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Abstract

Near-resonant energy transfer to large-scale stable modes is shown to reduce transport above

the linear critical gradient, contributing to the onset of transport at higher gradients. This is

demonstrated for a threshold fluid theory of ion temperature gradient turbulence based on zonal-

flow-catalyzed transfer. The heat flux is suppressed above the critical gradient by resonance in the

triplet correlation time, a condition enforced by the wavenumbers of the interaction of the unstable

mode, zonal flow, and stable mode.
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Turbulence-driven transport arises from the density and temperature gradients of confined

plasmas, and has long impeded the realization of fusion power [1]. While it has been possible

in some cases to improve confinement without thoroughly understanding the physics of the

turbulence that limits it, for example with sheared equilibrium flows [2], fully understanding

turbulence could open new strategies for improving confinement, including transport control

through externally manipulated barriers [3, 4] and 3D field optimization [5]. Much effort

relating to turbulence has centered on identifying and understanding its driving instabilities.

Beyond the drive, one may treat linear growth rates as a proxy for turbulence levels and

turbulent fluxes, yielding reduced transport models and control strategies based on linear

drive physics [6–8].

One notable situation where transport and instability growth rate have distinct behaviors

is the critical-gradient upshift of the heat flux of ion temperature gradient (ITG) turbulence.

A well known but poorly understood feature first noted in gyrokinetic simulations, this

phenomenon, which is often referred to as the Dimits shift, is seen as the onset of transport

at a noticeably higher driving gradient than that of linear instability [9]. This critical-

gradient upshift is of interest not just because the onset of transport at a higher driving

gradient represents a form of transport reduction, but because it exposes a crucial piece of

nonlinear saturation physics relevant to a variety of issues [5, 10].

Identifying the mechanism of the critical-gradient upshift has proved elusive. Transport

suppression by the shearing of zonal flows is often invoked [11–13]. Zonal flows are the

ky = 0 component of the turbulent flow; the rate at which they shear eddies to a flow-wise

correlation length is referred to as the E×B shearing rate [2]. In the original observation of

the critical-gradient upshift, it was noted that the E×B shearing rate exceeds the growth

rate in the region of very low transport [above the linear instability threshold but below

the nonlinear critical gradient (NLCG)] [9]. This idea was further developed in the notions

of tertiary instability [14] and critical onset of strong nonlinear energy transfer from zonal

flows [15], whose coincidence with the NLCG is argued to interfere with zonal flow shearing.

We show that this picture is inconsistent with observations in gyrokinetic simulations of

ITG turbulence. Recent work exploring finite-amplitude-induced changes in electron drift-

wave turbulence from the inhomogeneity of zonal flows expands investigation of the relation

between flow and turbulence [16, 17], but is not directly applicable to the ITG threshold.

The principal result of this letter is an analytic theory for the heat flux based on an
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Figure 3.9: The kx-cascade, split into energy transfer to the higher-kx a) unstable mode T u
k,k0

and b) stable modes T s
k,k0 . This is for kZF⇢s = 0.04.

The kx-cascade, split between unstable and stable as in Eq. (2.31), is shown in Figure

3.9. The kx-cascade is a chain of energy transfers to higher kx, starting at (0, ky), each link

separated by �kx = kZF. Transfer to stable modes is comparable to that to unstable modes,

and generally peaked further down the cascade (i.e. at higher kx). Energy transferred to

the stable modes can then be dissipated, with stable modes acting as an energy sink in the

unstable wavevector region. There is a high kx region of zero amplitude on the left plot. For

these wavevectors, there is no instability and thus no transfer to the unstable mode.

Figure 3.10 shows the same cascade, except with energy transfer split into the entropy-like

component (f 2/F0) in a) and the field component (�2), in b) as in Eq. (2.33). Transfer of

the entropy-like energy is of similar magnitude and peaks at higher kx than the field energy.

Associated with any given mode structure, there is a specific ratio of these energies and

their injection/dissipation rates. Consequently, these quantities aid in obtaining a better

understanding of stable mode physics, by measuring the discrepency between the actual ratio

of energy components and the ratio given by the unstable mode alone. Also, as they are

seperately nonlinearly conserved, an unstable eigenmode with a higher fraction of field energy

could drive zonal flows more e�ciently, as there is more �2 to go to the zonal flows. This

could be tested with a secondary instability analysis over a parameter scan to see if the zonal

flow growth rate correlates with �2/(f 2/F0) of the unstable mode.

45

shown in Figure 4.7. The left panel is energy transfer from (0, 0.2) and the right panel is

transfer from (0, 0.4). In each case, almost all energy transfer is due to the lowest-kx zonal

flow. This is very much like saturation above the NLCG, except scaled to the lower energy

injection rate and with a longer wavelength zonal flow.

Figure 4.7: Energy transfer from the unstable wavevector at the black rectangle for a) (0,0.2),
b) (0.0,0.4), to (kx, ky) at !T i = 5.5.

Energy transfer, split into transfer to the unstable and stable eigenmodes, and catalyzed

by the (0.086, 0) zonal flow, is shown in Figure 4.8. The corresponding plot above the NLCG

is Figure 3.9. A higher fraction of energy transfer is to the stable mode.

Figure 4.8: Energy transfer to the higher kx mode catalyzed by the kx = 0.086 zonal mode in
the Dimits regime, split into stable and unstable.

b)a)

FIG. 1. Rates of spectral energy transfer in gyrokinetic ITG turbulence. In a) ωT i = 5.5, above

the linear threshold of 4.75 but below the NLCG of 6.75. In b) ωT i = 7.0.

extension of ITG fluid saturation theory [18] to include the instability threshold. The cal-

culation requires a more rigorous saturation analysis to account for a finite wavenumber

range and the partition of energy between eigenmodes. We show that the ion heat flux is

weakened above the linear critical gradient by near-resonant energy transfer between the

instability, the zonal flow, and a conjugate stable mode. Resonance broadening by eddy

damping and mode dispersion from the ion polarization drift expose gradient scalings that

cancel in the non-broadened resonance, allowing the flux to rise more sharply at steeper

gradients. This mechanism, which captures key aspects of the critical-gradient upshift, has

not been considered in prior theories.

The key aspects just mentioned are uncovered in the behavior of nonlinear energy trans-

fer above and below the NLCG in gyrokinetic ITG turbulence, where the critical gradient

phenomenon was first observed. Figure 1 shows the time rate of change of energy car-

ried conservatively between spatial scales by turbulence for Gene [19] gyrokinetic flux-tube

simulations at Cyclone-Base-Case (CBC) parameters [9] with adiabatic electrons using two

values of the temperature gradient ωT i = −(R/Ti0)(dTi0/dx), where R is the major radius,

Ti0 (Te0) is the equilibrium ion (electron) temperature, and x is the radial coordinate. Linear

instability occurs above ωT i = 4.75 and the NLCG is ωT i = 6.75. In Fig. 1a) for ωT i = 5.5,

colors indicate the time averaged energy transfer rate to a sequence of stable modes at suc-

cessively higher kx from the interaction of streamers (0, ky) with a single zonal flow (0.086,

0). Here kx is the radial wavenumber and ky is the wavenumber perpendicular to kx and
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the magnetic field. Both are normalized to the ion sound gyroradius ρs. Unstable modes

at higher kx receive less energy by an order of magnitude. In Fig. 1b) for ωT i = 7.0, the

interacting zonal flow is (0.04, 0). A second set of measurements of transfer from streamers

to all coupled wavenumbers indicates that for both gradient values, coupling with a zonal

flow dominates. In comparing a) and b), energy transfer is larger above the NLCG, con-

sistent with higher turbulence levels, and is therefore able to push to somewhat higher kx.

The energy transfer process appears to be qualitatively the same, and is consistent with

transfer from unstable modes to stable modes through the zonal flow. This is referred to as

the zonal-flow-catalyzed energy transfer channel.

Figure 2 shows the ratio of the E×B shearing rate to the linear growth rate as a function

of ωT i. The NLCG is shown as the dashed line. E×B shearing by the zonal flow is important

below the NLCG because the ratio is greater than unity, as noted in Ref. [9]. However, as the

turbulent amplitudes rise above the NLCG the ratio becomes larger. This is inconsistent

with the notion that a breakdown of shear suppression causes the rising heat flux above

the NLCG. It is consistent with the relatively stronger zonal-flow-catalyzed energy transfer

channel evident in Fig. 1b), while indicating that the zonal flow nonetheless remains the

dominant energy transfer channel below the NLCG. Note that zonal-flow catalyzed energy

transfer is a straining process of the zonal flow and thus proportional to the flow shear.

These observations indicate that there is a single saturation process – zonal-flow-catalyzed

energy transfer – which is highly efficient just above the linear critical gradient (yield-

ing low fluxes) and less so as gradients increase. ITG saturation theory for zonal-flow-

catalyzed transfer [18], when modified to include instability threshold physics, produces

precisely this behavior. We start with a simplified gyrokinetic linear instability calcu-

lation [20] and adapt it to the nonlinear fluid model. The calculation retains gyroki-

netic ions, but treats the grad-B and curvature drifts non-resonantly, expanding the ki-

netic propagator for large frequency relative to the magnetic frequency. Parallel stream-

ing and ion polarization effects are neglected. Calculating ñi from the ion distribution

function, and using quasineutrality with an adiabatic electron density, we obtain the com-

plex mode frequency ω = ωd ±
√
ω2
d − (Ti0/Te0)(2ωdω̄∗η − 7ω2

d). Here ωd = −kyρsCs/R,

ω̄∗η = ω∗(1 + η) = −kyρsCs(1/LT + 1/Ln), LT and Ln are ion temperature and density

gradient scale lengths, and Cs is the sound speed. Instability requires that ω̄∗η exceed a

threshold, i.e., ω̄∗η > (ωd/2)(7 + Te0/Ti0). For LT � Ln (η � 1) this corresponds to a
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FIG. 2. Ratio of E×B shearing rate to linear growth rate in gyrokinetic ITG turbulence for an ωT i

scan. The dashed line is the NLCG.

critical gradient given by 1/LT > 1/LTc = (1/2R)(7 +Te0/Ti0). Lack of dispersion produces

a resonant interaction between the unstable ITG mode, its conjugate pair, and the zonal

flow. For resonance the heat flux is essentially zero. It is broadened by ion polarization,

leading to a small finite flux.

The reduced nonlinear model to which the linear threshold calculation will be adapted

was previously used for saturation well above the threshold [18]. The model [21] reproduces

important features of gyrokinetic simulations [15, 22], including the dominance of the zonal-

flow-catalyzed energy transfer channel. Its quadratic dispersion relation allows the threshold

dispersion to be reproduced with minor changes; it does not have the large number of stable

modes of gyrokinetics. The analytic solution involves zonal-flow damping, making it unable

to replicate collisionless physics.

The nonlinear model couples ion pressure p and potential φ given by dpk/dt + Z11pk +

Z12φk = Np and dφk/dt+Z21pk +Z22φk = Nφ, where Zij are the linear coupling coefficients

defined in Table 1 for the fluid model of Ref. [21] and the modified model that matches

the threshold dispersion; the nonlinearities are Np = −
∑

k′ k
′ × ẑ · k φk′pk′′ and Nφ =

(1/2)
∑

k′ k
′ × ẑ · k (k′2⊥ − k′′2⊥ )φk′φk′′ ; ẑ is the unit vector along the field, k = (kx, ky),

k2⊥ = k2x + k2y, and k′′ ≡ k − k′ label coupled wavevectors. Flow damping ν and a thermal

diffusivity χ have been added as in Ref. [15]. Both the original and modified models include

the ion polarization drift, leading to factors (1 + k2⊥)−1 in Z21 and Z22. As in Refs. [15, 21],
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Coupling Coefficient Original Model (Refs. [15, 21]) Threshold Model

Z11 χk4⊥ χk4⊥ + iεky(1 +
√

8)

Z12 iky(1 + η) iky(1 + η)

Z21 −2iεky/(1 + k2⊥) −2iεky/(1 + k2⊥)

Z22 (iky + νk2⊥ − 2iεky)/(1 + k2⊥) [iky + νk2⊥ − iεky(
√

8− 1)]/(1 + k2⊥)

TABLE I. Linear coupling coefficients for two-fluid models of ITG turbulence. The threshold model

matches the linear dispersion relation of the kinetic threshold calculation of Ref. [20].

Te0 = Ti0, and the parallel length scale is normalized to Ln, rendering ωd as kyε ≡ kyLn/R.

The threshold model differs from the original primarily by inclusion in the pressure equation

of a term ∝ iωdp. Assuming the extra factor of k2⊥ makes χk2⊥ � ν, the complex mode

frequency of the threshold fluid model is

ω1,2 =
εky[2 + (1 +

√
8)k2⊥] + ky − iνk2⊥

2(1 + k2⊥)
±

√
−8εk2y(1 + η)(1 + k2⊥) +

[
εky(2

√
8 + (1 +

√
8)k2⊥)− ky + iνk2⊥

]2
2(1 + k2⊥)

,

(1)

where the subscript 1(2) labels the unstable (stable) branch, selected by + (−) in ±. With

ky(1 + η) = ω∗η ∼ 1, εky = ωd ∼ 1, and taking ky, k
2
⊥ � 1, this expression exactly matches

the threshold frequency for Te0 = Ti0. Hereafter we use the threshold fluid model and

the notation of Table 1, retaining finite k2⊥ in Zij because it broadens the mode coupling

resonance.

The ion heat flux is an ensemble average of the product of fluctuations p and φ, Qi =

−
∑

k′ k
′
yIm〈φ−k′pk′〉. We introduce the eigenmode decomposition, pk′ = R′1β

′
1 + R′2β

′
2 and

φk′ = β′1 + β′2, where R′j and β′j are eigenvector components and amplitudes, and quantities

with primes are evaluated at k′. The flux is then given by Qi = −
∑

k′ k
′
y[ImR

′
1〈|β′1|2〉 +

ImR′2〈|β′2|2〉+Im(R′1 +R′2)Re〈β′1β′∗2 〉+Re(R′1−R′2)Im〈β′1β′∗2 〉]. From the eigenfrequencies we

obtain R′j = [−ω′j(1+k′2⊥)+k′y(1+ε(1−
√

8))−iνk′2⊥]/2k′yε, where ω′j is the jth eigenfrequency

at k′. Above the linear threshold Re(R′1 − R′2) = 0 and Im(R′1 + R′2) = −3νk′2⊥/2k
′
yε. The

ratios of eigenmode amplitudes can be solved from the balances of the saturation theory [2],

and reduce to ratios of the linear eigenmode frequencies and nonlinear coupling coefficients.

The latter also reduce to functions of eigenmode frequencies.

We evaluate Qi in terms of the stable fraction κ ≡ |β′2|2/|β′1|2. We can thus write

β′2 = β′1
√
κ exp(iθ), where θ is the cross phase between β′1 and β′2. The cross correla-
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tion becomes 〈β′∗1 β′2〉 = |β′1|2κ1/2 exp(iθ). From the eigenvector components and the above

ratios, we find Qi =
∑

k′(γ
′/2ε)(1 + k′2⊥)|β′1|2(1 − κ), to lowest order in ν/k′yε, where

γ′ = Imω′1. To complete the heat flux derivation we obtain the saturation level |β′1|2

from Eq. (A4) of Ref. [18], with coupling coefficients and frequencies supplied from the

threshold model. This equation is the steady-state turbulent energy balance evaluated at

the zonal wavenumber (ky = 0). We derive here a more rigorous solution than that of

Ref. [18]. Because the wavenumber k′ is summed over, we change the summation vari-

able from k − k′ to k′. This allows the nonlinear coupling coefficients to be grouped as

C
(k′′,k)
iF j +C

(k′′,−k′)
ijF = (−1)i−1k′y[ω

′
j(1+k′2⊥)+k′y(1+ε(1−

√
8))+ iνk′2⊥]/[2Imω′′1(1+k′′2⊥ )] ≡ C ′′ij,

where i 6= j is 1 or 2, and ω′′j is evaluated at k′′. In terms of C ′′ij the zonal saturation

balance can be written ν = 4
∑

k′ Re{C(k,k′)
F21 [|β′1|2(τ21FC ′′21 + τ12FC

′′
12κ) + Re〈β′∗1 β′2〉(τ12FC ′′11 +

τ21FC
′′
22) + iIm〈β′∗1 β′2〉(τ12FC ′′11 − τ21FC ′′22)]}|ky=0, where unprimed frequencies are evaluated

at k, τ21F = (iω̂′′2 + iω̂′1 − iω̂∗1)−1 and τ12F = (iω̂′′1 + iω̂′2 − iω̂∗1)−1 are triplet correlation times

for the zonal-flow-catalyzed interaction, C
(k,k′)
F21 = −ik′y[k′2⊥−(k⊥−k′⊥)2]/2, and ω̂i = ωi+∆ωi

is the sum of the linear frequency and a nonlinear eddy-damping rate ∆ωi. The eddy damp-

ing rate describes the decorrelation of a given mode frequency from interactions with other

turbulent modes.

As a nonlinear frequency, ∆ωi is proportional to k2 and the turbulence level [23]. Because

ωi ∝ k, nominally ∆ωi � ωi for k � 1, allowing eddy damping to be ignored. However, for

certain wavenumbers τ12F (or τ21F ) is resonant, meaning ω′′2 +ω′1−ω∗1 = 0. In such cases ∆ωi

dominates τ12F even for k � 1 and at low turbulence levels. Resonance is intrinsic to stable-

mode saturation by zonal-flow-catalyzed transfer if the ion polarization drift is neglected

(k2⊥ → 0) and ν → 0. This is because the three-wave coupling condition k′ + k′′ = k leads

directly to ω′′2 + ω′1 − ω∗1 → 0 when k is the wavenumber of the zonal flow (ky = 0). Note

that even with k⊥ finite but small, the contribution of the ion polarization drift to τ12F is

O(k3⊥), making it smaller than the contribution of ∆ωi.

We obtain an expression for ∆ωi to determine its dependence on η, deriving it from the

energy response to an infinitesimal perturbation in the turbulent state [24]:

∆ωi =
∑
k′

−2iC
(k,k′)
iF j

iω̂′′j − iω̂∗i + iω̂′i

[
C ′′ij|v′z|2 + C

(k′,k)
Fij

(
|β′′2 |2 + 〈β′′∗1 β′′j 〉

)]∣∣∣∣∣
k′y=0

. (2)

Here C
(k,k′)
iF j = [−ω′′j (1 + k′′2⊥ ) + k′′y(1 + ε(1−

√
8)) + iνk′′2⊥ ]/[(ω2− ω1)(1 + k2⊥)], and the zonal
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flow v′z = ik′xβ
′
1|k′y=0 = ik′xφ

′|k′y=0 enters ∆ωi as part of the turbulent spectrum.

The saturation balance is solved by assuming that all relevant wavenumbers are � 1.

We consider the interactions of a zonal flow at (−k′x, 0), an unstable streamer at (0, k′y),

and a stable-mode sideband at (k′x, k
′
y). This leads to |β′1|2 = ν

[
4Re

{
C

(k,k′)
F21

[
τ21F

(
C ′′21 +

C ′′22
√
κ exp(−iθ)

)
+ τ12F

(
C ′′12κ + C ′′11

√
κ exp(iθ)

)]}]−1
. A more general expression is ob-

tained from a standard Markovian assumption that |β′1|2 varies more slowly than the other

wavenumber-dependent factors in the saturation balance arising from coupling coefficients

and τ factors. With this approximation, |β′1|2 is understood as evaluated at a typical unsta-

ble wavenumber, and the denominator is summed over k′. Considering the zonal saturation

balance for other kx introduces a sum over kx. The cross phase θ is obtained from a symme-

try of the nonlinearity that leads to the constraint
∑

j d[β′j exp(iω′jt)]/dt = 0. Introducing

β′2 = β′1
√
κ exp(iθ) as before, the constraint is solved to obtain θ = −α + sin−1[Im(ω′∗1 −

ω′2κ)κ−1/2|ω′2 − ω′∗1 |−1], where α is the complex phase of ω′2 − ω′∗1 .

Substituting the Markovianized solution for |β′1|2 into the heat flux, we obtain

Qi =
∑
k′′′

γ(k′′′)(1 + k′′′2⊥ )ν(1− κ)

4ε
∑

kx,k′(k
′2
⊥ − k′′2⊥ )Re

(
ik′y

[
τ21F

(
C ′′21 + C ′′22

√
κe−iθ

)
+ τ12F

(
C ′′12κ+ C ′′11

√
κeiθ

)]) .
(3)

The factor k′2⊥ − k′′2⊥ has been extracted from C
(k,k′)
F12 because it produces along with γ(k′′′)

a quasilinear-flux-like factor. The remaining factors, which include the triplet correlation

time and coupling coefficients, represent nonlinear contributions to a critical-gradient up-

shift. There is considerable symmetry in pieces of the denominator, leading to partial

cancellations. Moreover, the complex phase of the factors inside the real part is important

in the dependence of Qi on η. Figure 3 shows the dependence of Qi on η for a case driven

by the streamer (0, 0.25) with ν = 0.001, κ = 0.9999 and two values of ε. ν = 0.001 keeps

the system close to collisionless, while still balancing nonlinear excitation of the zonal flow.

A larger ε of 1.25 was chosen to put a threshold η between 2 and 3. The smaller ε reduces

the threshold while showing qualitatively similar behavior. The theoretical results are plot-

ted alongside numerical solutions of the nonlinear model, showing reasonable agreement. A

NLCG is more easily defined from the simulation results than the theory, but the behavior

is consistent with the notion of flux reduction close to the threshold. A scan in η for larger

collisionality ν = 0.0025 shows very similar behavior.

The behavior of Fig. 3 resides in τ and the coupling coefficients. The former is near-
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FIG. 3. Heat flux as a function of η for ε = 0.625 and ε = 1.25: analytic theory (triangles and

circles), numerical solution (inverted triangles and crosses).

resonant, maximizing its value for the zonal-flow catalyzed triplet, yielding τ = ∞ and

Qi = 0 if ∆ωi = ν = k2⊥ = 0. With these quantities finite but small, τ and Qi are finite; τ

decreases and Qi increases with η, because ω increases with η. The variation of τ and CiF j

are shown in Fig. 4. Variation of the latter, which is dominated by the ratio [Re(ω) + iγ]/γ,

is strongest just above the threshold, where CiF j ∼ Re(ω)/γ, and asymptotes to a constant

for large η. This variation strongly contributes to reduced Qi just above the threshold, and

to eddy damping. Near the threshold, the first term of Eq. (2) dominates, both because of

its proportionality to |vZ |2 and because CiF j is much larger than CF12 for small k. The eddy

damping is therefore proportional to C2
iF j, which makes it significant only near threshold.

It smooths countering trends in τ arising from the scaling of ω′′2 and ω1 with η just above

threshold, and exposes the matched scalings of these two frequencies once η increases above

5. The stable fraction κ = |β2|2/|β1|2 is governed by the equipartition of energy dissipation

rates γ1|β1|2 = |γ2||β2|2, a property of stable-mode saturation [22]. For a conjugate mode

pair, κ = 1. Collisionality breaks conjugate symmetry, making κ slightly less than unity.

The value used in Fig. 3 is consistent with γ1/|γ2| at larger η. Near instability threshold,

η − ηc < 1, the saturation characterization γ1|β1|2 = |γ2||β2|2 becomes unreliable because

of branch points in the complex mode frequencies that occur at different values of η due to

threshold dependence on k2⊥. In this region κ is extrapolated from its value at larger η.

This resonance is important in gyrokinetic manifestations of critical-gradient behavior
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FIG. 4. Variation of triplet correlation times and coupling coefficient C1F2 with η.

[25] and in the nonlinear stabilization of ITG turbulence at finite β [26]. (β is the plasma

pressure normalized to the magnetic energy of the confining field.) In the latter the flux

is very small below the linear β threshold and only begins to rise at lower β. This occurs

because large τ near threshold makes Qi very small, while resonance broadening in the form

of finite k2⊥ exposes stronger dependence on β, allowing it to rise more sharply further below

the threshold as β → 0. This effect has been demonstrated by gyrokinetic modeling of

experimental discharges [27]. The unitarity of mechanisms for the critical-gradient upshift

and finite-β nonlinear stabilization, combined with the fact that the latter occurs where

zonal-flow shearing is weakened by magnetic fluctuations [28], strongly suggests that shear

suppression cannot be the mechanism of the critical-gradient upshift.

This letter has demonstrated that the nonlinear energy transfer properties of ITG turbu-

lence, aside from magnitudes, are essentially unchanged above and below the NLCG, with no

disabling of E×B shearing. Motivated by these observations, the theoretical and conceptual

basis for a new physical explanation of nonlinear critical-gradient upshift behavior has been

developed, accounting for three-wave resonance in the dominant saturation mechanism of

zonal-flow catalyzed transfer to stable modes.

This work was supported by US Department of Energy Grant DE-FG02-89ER53291.
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