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Abstract

The quasilinear mixing-length approach to efficient prediction of transport in fusion devices is

improved to account for the “Dimits” upshift between linear and nonlinear critical pressure gra-

dients in zonal-flow-saturated turbulence regimes. This modification uses the frequency mismatch

between modes interacting turbulently to track changes in saturation efficiency. Near critical-

ity, energy is transfered exclusively to stable eigenmodes, rapidly increasing the efficacy of the

nonlinearity. The modified quasilinear model is able to predict below-threshold turbulent ion-

temperature-gradient-driven transport accurately and also yields significantly improved predictions

for trapped-electron-mode transport.
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Maintaining good energy confinement at high core temperatures is essential for develop-

ing fusion as an energy source. Large normalized ion temperature gradients ωT i = R0/LT i –

where R0 is the major radius of a toroidal confinement device and LT i the ion-temperature-

gradient scale length – enable ion-temperature-gradient (ITG) instabilities to grow, develop

turbulence, and produce anomalous heat fluxes. Therefore, commercial fusion reactors are

predicted to operate near the marginal gradient ωT i,crit at which instability first arises. Sig-

nificant pressure thus rests on reduced models to provide accurate predictions of heat con-

finement near marginality.

For ITG and other turbulence regimes that saturate via zonal flows [1], an upshift from

the linear instability threshold ωlin

T i,crit to the turbulence threshold ωNL

T i,crit, also known as the

Dimits shift [2], enables experiments to attain higher core temperatures and thus improved

performance.

The precise nature of what causes the Dimits shift has been elusive, in particular due

to the difficulty of separating cause and effect. Thus, many attributions may be factual

while not illuminating the root causes behind this phenomenon, making it difficult to design

predictive models. Below ωNL

T i,crit, zonal flows completely dominate turbulence, with fluxes

only being able to rise intermittently to low levels; non-zonal wavenumbers exhibit strongly

coherent behavior. The Dimits shift is observed in a variety of scenarios [14], where it

exhibits a complex dependence on collisionality, owing to non-adiabatic electron behavior,

and on plasma shaping [15, 16]. In particular, it disappears at sufficiently high collision

frequency.

While some theories rely on zero turbulence levels [3], fluxes are in fact small but finite

and change continuously with ωT i throughout the Dimits regime, i.e., between the linear

and nonlinear thresholds. Many approaches have focused on a sudden termination of zonal

flows due to tertiary, Kelvin-Helmholtz-like [4–7] or other [8] instability: at the nonlinear

threshold, zonal flows would become sufficiently strong for tertiary activity to erode zonal

flows and allow turbulence to form fully. Recent work invoking tertiary instability based

on zonal-flow curvature has had success in recovering turbulence onset in a fluid system

[9, 10], with possible connections to one of the processes described in the present work.

Alternatively, it has been proposed that stabilization of the ITG sideband, i.e., the mode

at finite radial wavenumber kx, disrupts the turbulent cascade that usually develops due

to zonal-flow shearing [11]. Other theories [12, 13], based on reduced fluid models, tend to
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predict critical-gradient upshifts due to zonal-flow behavior that does not match that seen

in kinetics-based descriptions.

The design of fast reduced models is of great utility for understanding and predicting

turbulent transport as well as for applications like real-time control. Quasilinear transport

models [17–19] use a mixing-length diffusion assumption to predict turbulent electrostatic

heat fluxes Qes

i
at toroidal wavenumbers ky based on changes in linear instability:

Qes

i
= ωT i

∑

j,ky

C(ky)
γ(j, ky)w(j, ky)

〈k⊥(ky, j)2〉
, (1)

where C is a model constant whose only dependence ky is used to match the turbulent

spectrum at one point in parameter space. Throughout this work, wavenumbers kx and ky

are normalized to the inverse ion sound gyroradius ρ−1

s
. Furthermore, γ and w respectively

denote growth rate and quasilinear weight of unstable eigenmode j at a given wavenumber,

while 〈k2

⊥
〉 is obtained by integrating the perpendicular wavenumber weighted with the

square electrostatic potential and normalizing appropriately; see Ref. [20] for more details.

Note that in the present analysis, only one unstable mode contributes at each ky, although

results are straightforwardly extended to multiple instabilities.

Quasilinear models are unable to recover ωNL

T i,crit, severely overpredicting fluxes below

and only matching nonlinear trends once sufficiently far above the turbulence threshold. It

is therefore essential that the source of the Dimits shift be identified and reduced models

improved so they are able to predict fluxes correctly both above and within the Dimits

regime.

Here, the physics of zonal-flow-based saturation are illuminated and a modified quasilinear

model is deployed that accounts for the efficiency of energy transfer from the unstable ITG

to stable eigenmodes, which may then return it to the background gradients. As a baseline

parameter case, the ITG turbulence Cyclone Base Case in Ref. [2] is chosen, with kinetic

electrons at hydrogen mass ratio and equal temperature profiles ωT = ωT i = ωT e = 6.96 of

both species, with density gradient ωn = 2.22. The safety factor and normalized shear are

q0 = 1.4 and ŝ = 0.796, respectively, and local gyrokinetic [21] analysis using the Gene code

[22] – for the governing equations and normalization see Ref. [23] – is performed at the flux

surface with inverse aspect ratio ǫt = 0.18. For the normalized pressure, a near-electrostatic

value of β = 0.1% is selected [26].

The present choice of the standard flux-tube framework allows for centering modes at
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FIG. 1. Growth rates at different gradients ωT = R0/LT i = R0/LT e as functions of toroidal

wavenumber ky. Solid lines correspond to modes centered at radial wavenumber kx = 0, dotted

lines to the sideband at kx = 0.1.

kx 6= 0 in ballooning representation [25], while neglecting higher-order terms in the radial

expansion. Note that no conceptual changes are required to extend the present model to

a radially global framework that accounts for profile effects—note, however, that non-local

transients (avalanches) will require separate modeling [24]. In a situation where global profile

effects become important, a potentially broad and continuous spectrum of kx is associated

with each eigenmode, making discerning of individual nonlinear interactions a more complex

task. The local analysis performed here can be expected to produce quantitatively accurate

results whenever local gyrokinetics is applicable – typically at values of ρs/a0 <∼ 1/100, where

a0 denotes the minor radius – and to capture pertinent effects qualitatively in most other

situations. A more detailed global analysis will be left for future work.

As evident from Fig. 1, linear growth rates γ peak in the range 0.1 < ky < 0.5; larger

gradients lead to stronger growth, while the ITG sideband at kx = 0.1 grows more slowly

than the ITG streamer at kx = 0. At lower ky, the sideband becomes linearly stable for

lower ωT , whereas the streamer remains unstable.

Saturation of ITG instability occurs via zonal flows. In the following, the nonlinear inter-

action of streamers k⊥ = (0, ky) with the zonal flow (0.1, 0) to produce sidebands (−0.1, ky)

is therefore considered. One may quantify the relative importance of this particular zonal

(kx, 0) thusly: At nominal parameters, in the range ky = 0.1− 0.2 where fluxes peak, modes

at kx = 0.1− 0.15 show nonlinear energy transfer – which primarily arises from zonal inter-
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FIG. 2. The inverse of the triplet correlation time τ for unstable-to-stable energy transfer mediated

by the zonal flow at kx = 0.1. At ωT = 7, curves are in monotonic order of ky with increment 0.05.

Curves terminate at the gradient ωT where the finite-kx mode becomes stable.

actions – higher by a factor 3 − 5 than those at kx = 0.05. In other work [27, 28], a zonal

kx = 0.1 has commonly been used as a characteristic wavenumber for the zonal flow.

While the saturation mechanism of the ITG instability is commonly envisioned as shearing

of turbulent eddies by the zonal flow, enhancing conservative forward energy transfer [1],

the transfer is in fact strongly damped by stable-mode components of sideband fluctuations.

Sidebands at low kx also have an unstable-mode component, i.e., at low kx they decompose

into both unstable and stable modes [29]. The energy of the unstable component undergoes

subsequent interaction with the kx = 0.1 zonal flow, producing a cascade to the (−0.2, ky)

sideband; in the flux-tube framework, the energy of the stable component is absorbed back

into the equilibrium. The chain of sidebands at (−0.2, ky), (−0.3, ky), etc. carries at higher

kx a dwindlingly small fraction of the energy injected by the instability, due to depletion by

the stable sideband components at each step [27]. Here, the focus lies on the first triplet of

the chain, which carries the largest fraction of energy.

It is possible to quantify how efficiently a wavenumber triplet – such as streamer, sideband,

and zonal flow (ZF) – interacts in the E×B quadratic nonlinearity, by evaluating the

mismatch in complex frequency ωc = ω + iγ between modes as expressed by the triplet

correlation time

τ =
1

iωsideband
c

+ iωZF
c

− i(ωstreamer
c

)∗
, (2)

which is normalized to the usual time unit R0/cs, with the ion sound speed cs. As shown by a
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statistical-closure calculation [30], key quantities, including the heat flux, scale as Re(τ)−1.

This property has been exploited in Refs. [31, 32] to explain and predict the nonlinear

stabilization of ITG turbulence [33, 34] due to finite β. In Refs. [31, 32], linear frequencies

were used as proxies for ωc, neglecting a small nonlinear eddy-damping component. It was

shown that an adequate representation of the β scaling of the heat flux can be obtained

using a zero-frequency assumption ωZF

c
= 0 for the zonal flow. Possible future improvements

to this model include the use of more sophisticated zonal-flow-damping models [18].

Choosing the sideband complex frequency from quantities that can be calculated linearly

is key for quasilinear modeling. However, because >∼ 104 linear eigenmodes exist at any given

wavenumber, all of which tend to be excited [20, 35, 36], there is potentially wide latitude

in choosing this frequency. Here, one can employ pseudo-eigenmode analysis, showing that

nonlinear interactions favor coupling of the instability with a complex-conjugate stable mode,

referred to as the ITG mirror mode, even when that mirror mode is not present in the

linear eigenmode spectrum [37]. Using the mirror mode at the sideband wavenumber allows

computation of the unstable-stable-zonal τ using only linear information.

Figure 2 shows the dependencies of 1/Re(τ) on ky and ωT for the present case with the

kx = 0.1 zonal flow; moderate stabilization with decreasing gradient is observed. More

importantly, however, truncated curves indicate the disappearance of the unstable sideband

ITG mode at lower gradients as the unstable ky range contracts.

Figure 3 schematically illustrates how energy flows – mediated by the zonal mode – from

the kx = 0 unstable ITG streamer to subsequently higher-kx sidebands. For each interaction,

energy is split between the unstable (red diamonds) and the stable (blue squares) sideband

(represented here by the mirror mode). When unstable sidebands are present at higher

ωT (top), they typically receive twice or thrice as much energy as does the stable sideband

component [27]. When the sideband becomes linearly stable at lower ωT (bottom), all energy

is immediately transfered to stable eigenmodes, where it is removed from the turbulence.

Thus, it becomes possible to connect continuous linear to abrupt nonlinear behavior.

Sideband stability and its variation with ωT track the robustness of the nonlinear decor-

relation of triplet interactions. These interactions are decorrelated by a bath of turbulent

fluctuations at the eddy-damping rate ∆ω, an amplitude-dependent nonlinear quantity that

sums over both unstable and stable modes. Because amplitudes increase with ωT , so does

∆ω. Moreover, larger ωT increases sideband instability, increasing the number of modes in
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FIG. 3. Cartoon of nonlinear energy transfer (arrows) catalyzed by the zonal flow. Under normal

conditions (top), energy flows from the unstable mode to both unstable (diamonds) and stable

(squares) sideband modes, resulting in a non-conserving cascade to higher kx. Near criticality,

the originally-unstable sideband mode and its quasi-mirror are both stable, resulting in a higher

saturation efficiency due to complete energy removal within a single nonlinear interaction.

the bath, which also increases ∆ω. This allows the use of sideband instability to track the

effect of eddy damping using linear proxies for τ in calculating the heat flux from a sum of

streamers.

Applying this approach to the ITG scenario at hand, a factor of 1/Re(τ) is included in

the quasilinear flux

Qes

i
= ωT i

∑

j,ky

C(ky)
γ(j, ky)w(j, ky)

〈k⊥(ky, j)2〉

1

Re[τ(kx, j)]
, (3)

for individual zonal flows at a given kx. Aside from the usual approach to drop contributions

from negative growth rates, nonlinear interactions with stable sidebands are assumed to be

exactly resonant, i.e.

γ(j, ky) →











γ(j, ky) ∀ γ(j, ky) > 0

0 ∀ γ(j, ky) ≤ 0
,

1

Re[τ(kx, j)]
→











Re[τ(kx, j)]
−1 ∀ γ(kx 6= 0) > 0

0 ∀ γ(kx 6= 0) ≤ 0
.

(4)

This prescription, which is based entirely on linear quantities, represents nonlinear physics

as follows. At low ωT , most ky values have a stable sideband. For these, the eddy damping
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FIG. 4. Quasilinear (solid lines) and nonlinear (dashed line) fluxes as functions of temperature

gradient. The standard model (red diamonds) significantly overpredicts flux at and below the

nonlinear critical gradient ωT ≈ 4.5, while the modified model using τ(kx = 0.1) (blue squares) or

τ(kx = 0.15) (green triangles) reproduces the nonlinear trend. This is not the case for τ(kx = 0.05)

(pink crosses).

is very small, and the nearly resonant interaction is represented by setting 1/Re(τ) = 0.

For the few ky values with an unstable sideband, ∆ω is larger, and its broadening effect on

resonance is represented by the linear proxy of wave dispersion, which is included in τ . At

higher ωT , there are more wavenumber values with unstable sidebands, capturing the rise

of ∆ω with ωT . This procedure has similarities to that put forth in Ref. [11], but is rooted

in an understanding of the importance of stable modes in saturation.

In Fig. 4, the dominant ion electrostatic heat fluxes (matched at ωT = 7) are shown as

functions of ωT : flux from nonlinear gyrokinetic simulations rises only once ωT > 4.5, whereas

the standard quasilinear model in Eq. (1) instead predicts the nonlinear and linear thresholds

to coincide, incorrectly yielding finite transport at ωT ≤ 4.5. However, when accounting for

unstable-ZF-sideband interactions at kx = 0.1 or kx = 0.15 by instead employing Eq. (3),

this modified quasilinear model is able to recover the nonlinear result quantitatively at

all gradients. At ωT = 4, for instance, flux predictions are lower by a factor of 6 than

those based on the standard model, in large part due to the zeroing out of stable-sideband

contributions to the flux. By contrast, instead basing corrections on the kx = 0.05 zonal flow

– which catalyzes far less nonlinear energy transfer than does the kx = 0.1 zonal flow – fails

to capture the upshift of the nonlinear critical gradient, and generally tracks the standard
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FIG. 5. Quasilinear (solid lines) and nonlinear (dashed line) fluxes as functions of density gradient

for a collisionless TEM case. As for the ITG case, the standard model (red diamonds) yields poor

predictions below the nonlinear threshold ωn ≈ 45, whereas the τ -modified models (kx = 0.1:

cyan triangles; kx = 0.2: purple stars; kx ≈ 0.4: pink crosses; kx ≈ 0.8: blue squares) perform

significantly better, with very little sensitivity to the zonal-flow wavenumber.

quasilinear flux rather closely, as sideband stabilization is negligible at this wavenumber.

Conversely, the model is insensitive to switching from kx = 0.1 to 0.15. These findings are

in line with nonlinear box size convergence properties.

This picture is consistent with strong coherence of fluctuations below ωT,crit when com-

pared with turbulence above this point. As energy is almost instantaneously removed due to

transfer to a stable sideband, no turbulent cascade develops, and strongly coherent dynamics

are to be expected.

It is to be noted that a small gap between the standard and τ -corrected models is visible

in Fig. 4 above ωT,crit = 4.5, which persists for the kx = 0.05 model below the nonlinear

threshold. This feature is a direct result of the general decrease in inverse correlation time

as per Fig. 2. As linear eigenmodes approach marginality, mode structures broaden in kx,

leading to more resonant nonlinear energy transfer within a zonal-flow triplet at a given kx.

This provides another route towards reducing fluxes near marginality and may be a more

important effect than sideband stabilization in other turbulence regimes.

A separate analysis of ωn-driven trapped-electron-mode turbulence is shown in Fig. 5, cor-

responding to the collisionless limit of a scenario in the Madison Symmetric Torus reversed-

field pinch [38], where zonal flows are significant [39]. This strongly ωn-driven case uses
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ωT = 28.8, β = 0.0141, q0 = 0.103, ŝ = 6.18, and ǫt = 0.274. Here, all sidebands remain

unstable even at density gradients below the nonlinear threshold. As the figure illustrates,

using the τ -corrected model in Eq. (3) produces much-improved predictions of the heat flux

over the standard model. The significant difference between the uncorrected and τ -corrected

models at low density gradients stems solely from variations in τ ; very little sensitivity is

observed with respect to kx, with all values from the shown range of 0.1 (the same as in

Fig. 4) to 0.78 yielding essentially the same flux levels. This underscores the robustness of

the model. While not shown in Fig. 5, an equivalent analysis was performed at nominal,

large collisionality; there, the improved model is no longer able to predict fluxes quantita-

tively, as is to be expected given that nonlinear access to the stable mirror pseudo-eigenmode

is no longer possible when the system becomes too dissipative.

There are other related mechanisms that can potentially contribute to the upshift of the

critical gradient. One involves the nonlinear coupling coefficient for triplet interactions [30],

which for the quasilinear model in Eq. (3) have been assumed to change slowly relative to

τ . Explicit treatment of these coefficients requires a more involved analytical approach and

will be described in a separate publication.

To summarize, an improved quasilinear transport model has been presented that, us-

ing solely linear eigenmode information as gradients are varied, is able to predict nonlin-

ear transport behavior quantitatively both above and below the nonlinear critical gradient

ωT,crit. Two physical effects contribute to the establishment of a Dimits regime of very low

transport above the linear critical gradient, by enhancing nonlinear energy transfer to stable

eigenmodes: mode broadening leading to improved resonance (responsible for the upshift in

the TEM case studied here) and stabilization of the linear finite-kx sideband, thereby caus-

ing a disruption of the turbulent cascade and immediate removal of energy upon injection

(responsible for the upshift for Cyclone Base Case parameters).

Implementing this approach in standard quasilinear solvers will require the ability to solve

for linear eigenmodes at finite kx. Particularly if predictions are to be possible across different

turbulence regimes, a more general approach will become necessary to determine which zonal

flow – if any – accounts for the bulk of nonlinear energy transfer, rather than universally

setting the characteristic wavenumber to a constant kx = 0.1. Ultimately, a spectral shape

function in kx – akin to what quasilinear codes might use for ky – is envisioned, functioning

as a weight function between different kx.
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While future studies will need to determine to what degree this model can be used

to predict the onset of nonlinear fluxes for different turbulence regimes, the present results

mark a significant advance in reduced modeling of plasma microturbulence in fusion devices,

particularly for the pertinent situation of near-criticality. Furthermore, they highlight the

importance of stable eigenmodes in saturation.
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