinity of, and in between the branch-points

(where FX2-EBW coupling occurs) the original method fails

to trace the entirety of the lfs-FX branch. Evaluation of Yi at

TABLE I. Normalized optical depth τ̃ at locations Y1,2,3 for

different plasma densities and pure parallel propagation.

’R-cutoff’ indicates successful convergence until the

R-cutoff.

X τ̃1 τ̃2 τ̃3

0.3 0.03 1.6 3.18

0.4 0 1.22 2.17

0.5 0 R-cutoff R-cutoff

different plasma temperatures indicates that relativistic broad-

ening applies to these locations, hence the corresponding τ̃i

scales linearly with temperature, justifying its normalization

based on Te. In Table I these normalized optical densities are

depicted for the previously defined locations of Y at different

X . Since the original iterative method with λ = 1 fails close,

or prior to Y = 0.5, τ̃a is (close to) zero and wave absorp-

tion is not accounted for correctly. After failing of the itera-

tive method, solutions often converge towards the hfs-branch

which - having a similar imaginary part - still results in rea-

sonable absorption profiles. It could however occur that solu-

tions of the O-mode are found resulting in a far lower optical

density at the X2 resonance layer. A reduction in step-size λ
allows for a correct evaluation of the branch until Yb leading

to values of τ̃b > 1. Using the full controller allows for the

complete evaluation of the branch leading to τ̃c > 2.
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WPDR Topology at 2nd harmonic resonance 11

Based on the typical normalized optical densities obtained,

recommendations can be made regarding the use of a con-

troller based on the product LB B0 Te [m T keV]. First of

all, the original method should be avoided since convergence

might fail prior to entering the X2 resonant area. Secondly,

a reduction in step-size might be sufficient for larger toka-

maks where LB B0 Te > 2, as most of the wave deposition

(> 90%) will be accounted for correctly. Finally, the fully

controlled method is generally able to account for absorption

correctly. Only in the vicinity of points where the FX-mode

and the EBW-mode coincide the method might break down.

For LB B0 Te > 1 this will however not be an issue and in-

creasing numerical precision through dY or λ is able to re-

solve this. Lastly it should be noted that failure of the iterative

method usually results in an increased calculation time, as the

routine will continue searching for a solution until a hard limit

on the amount of iterations is reached.

VI. SUMMARY & CONCLUSIONS

To find solutions of the WPDR it can be cast into a bi-

quadratic equation implicit of form on N2
⊥, where a method

is used to iteratively search for a solution.9,11,13 At the 2nd

harmonic electron cyclotron resonance the fast extraordinary

(FX) mode couples to electron Bernstein waves (EBWs) at

higher densities.5–7 Treating the iterative method for solving

the bi-quadratic equation as a dynamical system, indicates

that EBW-solutions can become unstable. FX-mode solution

branches that couple to the EBW-mode can therefore not be

found using the existing iterative method, which instead con-

verges to undesired solutions.

By means of a reduction of the step-size, and a rotation of

the step-direction in the complex plane of N2
⊥ unstable solu-

tions are rendered stable, while increasing overall robustness

of the iterative method. Such rotation is implemented in the

form of a feed-forward controller. This adjustment allows the

accurate determination of points of coinciding FX-mode with

EBWs, allowing the mapping of the warm plasma dispersion

relation.

The Warm plasma dispersion relation (WPDR) has compli-

cated solution structures around the 2nd harmonic cyclotron

resonance, that have now been completely mapped by includ-

ing the analysis for oblique waves. Part of this complicated

structure arises from the coupling between the FX mode and

EBWs within the 2nd harmonic EC resonance layer. By treat-

ing solutions to the warm dispersion function as Riemann sur-

faces in the CMA-plane (X =
ω2

pe

ω2 , Y = ωce
ω ), points of coincid-

ing FX-mode and EBWs could be mapped on (X,Y) as a func-

tion of the electron temperature Te and the parallel refractive

index N‖.7 These points of coinciding modes are identified

as branch points. At the 2nd harmonic cyclotron resonance

the branch points P1 and P2 encompass the region where the

FX-mode is coupled to the EBW-mode. In that region the

crossing of the FX-mode and EBW branch is avoided. In-

stead, X-mode waves originating from the low-field side trans-

form inside the 2nd harmonic resonance layer to the high-field

side EBW branch and vice versa for X-mode wave originating

from the high-field side. For oblique waves this coupling van-

ishes for absolute values of the parallel wave component N‖
above a critical value, as the branch points P1 and P2 merge

together. The location of the merging of the branch points

roughly scales with 3
√

Te like other relativistic effects.

Evaluation of the optical depth up to a point where the un-

controlled iterative method becomes unstable, shows that sta-

bilization of the iterations is essential for the correct evalu-

ation of extraordinary mode ECRH at the 2nd harmonic EC

resonance. For large tokamaks (R0 B0 Te > 2 [m T keV] ) a

reduction in step-size will suffice as most wave energy is de-

posited prior to the solution becoming unstable. Outside the

2nd harmonic EC resonance layer no controller is required to

find solutions to the WPDR.
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Appendix A

As mentioned in the main text, the warm plasma dispersion

relation can be cast into bi-quadratic form:

AN4
⊥−BN2

⊥+C = 0, (A1)

where in the general case the coefficients A, B and C are them-

selves dependent on N2
⊥. Only in case of the fundamental

harmonic electron cyclotron resonance and including only the

lowest significant order in the finite Larmor radius expansion

for the Bessel functions occurring in the dielectric tensor, ε ,

a pure biquadratic equation formulation can be obtained with

the following choice for the coefficients as originally proposed

by Fidone et al.9,12:

A ≡ (χxz +N‖)
2 − (εxx −N2

‖ )(1−χzz)

B ≡ (εyy −N2
‖ )(χxz +N‖)

2

+ ε2
xy(1−χzz)−2εxyχyz(χxz +N‖) (A2)

− (εxx −N2
‖ )
(

χ2
yz − ε0

zz − (εyy −N2
‖ )(1−χzz)

)

C ≡ εzz(0)

(

ε2
xy +(εxx −N2

‖ )(εyy −N2
‖ )

)

.
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WPDR Topology at 2nd harmonic resonance 12

where for χ we have the definitions

χxz ≡
εxz

N⊥
, χyz ≡

εyz

N⊥
and χzz ≡

εzz − εo
zz

N2
⊥

, (A3)

and

εo
zz ≡ 1−

ω2
p

ω
. (A4)

For the second and higher harmonics or taking into account

more than one term in the Bessel function expansions, the

coefficients in this biquadratic formulation become them-

selves dependent on N2
⊥ resulting, in principle, in a higher

order equation introducing additional solutions: the Bernstein

modes. The biquadratic formulation, however remains a use-

ful tool allowing to solve the dispersion relation iteratively as

shown in the present paper. Note that in the notation of the di-

electric tensor elements the usual convention is followed with

the z axis aligned to the equilibrium magnetic field and the x

axis aligned to the perpendicular component of the wave vec-

tor.

The two solutions of the biquadratic equation are

N2
⊥=B±

√
B2 −4AC

2A
, (A5)

where with the present algebraic formulation of the coeffi-

cients the + sign refers to the O-mode solution and the − sign

to the X-mode solution. Note however that any a numerical

implementation should take proper care of selecting the cor-

rect Riemann sheet when evaluating the square root function.

In particular, when the determinant is seen to cross the nega-

tive real axis when tracing a particular solution, the numerical

implementation will have to toggle the sign of the evaluated

square root function.
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𝜉𝑎+1 

𝐼𝑚{𝑁 ⊥2
}

𝑅𝑒{𝑁⊥2}

(𝑈𝐶) 𝛥𝑁⊥2,a+1 𝜉𝑎   
 

 

𝑖 = 1 

𝑖 = 2 

𝑖 = 3 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0.50 0.51
Normalized magnetic field ( ce/ )

0

1

2

N

= 0.01
= 0.1

= 0.5
= 1

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0.2 0.6 1.0

0.5

1.0

Im
{N

2
}

A

0.2 0.6 1.0
Re{N2 }

0.5

1.0
B

0.2 0.6 1.0

0.5

1.0
C

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0

1

2

N

A

0.50 0.51 0.52
Normalized magnetic field ( ce/ )

-

0 [r
ad

]

B

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0

1

2
A

0

1

2

N

B

0.45 0.50 0.55
Normalized magnetic field ( ce/ )

0

1

2
C

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0

1

2
D

0

1

2

N

E

0.45 0.50 0.55
Normalized magnetic field ( ce/ )

0

1

2
F

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0.3 0.4 0.5
X= 2

pe/ 2

0.50

0.54

0.58

Y
=

ce
/

0.0 0.1
0.2

0.2237

N
 = 0.0

N
 = 0.2237

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0



0.25 0.30 0.35 0.40 0.45 0.50

X= 2
pe/ 2

0.00

0.10

0.20

0.30

0.35

N

1 keV

3 keV

9 keV

15 keV

25 keV

0.55 0.60 0.65 0.70

Y= ce/

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
3
8
8
0


	Topology of the Warm plasma dispersion relation at the 2nd Harmonic Electron Cyclotron Resonance Layer
	Abstract
	Introduction
	Electron cyclotron wave dispersion
	Fully relativistic case
	Finding roots to the dispersion relation

	Improving the iterative method
	stability
	Adding a Controller
	Decreasing step-size
	Rotation of the Step-direction

	Extraordinary mode topology at the 2nd harmonic resonance layer
	FX-Branch connection to the EBW-mode
	FX2-EBW connection for non-perpendicularly propagating waves

	X2 Wave absorption as determined by the iterative method
	Determination of the optical depth
	Failure of the iterative method and power deposition

	Summary & Conclusions
	Data Availability
	Acknowledgments
	

	Manuscript File
	1
	2
	3
	4
	5
	6abc
	6def
	7
	8

