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Abstract. An integrated modeling workflow capable of finding the steady-
state plasma solution with self-consistent core transport, pedestal structure,
current profile, and plasma equilibrium physics has been developed and tested
against a DIII-D discharge. Key features of the achieved core-pedestal coupled
workflow are its ability to account for the transport of impurities in the plasma
self-consistently, as well as its use of machine learning accelerated models for
the pedestal structure and for the turbulent transport physics. Notably, the
coupled workflow is implemented within the OMFIT framework, and makes use
of the ITER integrated modeling and analysis suite (IMAS) data structure for
exchanging data among the physics codes that are involved in the simulations.
Such technical advance has been facilitated by the development of a new numerical
library named OMAS.
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1. Introduction

Self-consistently accounting for the interaction between
the models that describe different physics of a
thermonuclear plasma is essential to obtain more
accurate fusion gain predictions, and rely less on
the initial assumptions on which models are based.
An integrated modeling workflow capable of finding
the steady-state plasma solution with self-consistent
core transport, pedestal structure, current profile, and
plasma equilibrium physics has been developed, tested,
and used to perform predictions for a 15 MA D-T ITER
baseline scenario. Key features of the core-pedestal
coupled workflow are its ability to self-consistently
account for the transport of impurities in the plasma,
as well as its use of machine learning accelerated
models for the pedestal structure and the turbulent
transport [1].

Notably, the coupled workflow is implemented
as part of the STEP (stability transport equilibrium
pedestal) module within the OMFIT framework [2],
which makes use of the ITER integrated modeling and
analysis suite (IMAS [3]) data structure for exchanging
data among the physics codes that are involved in
the simulations. Such technical advance has been
facilitated by the development of a new numerical
library named OMAS [4].

The self-consistent STEP workflow is discussed
in Sec. 2, with the details of the underlying OMAS
library reported in Appendix A. Section 3 explains
how impurities are self-consistently coupled to the
workflow, while Section 4 details how the neural-
network accelerated transport models have been
extended to include impurity particle transport and
operate over a wide parameter space. Finally,
Section 5 illustrates the application of the self-
consistent workflow on DIII-D and ITER.

2. Stability Transport Equilibrium Pedestal
(STEP) workflow

The advent of ITER has been a driving force towards
the worldwide adoption of a unified standard for
managing tokamak data. Specifically, the ITER
Integrated Modeling and Analysis Suite (IMAS)
[3] defines an ontology, a storage infrastructure,
and an Application Programmer Interface (API) for
interacting with ITER data. All ITER simulated
and experimental data will be served to the ITER
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Figure 1. This figure illustrates the data flow for the OMFIT
physics modules involved in the workflow presented in this paper.
The STEP module in OMFIT leverages OMAS for centralized
data communication among its physics modules. Each of these
modules accept IDSs as inputs and produce IDSs as outputs.
At any moment in the IDSs of the coupled simulation can be
written from OMAS to a (possibly remote) IMAS database. The
workflow is also initialized via IDSs, which can either be retrieved
from an IMAS database (also remotely), or can be generated
from other sources within OMFIT (see Appendix A).

parties through IMAS. Scientific workflows that handle
ITER data will therefore eventually need to become
compatible with IMAS.

The IMAS ontology, known as the ITER Physics
Data Model (PDM), consists of over 50 ordered
hierarchical Interface Data Structures (IDSs) organized
by topical areas across the modeling (equilibrium,
kinetic profiles, sources, etc.) and experimental
domains (diagnostic, heating system, etc.). Each
IDS is designed to store all the relevant information
of the plasma or tokamak subsystems with which
it is associated. For each quantity within an IDS,
the PDM defines its units, coordinates, numerical
type, and provides an overall description. The
ITER strategy towards coupling physics codes and
developing integrated modeling workflows is to rely
on standardized IDSs to transfer data from one code
component to another. Such perspective has motivated
the development of an extensible integrated-modeling
module within OMFIT, which leverages IDSs for
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centralized data communication among its physics
modules.

The new OMFIT physics module, named STEP
(Stability Transport Equilibrium Pedestal), defines a
series of “steps”, each of which reads all necessary
input information as IDSs, sets-up and executes a
physics code, and then writes the code’s output
back as IDSs. The centralized nature of the data
flow within STEP is schematically illustrated in
Fig. 1. STEP can be initialized from data stored
within any IMAS database, or any OMFIT module
which produces IMAS compatible data, such as the
experimental profiles fitting module OMFITprofiles [5].
In addition, the ability to start a STEP simulation
from existing TRANSP and ONETWO simulations
has been implemented. Finally, since ITER will store
experimental data within IMAS using the same data
representations as today’s simulations, we expect that
in the future the same approach could be used to
perform interpretative analyses of ITER experimental
runs.

From a technical perspective the interaction be-
tween the OMFIT framework and IMAS has been
made possible by leveraging OMAS [4] (Ordered Mul-
tidimensional Array Structure), a numerical library de-
signed to simplify the interface of Python codes with
IMAS. At the heart of OMAS is the idea of providing a
convenient API which can store data in a format that
is compatible with the IMAS data model, but using
standard storage systems (such as HDF5 or NetCDF)
in addition to the one provided by IMAS itself. OMAS
does not address the problem of the mapping of physics
codes’ I/O to the IMAS data model, which is instead
done within the definition of the data classes of the
OMFIT framework. This approach was used to adapt
all of the physics codes used in this paper to exchange
data via IDSs. Further details of the OMAS library
and data mappings to/from IDSs can be found in Ap-
pendix A.

We note that the centralized data communication
approach upon which the STEP module is developed
is a significant departure from the original ad-hoc data
exchange approach that has characterized OMFIT in
the past. The new strategy hides the complexities of
translating data from one format to another within
the routines of the OMFIT classes, thus greatly
simplifying the implementation of the physics workflow
within STEP. New physics codes can be easily coupled
to STEP, as long as their I/O has been mapped
to the ITER PDM format using OMAS. Yet, the
greatest advantage of adopting a centralized data
structure is that this approach decouples the data
flow and the execution workflow, meaning that the
individual components can be executed in any order,
allowing for the flexible design of workflows that suit

different physics applications. These include open-
loop self-consistent predictive workflows (as described
in the following section), as well as closed-loop
predictions, and multivariate constrained optimization
and parametric scans.

A copy of the IDSs is retained in memory each
time physics codes are executed within STEP, thus
providing a history of how the data evolves throughout
the workflow. Depending on the application, users can
choose to save the IDSs from OMAS to a (possibly
remote) IMAS database. The steps chosen may be for
some of the steps of the simulation (most often only
the final) or the whole history of the workflow. In the
latter case, use of IMAS occurrences lends itself well for
storing the evolution of the IDSs in the same machine
and pulse IMAS database entry.

3. Self-consistent core-pedestal simulations
with transport of impurities

Impurity transport is an important element in
integrated modeling simulations because it influences
both core performance, through dilution and radiation,
and pedestal stability via its effect on the bootstrap
current. Previous coupled core-pedestal simulations
were shown to be able to reproduce experimental
profiles [1, 6], but relied on prior knowledge of the
plasma average charge Zeff across the plasma.

To self-consistently account for the effect of impu-
rities, the tightly-coupled TGYRO [7] and EPED1-NN
core-pedestal workflow described in Ref. [1] has been
iteratively coupled to the 1D impurity transport code
STRAHL [8]. Here EPED1-NN is a neural-network
regression trained to reproduce the pedestal structure
from the EPED1 model [9]. In this scheme NEO [10]
and TGLF [11] (or its neural network accelerated coun-
terpart) provide the transport fluxes that are used to
calculate the diffusion D and pinch v profiles that are
input to STRAHL, which is mainly responsible for cal-
culation of the core impurity source (ie. how much car-
bon VI enters the pedestal) and the evaluation of the
overall impurity radiated power. Figure 3 illustrates
the density profiles of the different ionization stages of
carbon as calculated by STRAHL for a typical DIII-D
plasma. The resulting core-pedestal profiles (now with
consistent impurities) are finally iterated with the cal-
culation of the plasma equilibrium (with the EFIT code
[12]) and sources (with the ONETWO code [13]). Fig-
ure 2 summarizes the execution workflow, highlighting
its three nested self-consistency loops.

As per Ref. [1] the core-pedestal coupling loop is
achieved by tightly integrating EPED1-NN within the
TGYRO transport solver. According to this scheme,
the pedestal solution (that is the boundary condition
for the core solution) is updated after each step of
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Figure 2. The stationary-state core-pedestal coupled workflow described in [1] has been extended to account for the effect of
impurities self-consistently. The second iteration loop couples the core-profiles calculation to be consistent with the impurities
model, before the sources and equilibrium are updated. This approach is advantageous under the assumption that sources and
equilibrium are less sensitive to the details of the core profiles, but if necessary, the workflow can be reconfigured for arbitrary
iteration among the core-profiles, impurities, sources, and equilibrium calculations.

the TGYRO flux matching calculation. As a result,
the core-profiles and pedestal structure that is output
by TGYRO are now self consistent with one another,
before being iterated with the impurities, sources, and
equilibrium calculations. The second iteration loop
of Fig. 2 allows for all core profiles – including
the impurities – to be consistent with one another,
before the sources and equilibrium are updated. This
approach is advantageous under the assumption that
sources and equilibrium are less sensitive to the
details of the core profiles. If for any reason this
assumption is not satisfied, the STEP workflow allows
for easy reconfiguration of the iteration loops among
the core-profiles, impurities, sources, and equilibrium
calculations.

Because the inward flow of neutrals at the last
closed flux surface is not known, we set its value in
STRAHL either to maintain the number of impurity
particles in the plasma equal to a constant since the
plasma is assumed to be in steady-state, or to match a
predefined plasma effective charge at one point in the
plasma (typically at the top of the pedestal Zeff,ped).
While the integrated (or local) impurity density is
prescribed, the shape of the impurity density profile
from the magnetic axis to the separatrix is predicted
based on the first-principles NEO and TGLF transport
models. In the future, this information could be
provided by a Scrape-Off-Layer (SOL) model, and the
core-pedestal-SOL solution iterated to convergence.

The impurity particle transport model in STRAHL
is based on the ansatz that the radial particle flux den-

sity can be split into a diffusive and a convective part:

ΓI = −D ∂nI
∂r

+ v nI (1)

where ΓI is the impurity particle flux of each charge
state I of a given impurity, nI is its density, and D and
v are the flux surface averaged diffusion and convection
(drift velocity) coefficients, respectively.

The NEO and TGLF neoclassical and turbulent
transport models do not use this assumption and
output directly the transport fluxes. For the
purpose of using these particle transport models in
STRAHL, we compute the particle diffusion and
convection coefficients by linearizing the neoclassical
and turbulent fluxes in their density dependence. We
thus evaluate the fluxes Γ1 and Γ2 for two values of
the impurity density scale-length L1 = −n1 / n

′
1 and

L2 = L1 + ∆L such that

D =
Γ1 n2 − Γ2 n1

n′2 n1 − n′1 n2
(2)

v =
Γ2 n

′
1 − Γ1 n

′
2

n′2 n1 − n′1 n2
(3)

where the prime superscript indicates radial deriva-
tives.

Such procedure is valid insofar as D and v are
weakly varying over the ∆L, which can be ensured
by either setting an appropriately small value for ∆L,
or by calculating them for a trace amount of the
impurity of interest that is added to the NEO and
TGLF simulations. With concentrations several orders
of magnitude lower than the intrinsic impurity species,
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Figure 3. Sample edge density profiles of the different ionization
stages of carbon as calculated by STRAHL for a DIII-D plasma.
In the simulations a source of neutral carbon atoms is placed
outside of the plasma separatrix. The impurity source is scaled
to maintain the number of impurity particles in the plasma equal
to a constant, or to match a predefined plasma effective charge
at one point in the plasma.

variations of the trace impurity scale-length does not
affect the transport. Although simpler, the former
method is only valid if the fluxes are a continuous
function of the impurity scale-length, while the latter
method is more general and robust to models (such as
TGLF) which may present discontinuities in the output
fluxes.

We point out that the evaluation of the NEO and
TGLF fluxes done as part of the impurity D and v
calculation were done by running TGYRO, which in
this case is not used as a transport solver but rather
as a tool to conveniently evaluate the transport fluxes
from on-axis to the separatrix in parallel.

The TGLF transport model is generally not
applicable in the axis and edge regions of the plasma.
Within TGYRO this issue is elegantly resolved by
integrating the flux-matching scale-lengths from the
pedestal boundary condition (provided by EPED1-
NN) to the axis, assuming that the profiles’ inverse
scale-length is piece-wise linear and continuous, and
is zero on axis [6, 7]. However, the same approach

cannot be applied to STRAHL, which instead requires
prescribed diffusion and convection coefficients at every
point of its computational grid.

Figure 4 illustrates the D and v terms as
calculated by NEO and TGLF, as well as the values
that are input into the STRAHL simulation. TGLF is
generally applicable in the core region of the plasma
(0.2 < ρ < 0.8), and the D and v coefficients are
simply calculated from the sum of the neoclassical and
turbulent flux contributions.

Near the axis (0. < ρ < 0.2), the source of carbon
is negligible, and as such, at equilibrium the carbon
flux should also be zero. Under these conditions,
Eq. (1) becomes v/D = −n′ / n = 1/L. In this region
the diffusion coefficient is held fixed at its value at the
axis-core interface (ρ = 0.2), while the convection term
is calculated such that the impurity scale-length goes
linearly to zero on axis. This approach is consistent
with the treatment of the density profiles in this region
by TGYRO.

In the edge region (ρ > 0.8) the impurity particle
source from the wall can be significant (see Fig. 3) and
the impurity profile cannot be evaluated analytically.
Furthermore, even if we know that the steep density
gradients in this region are associated with large values
of the v/D ratio, the solution (specifically the Zeff

profile) is sensitive to the alignment of the electron and
impurity density pedestal profiles. Although EPED
provides the pressure height and width, the precise
details of the temperature and density profiles in the
pedestal depend sensitively on particle sources and
inter-ELM transport mechanisms, both of which are
out of the scope of this work. Attempts to model the
D and v profiles in this region from first principles
resulted in values of Zeff with non-physical large
excursions near the edge. Based on this observation,
the problem was re-cast to find the edge D and v
profiles such that the Zeff is flat in this region. For
this purpose we decided to maintain the D profile
at its value at the core-edge interface (ρ = 0.8),
and iteratively modify the v profile to achieve that
goal starting from an initial guess that assumes zero
sources. This approach results in a robust and
physical solution that is consistent with experimental
profile reconstructions that are typically inferred from
electron and carbon density measurements on DIII-D
under stationary conditions.

4. Extension of TGLF-NN and EPED1-NN
neural-network accelerated models

Neural-network based models have been shown to
accelerate two of the most critical aspects for functional
whole device modeling applications: 1) the H-mode
plasma pedestal pressure structure, with the EPED1-
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Figure 4. Carbon diffusivity (a) and convection (b) terms as a function of normalized toroidal flux ρ, as calculated by NEO
and TGLF. The total diffusivity and convection values (sum of the neoclassical and turbulent transport contribution) are input to
STRAHL.

NN model; and 2) the prediction of the turbulent
transport fluxes in the core of the plasma, with the
TGLF-NN model.

The TGLF-NN model originally described in
Ref. [1] was trained on a reduced set of DIII-D
discharges, and assumed a deuterium-carbon plasma
to predict the electron and ion energy fluxes, the
electron particle flux, and total ion momentum flux.
In this work we extended TGLF-NN by adding the
prediction of the particle fluxes for all ion species to
the outputs of the NN (as is required for any impurity
transport simulations) and we significantly expanded
the training database to cover a much wider DIII-D
operation range. In addition, a new database with
50/50 deuterium-tritium mix (main ion), and helium
ash and neon (impurity species) was built to model
ITER in the nuclear phase.

The TGLF-NN training database was built by
gathering data from TGLF simulations run (in
parallel) via the TGYRO transport manager. The
initial condition of each TGYRO run was based
on TRANSP [14] simulation time-slices that were
randomly drawn from a database of over 3000 existing
DIII-D and ITER TRANSP runs. This approach
was chosen because the TRANSP data is readily
available, and the database naturally covers a wide
range of plasma regimes of physical interest. The
same technique can be used to create a TGLF
training database for other devices for which TRANSP
simulations are available.

To sample the region of the TGLF input
parameters space that is in the vicinity of the
nominal conditions, the kinetic profiles and the Miller

equilibrium coefficients that are input to TGYRO
were randomly perturbed from the original values as
defined in the TRANSP database. Each TGYRO
run was set to sample the plasma profiles between
0.2 < ρ < 0.9, packing more grid points where the
inverse scale-lengths of the kinetic profiles were higher.
The resulting TGLF-NN training database have been
made publicly available [15].

The implementation of the TGLF-NN model
itself has also been revised and rewritten leveraging
Google’s Tensorflow [16] state-of-the-art machine
learning library. As in the previous implementation,
the TGLF-NN prediction is the weighted average of
multiple NNs outputs (ensemble learning), but now
the topology of each of these NNs is built based
on the structure learned by the trees in a random
forest (deep jointly-informed neural networks DJINN
algorithm [17]). The DJINN mapping “warm starts”
the neural network training process by initializing the
network in a state that performs similarly to the
decision tree, and naturally initializes each NN with
a diverse topology that improves the ability of the
ensemble to generalize [18]. Figure 5 illustrates how
the TGLF-NN model includes the ensemble of DJINN
in a single Tensorflow graph. The study presented in
this paper uses 10 DJINN networks, of 2 hidden layers
each.

To give more relative importance to points in
the database that are near the critical gradient, the
definition of the error used for the back-propagation
training of the TGLF-NN model was non-linearly
transformed by an hyperbolic inverse sine function.
Specifically, the cost c is defined to be c = 1−

∑
sR

2
s,
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DJINN

normalization

denormalization

Figure 5. High level view of the TGLF-NN model. The
normalization and denormalization operation, as well as the
averaging of the output of the DJINN ensemble are all contained
within a single Tensorflow graph.

where R2
s is the coefficient of determination (in other

words the cost is the residual sum of squares over the
total sum of squares) of each of the model outputs,
marked with the subscript s:

c = 1−
∑
s

R2
s =

∑
s

∑
i (y′is − t′is)2∑
i (t′is − t̄′s)2

(4)

where y is the model prediction, t is the training data,
t̄ is average value of the training data, and i is the
index over the samples in the database. The prime
superscript here represents the following non-linear
transformation:

y′s = arcsinh

(
ys
σs
α

)
(5)

which assigns higher weighing to small values of the
fluxes (ie. closer to the critical gradient) for higher
values of the parameter α. Expressing the error in
terms of R2 is advantageous in that the coefficient
of determination is bounded between 0 and 1, thus
giving the same relative importance in the optimization
process to each of the non-linearly transformed model
outputs. Once trained, TGLF-NN can be used in a
transport solver (such as TGYRO).

The EPED1-NN model, a neural-network regres-
sion to a database of EPED1 simulations, described in
[1] has also been updated to provide the pedestal height
and width for the H-mode, metastable, and super H-
mode solutions of three different diamagnetic stabiliza-
tion models of the peeling ballooning instabilities in
EPED1.

A full treatment of diamagnetic stabilization of
ideal MHD with short to intermediate wavelength
instabilities requires a detailed kinetic or two-fluid
formalism. Instead, simple rules can be used to
estimate the impact of diamagnetic stabilization on
the pedestal instabilities. In the EPED1 model, the

calculated ideal MHD growth rate γ can be compared
to half the ion diamagnetic frequency ω?/2 [19]:

γ/(ω?/2) > 1 , (H rule)

however this rule is known to be too strong at high
densities. Under these conditions the growth rate is
best compared to 0.03 ωA [20]:

γ/ωA > 0.03 , (G rule)

where ωA is the Alfvén frequency, the logic of this being
that typical flow rates in the edge are around .01 to
.02 ωA and the growth rate has to exceed this value
to be significant. A hybrid approach that attempts to
take both rules into account is GH > 0.03:

γ2/(ωAω
?/2) > 0.03 , (GH rule)

The updated EPED1-NN has been re-implemented
in Tensorflow and makes use of DJINN ensembles.

5. Core-pedestal prediction with
self-consistent transport of impurities

As an example, we report the application of the
core-pedestal workflow with self-consistent transport
of impurities to DIII-D H-mode discharge #168830
at 3500 ms. This is a purely NBI heated discharge,
and is well representative of high performance steady-
state conditions for intrinsic impurity transport studies
on DIII-D. In these simulations, the total carbon
impurity content is an input to the simulations.
The equilibrium, wall, core profiles, and core

sources IDSs for this simulation were generated
starting from an existing TRANSP interpretative
simulation.

Figure 6 illustrates the solution of the STEP
workflow when convergence is achieved for each of
the three nested loops of Fig. 2. The experimentally
measured profiles are given by the dashed black lines,
with gray uncertainty bands. The other profiles
are predicted iterating between TGYRO w/ EPED1-
NN (Blue), [TGYRO w/ EPED1-NN] + STRAHL
(orange), and [[TGYRO w/ EPED1-NN] + STRAHL]
+ EFIT + ONETWO (green). Each simulation was
run until local changes in the kinetic profiles at the
end of the TGYRO iteration were less than 5%. Some
discrepancies between simulations and measurements
can be observed. Most notably, the EPED1-NN model
is over-predicting the experimental pedestal pressure.
In turn, through the stiff core transport, this results
in an over-prediction of the temperatures in the outer
half of the core plasma region. The core particle
transport (TGLF + NEO) is under predicted, which
results in a higher electron density on axis. The
flattening of the experimental profiles in the core region
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+ EFIT + ONETWO
+ STRAHL
TGYRO w/ EPED1-NN
Experiment

Figure 6. Solution of the STEP workflow for prediction of DIII-D shot #168830 at 3500 ms as convergence is achieved at each
of the three nested loops of Fig. 2: iterating between [TGYRO w/ EPED1-NN] (Blue), [[TGYRO w/ EPED1-NN] + STRAHL]
(orange), and [[[TGYRO w/ EPED1-NN] + STRAHL] + EFIT + ONETWO] (green).

(especially visible in the ion temperature profile) are
associated with the plasma saw-teething, which is not
part of our model. Importantly, as we enable different
parts of the workflow, and make the simulation more
self-consistent, the overall solution does not change
(significantly), and all three cases well reproduce
the carbon impurity density that is measured in the
experiments.

Figure 7 illustrates the results of a sensitivity
study with respect to the impurity content in the
plasma, which is varied to be 0.5 and 1.5 times the
nominal experimental value. In these simulations the
deuterium density (main ion) was updated to retain
quasi-neutrality, keeping the initial condition of the
electron density profile for all cases. Interestingly, at
higher Zeff a peaking of the carbon density is observed,
accompanied by flattening of the electron density
profile. With increasing impurity content the line and
the bremsstrahlung radiation increase proportionally
to the impurity content. The pedestal pressure is seen
to decrease with lower impurity, as expected from the
dependency of the edge bootstrap current on Zeff,ped.

A similar sensitivity study was carried out to
predict the stationary profiles of an ITER baseline
scenario discharge. The input parameters to the
workflow were taken from the ITER baseline case

studied in Ref. [21] (see Fig. 6 of Ref. [21]), and
only the pedestal and core profiles (including the
impurities) were iterated to consistency, while keeping
the magnetic equilibrium and sources constant. Also,
to allow use of the TGLF-NN model described in Sec. 4,
the plasma composition was modified to be a 50/50
deuterium-tritium mix, helium ash, and neon as an
impurity species. Also in this case, the equilibrium,
wall, core profiles, and core sources IDSs for this
simulation were generated starting from an existing
TRANSP simulation.

Four variations of the same STEP simulations
were run, each with an effective pedestal ion charge
Zeff,ped of 1.5, 2.0, 2.5, 3.0 as boundary condition. We
emphasize that Zeff is only prescribed at one location
in the pedestal region, while the Zeff profile itself is
self-consistently calculated from the STEP impurity
sources and transport calculation. All simulations have
a pedestal electron density of ne,ped[1020/m3] = 0.8.
The kinetic profiles of the Zeff,ped scan are shown in
Fig. 8 with the relevant scalar quantities plotted in
Fig. 9.

Although the dilution of the D-T ions in the
core raises the core plasma temperature as Zeff is
increased (an effect also observed in Ref. [22] for reactor
simulations) this positive effect is offset by a decrease in
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STEP 0.5 x NC,exp

STEP 1.0 x NC,exp

STEP 1.5 x NC,exp 
Experiment

Figure 7. Solution of the STEP workflow for prediction of DIII-D shot #168830 at 3500 ms for varying levels of total carbon
impurity content in the plasma (from 0.5 (yellow) to 1.5 (red) times the nominal experimental value (green)).
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Figure 8. Profiles of the simulated ITER baseline scenarios with effective pedestal ion charge Zeff,ped ranging from 1.5 to 3.0

Page 9 of 16 AUTHOR SUBMITTED MANUSCRIPT - NF-103904.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



NN coupled core-pedestal simulations with self-consistent transport of impurities and compatible with IMAS 10

8.0

8.8

9.6

10.4 Fusion gain

1.2 1.6 2.0 2.4 2.8 3.2
Zeff, ped

0

100

200

300

400

[M
W

]

Fusion power
Radiated power

Figure 9. Dependency of the fusion gain, and fusion and
radiated powers for the modeled ITER baseline scenario as
function of the pedestal Zeff,ped

the available D-T fuel, a decrease in pedestal pressure
(of up to 15%), and increased radiation (of 22, 35, 50,
and 65 MW for the four simulations). The resulting
fusion power for the four simulations were 470, 428,
465, and 356 MW (which for 44 MW of input power
correspond to a fusion gain of 10.7, 9.7, 8.3, and 8.1
respectively).

6. Summary

An integrated modeling workflow capable of finding
the steady-state solution with self-consistent core
transport, pedestal structure, current profile, and
plasma equilibrium physics has been developed and
tested against a DIII-D discharge, and used to perform
predictions for a 15 MA D-T ITER baseline scenario.
Key features of the core-pedestal coupled workflow are
its ability to account for the transport of impurities
in the plasma self-consistently, as well as its use of
machine-learning-accelerated models for the pedestal
structure and for the turbulent transport physics.
Notably, the coupled workflow is implemented within
the OMFIT framework, and makes use of the ITER
integrated modeling and analysis suite (IMAS) data
structure for exchanging data among the physics codes

that are involved in the simulations. Such technical
advance has been facilitated by the development of a
new numerical library named OMAS.
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Appendix A. Interfacing the OMFIT
framework with the ITER IMAS data
infrastructure via OMAS

Appendix A.1. Interfacing physics codes to IMAS

OMFIT [23] is a framework that has been widely
used within the fusion community for performing
experimental analyses and integrated simulations,
across a wide variety of physics domains [2]. A
distinguishing feature of OMFIT is its ability to
perform integrated modeling simulations using the
native files of the physics codes used in its workflows.
This is accomplished by being able to read and write
a wide range of scientific data formats, some specific

Page 10 of 16AUTHOR SUBMITTED MANUSCRIPT - NF-103904.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



NN coupled core-pedestal simulations with self-consistent transport of impurities and compatible with IMAS 11

Physics Code

Tier 2
“IMAS Actor” Tier 3

Tier 1

OM
AS

.to_omas()

.from_omas()

I/O Routines

Physics Routines
Physics Code

I/O Routines

Physics Routines

Physics Code
Physics Routines

I/O Routines

IDSs
Not IDSs

Figure A1. The level of integration of physics codes into IMAS can be categorized into three tiers. Tier 1 are physics codes that
natively use IMAS for their internal calculations; Tier 2 physics codes only use IMAS as part of their I/O routines; Tier 3 make use
of data mappers that are external to the physics codes themselves to interface with IMAS. OMAS enables OMFIT integration of
physics codes with IMAS, independently of their tier. All physics codes used in this paper were adapted to exchange data via IDSs
via tier 3 integration.

OMAS+
Data Mapping to/from IMAS

Figure A2. An example showcasing how OMFIT classes make use of OMAS to interface with data stored in IMAS. Here: (1) an
EFIT equilibrium file (so called g-file) is parsed in OMFIT with the OMFITgeqdsk class; (2) the equilibrium object is converted to
an OMAS data structure (ODS); (3) the ODS is then saved to IMAS; (4) a new ODS is loaded from IMAS, and (5) a new EFIT
equilibrium object is generated from it; finally (6) the new EFIT equilibrium object is saved to file. We note that in this example,
any code that manipulates g-files can make use of this infrastructure to read/write data from/to IMAS.
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 [time_slice]
             [1]
                [data_0D]   ()
                [data_1D]   (x_dim)
                [data_2D]   (r_dim,z_dim)
             [2]
                [data_0D]   ()
                [data_1D]   (x_dim)
                [data_2D]   (r_dim,z_dim)
              .
              .
              .
             [n]
                [data_0D]   ()
                [data_1D]   (x_dim)
                [data_2D]   (r_dim,z_dim)

  [time_slice.:.data_0D]    (t_dim)
  [time_slice.:.data_1D]    (t_dim,x_dim)
  [time_slice.:.data_2D]    (t_dim,r_dim,z_dim)

Hierarchical Repr. Dimensions

List of Tensors Repr. Dimensions

Figure A3. So long as the grid sizes are homogeneous across
arrays of structures, the data that is contained in the hierarchical
structure can be represented as a series of tensors of higher
rank. In this example, a hypothetical IDS contains a series
of time-slices each having a scalar, as a one dimensional array
of size x dim, and a two dimensional array with shape r dim,
z dim. The same data of this IDS can be represented a list of
multidimensional arrays, each element being a tensor extended in
a time dimension with size t dim with respect to the original IDS.
This approach is generic and extensible to nested hierarchical
lists of structures.

to the fusion community. Internally OMFIT organizes
the data in a free-form hierarchical data structure
(named the OMFIT tree) which provides a consistent
way to access and to manipulate such a collection
of heterogeneous objects, independent of their type
and origin. At the expense of having to handle more
heterogeneous data, this approach has the notable
advantage of enabling integrated simulations while
leaving physics codes untouched.

For all intents and purposes IMAS data within
OMFIT is yet another data format. As such, the
adoption of IMAS within OMFIT does not break the
original paradigm of the framework, and working with
IMAS data can be done in coexistence with the existing
legacy data formats. The ability to manipulate IMAS
data within OMFIT is enabled by the development of
a new numerical library named OMAS [4].

Appendix A.2. Ordered Multidimensional Arrays
Structure

The Ordered Multidimensional Arrays Structure
(OMAS) library allows Python software to take

advantage of the IMAS ontology without requiring
the IMAS library to be installed. Such functionality
is achieved by organizing the data in memory as
hierarchical sets of OMAS Data Storage (ODS)
objects, whose structure exactly reproduces that of the
ITER physics data model (PDM). OMAS is aware of
the ITER PDM, and it is by enforcing strict adherence
to this ontology that it guarantees that at any moment
the data can be automatically converted to IMAS and
back (in which case both OMAS and IMAS need to
be installed on the same system). In addition to
IMAS, OMAS supports saving/loading data in other
formats, such as Python pickle, NetCDF, HDF5, and
JSON files, as well as the document-oriented NoSQL
database MongoDB. Support for data storage solutions
other than IMAS allows users to store data that is
in compliance with the ITER PDM ontology without
requiring IMAS to be installed. At any moment the
data stored in these different formats can be moved to
where IMAS is installed, read by OMAS, and stored
there in IMAS. It is using this philosophy that OMFIT
provides seamless remote data access to IMAS data.

OMAS adopts an API which is familiar to Python
developers. Specifically, ODS objects extend the
most fundamental Python classes (dictionaries and
lists) with a rich set of functionality that allows
them to perform automatic coordinate convention
(COCOS [24]) transformations, grid interpolation, and
units conversions for the data that is either input or
requested from the data structure. In addition, ODSs
have a growing set of functions that allow calculating
sets of physical quantities that can be derived from
more fundamental ones. Finally, OMAS is open-
source, lightweight, and Python 3 compatible. These
qualities make the library easy to maintain, expand,
and install on any computer system, whether it is an
institutional supercomputer or a personal laptop.

The whole advantage of defining a standard data
ontology is to ease code coupling. However, it was a
choice of the IMAS conceptual design not to define
which entries in the data dictionary are mandatory
and which are optional. Similarly, the standardization
of the computational grids on which data is defined
is also not pertinent to the data schema. On the
one hand such design choice provides developers with
great flexibility as to what fields of IDSs their codes
will output, but on the other hand it burdens them
with making provisions for input data that other codes
may not have made available, or input data that is
stored with different grids. In other words, how an
IDS that is input to a code is populated depends on
what physics codes were executed prior to it. As an
example, let us consider an equilibrium solver that
needs the pressure information to run. Depending on
the how the input IDS was prepared, such data may
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Figure A4. Performance study performed within OMAS for handling a sample equilibrium IDS with an increasing number of
time-slices in either hierarchical or tensor representation format. The extent of this study is summarized in the upper-left diagram,
and covers mapping between representations, read/write to HDF5 file, and access to the data. Most operations stemming from the
hierarchical representation of the data scale linearly with the number of time-slices in the sample IDS (red markers in the diagram),
whereas operations that make only use of the tensor representation show little to no dependency on the dataset size (green markers
in the diagram).

be present as an equilibrium pressure constraint, or
by summing the core profiles electron and ion pressure
data (again including the fast ion contribution), or by
summing the product of the densities and temperatures
for the electron and all ion species (again including
the fast ion contribution). As another example, let us
consiter a physics code that accepts the equilibrium
IDS as input. Internally such code would have to
handle each of the possible grid definitions on which
the equilibrium information could have been defined‡.

‡ There are 33 possible equilibrium grid definitions as per
equilibrium.time slice[:].profiles 2d[:].grid type.index

These complexities become ever more apparent when
different elements of the integrated-modeling workflow
are developed by different scientists, each asserting
their own best judgment where the IMAS flexibility
allows. One possibility is to let individual developers
handle such complexities whenever an IDS is input to
their software. Yet, an alternative approach is to rely
on a library (such as OMAS) that provides the ability
to automatically interpolate data on different grids,
and self-consistently calculate derived quantities.

as well as the option to specify the geometry via the General
Grid Description (GGD) [25] convention.
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The whole advantage of defining a standard data
ontology, as in the ITER PDM, is to ease code
couplings, especially for codes that are not written in
the same language. We classify the level at which
physics codes are integrated within IMAS in three
tiers, as graphically summarized in Fig. A1. Codes
that natively use IDSs internally as well as for their
I/O, belong to the first tier. These are physics codes
that have been designed from the very beginning to
work with the IMAS API, and as such depend on
IMAS to run. For example, workflows that are used
to carry out physics simulations in the Kepler [26]
workflow manager are tier one. The second integration
tier is reserved for codes that can use IMAS for
their I/O. Most legacy physics codes that have been
adapted to work with Kepler belong to this category.
Typically such codes continue to support their original
I/O functionality in addition to IMAS. We note that
IDS compatible physics codes can also be executed
from other programming languages besides Kepler,
Python being one of them. We thus borrow from
the nomenclature used in Kepler (which refers to
these codes as Kepler actors) to broadly refer to IDS
compatible physics codes as IMAS actors. The third
tier is used to indicate physics codes that interface to
IMAS by means of mapping routines that translate
the content of their legacy file formats to IMAS. In
this case the internal routines of the physics codes
are not altered. Whether the adaptation of legacy
codes to IMAS is done by acting on the codes’ original
I/O files or their I/O routines is a technical choice.
Either way, the fundamental requirement of the ITER
PDM that all data is stored and exchanged through
the hierarchical data structure of IDSs is preserved.

OMAS enables integration of physics codes with
IMAS, independently of their tier. For example,
OMAS can be used to setup the data necessary for
the execution of tier one and two codes in IMAS, and
gather and postprocess their data. This approach has
been used to seamlessly execute within the OMFIT
framework existing IMAS Python actors and Kepler
workflows. Such development allows physicists to
simultaneously leverage the convenience of the OMFIT
environment with the large set of Python IMAS actors
and Kepler workflows that have being developed by
EUROfusion and the ITER organization. For example,
OMFIT and OMAS are being used to facilitate the
execution of the European Transport Solver (ETS)
[27]. In this scheme, OMFIT provides ETS with
a user interface that allows (remotely) writing the
starting experimental data (of JET, MAST, DIII-D,
KSTAR, and other devices) into IMAS (via OMAS),
to execute the ETS Kepler workflow, and to retrieve
the simulation results from IMAS (via OMAS) for
postprocessing [28].

Concerning the integration with tier three codes,
the OMAS library itself does not address the problem
of mapping the physics codes I/O to the IMAS data
model. Such mappings must be defined in third party
Python codes and frameworks, as done for example
with the data classes of the OMFIT framework. To this
end, the OMFIT data classes are being instrumented
with two methods .to omas() and .from omas() that
translate data from the native OMFIT format to IDSs
and back, as for example illustrated in Fig. A2. An
important benefit of instrumenting the OMFIT classes
is that by making the format conversion at the files
level there is no additional burden on the developers of
the original physics codes to adapt their I/O scheme
to work with IMAS. Furthermore, existing physics
codes that generate the same file formats can share the
same translators. The OMFIT mappings and OMAS
compatibility with IMAS are tested whenever IDSs
are stored/retrieved from a (possibly remote) IMAS
database.

Appendix A.3. Handling large datasets in IMAS

The IMAS data structure is based on a hierarchical
organization that limits the efficiency with which large
datasets can be manipulated. A commonly used
approach in computer science for high-performance
numerical calculations is to use multidimensional
arrays (ie. tensors) where possible. To ease
this limitation, we propose use of a transformation
that casts the data that is contained in the IMAS
hierarchical structure as a list of tensors, by taking
advantage of the homogeneity of grid sizes that
is commonly found across arrays of structures.
Such transformation is illustrated in Fig. A3 for a
hypothetical IDS.

The ability to transform data from one represen-
tation to the other was implemented in OMAS, as well
as the ability to seamlessly use either representation
for storing data both in memory and on file. We note
that the OMAS implementation of the tensor repre-
sentation is generic and can handle nested hierarchical
lists of structures. Also, we can automatically deter-
mine which data can be collected across the hierar-
chical structure, which cannot, and seamlessly handle
both at the same time. Benchmarks show that storing
data in this form can be several orders of magnitude
faster than done previously, even for datasets of modest
size, as illustrated in Fig. A4.

The favorable scaling that is observed when
representing IMAS data as a list of tensors makes a
strong case for adopting this convention. Implementing
the same system as part of the IMAS backend
storage of data and in memory representation would
likely greatly benefit IMAS performance in many
applications. Being able to directly access the IMAS
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data as tensors would simplify integration with a
broad range of tools and numerical libraries that are
commonly used across many fields of science.

We point out that the results that we present
for the equilibrium IDS are universal (scaling with
the number of elements in an array of structure),
but they can be more or less serious depending on
the size of such arrays, and whether these are nested
within each other. In fact, each level in the hierarchy
raises the power of the scaling, which can pose a
challenge considering that the some IDSs have up to six
nested arrays of structures. Many of the deepest trees
are associated with modeling IDS, especially when
the General Grid Description (GGD) [25] hierarchical
structure is used. Acccess to the experimental IDSs
tends to be more efficient, as they tend to have
shallower arrays of structures with few elements (in
these IDSs the time dependent data is stored as
tensors, and the arrays of structures are used to
organized different data channels).

Finally, we consider IDS occurrences, which allow
different versions of an IDS to exist within a given
IMAS database entry. These occurrences can be
used for all sorts of different applications (e.g. store
the same physical quantities calculated with different
methods, or at different stages in a iterative workflow).
However, they operate as an additional level in the
IMAS hierarchy, and their use can thus further
exacerbate the inefficiencies described before. One
particular application that is not suited for relying on
occurrences is to store multiple realizations of signals
from a distribution function of uncertain quantities.
This sort of application often requires tens, if not
hundreds, or even thousands of realizations for a given
signal. Besides the fact that at present there is a preset
maximum number of occurrences of a given IDS (e.g.
only 3 for the equilibrium IDS), the computational
cost of accessing a large number of occurrences would
be impractical. Not only would the access time once
again scale linearly with the number of occurrences,
but also the time required for accessing each occurrence
is orders of magnitude worse than the one required to
access individual structures in an array of structures.
By contrast, the simple addition of a dimension to the
tensor representation could enable efficient storage of
a large number of realizations, and thus open the door
to uncertainty quantification workflows and Bayesian
integrated data analyses within IMAS.
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