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Abstract

Kinetic-ballooning-mode (KBM) turbulence is studied via gyrokinetic �ux-tube simulations in three

magnetic equilibria that exhibit small average magnetic shear, the Helically Symmetric eXperiment

(HSX), the helical-axis Heliotron-J, and a circular tokamak geometry. For HSX, the onset of KBM being

the dominant instability at low wavenumber occurs at a critical value of normalized plasma pressure

βKBM
crit that is an order of magnitude smaller than the magnetohydrodynamic (MHD) ballooning limit

βMHD
crit when a strong ion temperature gradient is present. However, βKBM

crit increases and approaches the

MHD ballooning limit as the ion temperature gradient tends to zero. For these con�gurations, βKBM
crit

also increases as the magnitude of the average magnetic shear increases, regardless of the sign of the

normalized magnetic shear. Simulations of Heliotron-J and a circular axisymmetric geometry display

behavior similar to HSX with respect to βKBM
crit . Despite large KBM growth rates at long wavelengths

in HSX, saturation of KBM turbulence with β > βKBM
crit is achievable in HSX and results in lower heat

transport relative to the electrostatic limit by roughly a factor of �ve. Nonlinear simulations also show

that KBM transport dominates the dynamics when KBMs are destabilized linearly, even if KBM growth

rates are subdominant to ITG growth rates.



1 Introduction

The stellarator as a fusion reactor concept is qualitatively di�erent from the tokamak due to the inherently

three-dimensional nature of the magnetic �eld. This added �exibility allows the stellarator approach to

circumvent the need for toroidal plasma current to provide the con�ning poloidal magnetic �eld, meaning

stellarators are less prone to potentially destructive plasma-current-driven instabilities [18]. One consequence

of this improved magnetohydrodynamic (MHD) behavior is the potential for robust high-β operation, where

β = 8πp/B2
0 is the normalized plasma pressure, p is the electron pressure, and B0 is the magnetic �eld

strength, without the danger of current-driven instabilities. Even in the absence of large-scale MHD insta-

bility, the system may exhibit small-scale kinetic ballooning modes (KBMs), which could conceivably drive

large energy and particle �uxes and thus be problematic for high-β operation of stellarators [1, 2, 30]. The

purpose of this work is to expand on previous analyses of KBM instability and turbulence by probing the

properties of these modes in stellarator equilibria with low average magnetic shear ŝ = −(r/ ι-)d ι-/dr, where

ι- is the rotational transform and r is a radial coordinate labeling �ux surfaces. Low average magnetic shear

ŝ is a notable design feature of some classes of neoclassical-transport-optimized stellarators such as HSX.

A deeper understanding of KBM saturation in such con�gurations will aid in the optimization of low-ŝ

equilibria with respect to �nite-β turbulent transport.

Neoclassical transport governs con�nement in the classical stellarator. However, this issue can be

quelled by ensuring that bounce-averaged particle excursions from a given �ux surface during a banana orbit

nearly vanish [6, 40]. There are a number of ways to reduce stellarator neoclassical transport to tokamak-like

levels, such as quasi-symmetry [43, 53] or quasi-isodynamicity [39, 45], both of which are subsets of quasi-

omnigeneity [21, 66]. Magnetic con�gurations with su�ciently-minimized neoclassical cross-�eld di�usion

are dominated by anomalous transport [8, 26, 62]. Drift-wave turbulence is a primary candidate to explain

anomalous transport in these con�gurations. Drift waves exist in a variety of types such as ion-temperature-

gradient (ITG) modes [28, 38, 41, 55, 64, 65], trapped-electron modes [13, 14, 16, 34], or kinetic ballooning

modes [2, 4, 12, 36, 50, 52, 58, 59].

KBMs are electromagnetic modes, as they require �uctuations in the magnetic �eld. Typically, the

onset of KBM-driven turbulent transport is associated with breaching the ideal MHD ballooning stability
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boundary [50, 52, 56, 57]. It has been shown that ion magnetic drifts can introduce an additional physical

e�ect not present in simple MHD modeling in the small-perpendicular-wavelength limit [1, 36]. Speci�cally,

coupling between the KBM and thermal ions provides additional free energy to the mode. This resonant e�ect

arises from non-adiabatic contributions to the ion density �uctuations in a kinetic treatment of the governing

equations [24, 25]. This e�ect can be qualitatively captured in a two-�uid treatment of the system, suggesting

that the mode is of a reactive type since the kinetic treatment is unnecessary for qualitative purposes [24].

In the present work, the focus lies on the βKBM
crit value at which KBM becomes the most unstable

microinstability; for a discussion of di�erent threshold de�nitions, see [52]. An analysis of various Wendelstein

7-X (W7-X) equilibria [2], an optimized quasi-omnigenous stellarator, with respect to KBMs suggests both

that, for su�ciently large β, peak KBM growth rates occur as ky → 0 for a number of physically-relevant

parameter regimes and that the critical β at which KBMs become unstable is on the order of βKBM
crit ≈ 1%,

depending on the speci�c equilibrium. It is also shown in the same analysis that, in low-average-magnetic-

shear W7-X con�gurations, KBMs can be destabilized before the ideal MHD limit βMHD
crit . As will be shown

here, this KBM threshold can be much lower than the MHD threshold βMHD
crit , with βKBM

crit ≈ 0.2% in the

Helically Symmetric eXperiment (HSX, a quasi-helically symmetric stellarator) over a range of wavelengths,

raising the possibility that such con�gurations exhibit poor KBM turbulence and con�nement properties.

However, it is shown here that the saturated nonlinear heat �ux is greatly reduced relative to the electrostatic

ITG case when β > βKBM
crit . This implies that expectations based on linearly-calculated βKBM

crit values, e.g.,

that nonlinear heat �uxes tend to increase for β > βKBM
crit , do not accurately account for critical nonlinear

dynamics.

With the goal of developing a better understanding of the relationship between the magnetic geom-

etry and βKBM
crit , the gyrokinetic turbulence code Gene is used here to perform electromagnetic nonlinear

gyrokinetic local �ux-tube simulations [33], (see http://www.genecode.org for code details and access). This

paper is organized as follows. Section 2 introduces both the simulation framework for the present work and

details regarding the three magnetic geometries. In Sec. 3, linear and nonlinear electromagnetic simulations

of KBMs and analyses thereof are presented. Section 4 will show the scaling of βKBM
crit with the average mag-

netic shear and the normalized ion temperature gradient and the similarities in linear KBM results between

3



HSX, Heliotron-J, and a circular tokamak. Lastly, conclusions are given in Sec. 5.

2 Simulation approach and magnetic geometries

The gyrokinetic code Gene [33] is used in this work to investigate KBM and ITG turbulence via �ux-tube

simulations of low-average-magnetic-shear equilibria, namely HSX, the helical-axis Heliotron-J (H-J) [44],

and a circular tokamak geometry. Gene solves a system of coupled equations that consists of the Vlasov

equation, the Poisson equation, and Ampère's Law while taking advantage of the increased computational

e�ciency provided by gyro-averaging the orbits of charged particles in a strong magnetic guide �eld [7]. For

the full set of equations, see [51]. Gene uses a �ve-dimensional phase space in which the coordinate system

consists of the x (radial), y (binormal), z (parallel to B0), v‖ (parallel velocity space), and µ (perpendicular

velocity space) directions. There is both a box size L and a resolution n for each direction. For the nonlinear

HSX calculation presented here, the resolutions, box sizes, and hyperdi�usion coe�cients are the following:

Nx = 128, Ny = 96, Nz = 512, Nv‖ = 32, Nµ = 8, Ly = 251.3ρs (corresponding to kmin
y ρs = 0.025),

Lx = 217.6ρs, Npol = 4, Dz = 8, and Dv‖ = 2, where ρs = csmi/(eB) is the ion sound gyroradius, Npol

is the number of poloidal turns, Dz is the the parallel real-space hyperdi�usion coe�cient, and Dv‖ is

the parallel velocity-space hyperdi�usion coe�cient [48]. Numerical convergence studies were performed,

including for Npol, to ensure that results presented here are numerically converged. Due to the signi�cant

extent along the �eld line of the KBMs studied in this work, Npol = 4 is required to achieve convergence

[17]. If underresolved in Npol, arti�cial reinforcement of the KBMs via the parallel boundary condition is

possible, yielding unphysical results. This is consistent with previous work regarding TEMs in HSX and

with recent studies of a tokamak geometry [5, 17]. Lastly, we do not include either parallel magnetic �eld

�uctuations or collisions.

The MHD equilibrium solver VMEC [27] is used to generate the HSX and H-J equilibria, which are

subsequently processed using the GIST code [63]. The coordinates are centred at the speci�ed normalized

toroidal magnetic �ux s0 = Ψ/Ψ(a) = (r/a)2, where Ψ(a) is the toroidal �ux at the plasma boundary and a

is the e�ective minor radius. Details pertaining to the speci�cs of low-ŝ �ux-tube geometries can be found

in [17, 38] (HSX) and [29] (H-J). All three con�gurations have comparable values of the average magnetic
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shear ŝ along any given �eld line. As will be shown in this work, the average magnetic shear plays a critical

role in determining βKBM
crit , beyond the threshold prediction from MHD.

The magnetic equilibria used in this work are as follows. HSX is a four-�eld-period stellarator, where

the number of �eld periods is de�ned as the number of times the magnetic geometry repeats per one toroidal

transit, with aspect ratio A = R0/a ≈ 10, where R0 is the major radius, mean magnetic �eld 〈B0〉 ≈ 1 T,

and low average magnetic shear ŝ ≈ −0.05 at s0 = 0.5. The major radius R0 (minor radius a) of HSX is

approximately 1.2 m (0.12 m). The HSX �ux tube used throughout this work is centred at the outboard

midplane, corresponding to α = 0, where α = θ − ι-ζ is a �eld-line label and θ and ζ are the poloidal

and toroidal angles in PEST coordinates, respectively, where PEST coordinates are a straight �eld-line

coordinate system [20]. It should also be noted that HSX is not optimized for a speci�c β, and therefore the

HSX con�guration used is given by the vacuum case with β = 0. This choice, however, is independent of

the β used in Gene. Investigation into the e�ect of including self-consistent, �nite equilibrium β values was

performed, and it was found that changing the equilibrium β does not signi�cantly a�ect the results presented

below. Figure 4, a plot of growth rate and real frequency spectra of HSX using both a β = 0 equilibrium and

a self-consistent β = 0.48% equilibrium, highlights that there is no signi�cant di�erence between the vacuum

and �nite-β cases. As a result, the ∇B and curvature κ drifts are taken to be the same in this work, as is

consistent with a β = 0 equilibrium. The H-J con�guration used in this work has an equilibrium β ≈ 0.03%,

four �eld periods, aspect ratio A ≈ 7.3, mean magnetic �eld 〈B0〉 ≈ 1.35 T, and average magnetic shear

ŝ ≈ 0.028, which is a factor of two smaller than HSX and of opposite sign, at s0 = 0.5. The major radius

R0 (minor radius a) of H-J is 1.18 m (0.162 m). As was the case for HSX, the α = 0 �ux tube is employed

for H-J in this work. It should be reiterated that H-J is not a quasi-symmetric stellarator. Lastly, an ŝ-α

geometry, corresponding to a tokamak with circular �ux surfaces, is used to investigate KBM dynamics in an

axisymmetric system for comparison [12]. A value of average magnetic shear ŝ = −0.052 is used throughout,

as is a self-consistent (with β and the pressure gradients) αMHD = ι-−2(R0/Ln)[βe(1+ηe)+βi(1+ηi)], where

Ln and η(i,e) are the density gradient scale length and the ratio of the (ion, electron) temperature gradient

to the density gradient, respectively. It should be noted that since a negative value of ŝ is used, this tokamak

equilibrium is stable to ideal MHD ballooning, βMHD
crit →∞ [3, 19].

5



3 Electromagnetic ITG and KBM turbulence

3.1 Linear eigenmodes in low-ŝ con�gurations

Typically, as β increases, the normalized ITG growth rates γ in units of cs/a, where cs is the sound speed,

steadily decrease [15, 35, 47]. This is known as �nite-β ITG stabilization, or linear electromagnetic stabi-

lization. The mechanism by which this stabilization occurs is the coupling between the ITG mode and the

shear Alfvén wave. This e�ciently transfers energy out of the ITG mode, reducing its growth. Alterations

of the ion Landau resonance due to �nite-equilibrium-β ∇B modi�cations from the bending of perturbed

�eld lines can also play a role in the stabilization [32]. This reduction in growth rate will tend to reduce the

nonlinear heat �ux, but additional physics can also impact the dynamics.

Another mechanism which a�ects ITG transport levels as β increases is nonlinear electromagnetic

stabilization [50, 52, 60, 61]. As β increases, one observes a reduction in nonlinear heat �ux that is greater

than the reduction in linear growth rates or quasilinear �uxes. As has been shown in Refs. [60, 61], the

di�erence between the (quasi-)linear and nonlinear reduction stems from changes in the e�ciency of zonal-

�ow-mediated energy transfer to stable modes. This e�ect has been shown to be active in a range of

con�gurations, both of tokamak and stellarator type. It has also been demonstrated that the inclusion of

a self-consistent Shafranov shift can eliminate nonlinear electromagnetic stabilization for di�erent, speci�c

parameter regimes [31].

The physical mechanism underlying KBM destabilization is the following. As with most microinsta-

bilities, KBMs are destabilized when the driving force associated with the pressure gradient is su�ciently

strong in the bad curvature region to overcome the stabilizing force from the magnetic �eld [11]. More spe-

ci�c to KBMs, the modi�cations to magnetic drifts by β-induced magnetic �uctuations result in destabilizing

e�ects when a kinetic treatment is applied to the governing equations. This is due to a resonance between

the KBM and thermal ions, giving the KBM an additional free energy source.

For the cases studied here, the dominant eigenmode for β < βKBM
crit is ITG, whose growth rate decreases

with β. For β ≥ βKBM
crit , KBM has a larger growth rate than the ITG mode with the growth rate increasing

rapidly with β. This critical value βKBM
crit is generally on the order of a percent in standard tokamaks and

is comparable to the ideal MHD ballooning β limit for physically-relevant gradient values, see [30, 50, 52].
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However, βKBM
crit is not always close to βMHD

crit and is, in general, a complicated function of the magnetic

geometry.

Before presenting analyses of nonlinear simulations, the behavior and scaling of linear instability will

be elucidated, for both dominant and subdominant eigenmodes. Typically, ITG and KBM growth rates

decrease and increase, respectively, as β increases. Figure 1 highlights this behavior in HSX at normalized

binormal wavenumber kyρs = 0.6. Henceforth, normalized wavenumbers are denoted kyρs → ky. The

normalized gradients, β, and the temperature ratio used in these calculations and throughout this work are

a/LT i = 3 and a/LT e = a/Ln = 1, β = 0.48%, and Ti/Te = 1, respectively, unless otherwise stated. Note

the factor-of-three reduction in the ITG growth rate as β increases before the KBM becomes dominant. This

signi�cant reduction in ITG growth rates is not observed for all values of ky, as evidenced by Fig. 2, where

at ky = 0.1 there is no signi�cant reduction in γ before KBMs become dominant for either the Npol = 1 or

the Npol = 4 case. This is partially due to the fact that, in the ky = 0.1 case, the KBM becomes dominant at

a small critical normalized plasma pressure βKBM
crit ≈ 0.18% versus βKBM

crit ≈ 2.2% for the ky = 0.6 case. Also

note that Npol = 4 is required to achieve convergence, as elongated eigenmodes can arti�cally self-reinforce

via the parallel boundary condition.

The scaling of βKBM
crit with ky is presented in Fig. 3 for both HSX (blue squares) and NCSX (black

triangles), a quasi-axisymmetric stellarator con�guration optimized for operation at β ≈ 4.2% [42] with

ŝ ≈ −0.5 at s0 = 0.5. For HSX, βKBM
crit is small relative to the ideal MHD ballooning limit βMHD

crit , and

considerably smaller than the high-ŝ NCSX analog where βKBM
crit is comparable to βMHD

crit . The normalized

gradients and temperature ratio used in the NCSX calculations are the same as were used for HSX. The

ideal ballooning limit βMHD
crit is also shown as a horizontal dashed line for each con�guration. The NCSX

curve smoothly approaches the MHD limit as ky decreases until ky < 0.1 where there is a slight uptick in

βKBM
crit . The HSX curve is well below the MHD limit in the transport-relevant ky < 0.25 range, and dips to

values ≈ 0.1% that are an order of magnitude smaller than βMHD
crit . This suggests that conditions in HSX are

more conducive to KBM excitation due to ion kinetic physics (see Sec. 4) than they are in NCSX. As will

be shown, this is associated with the low average magnetic shear in HSX.

Figure 4 shows the dominant growth rates γ and real frequencies ω as functions of ky at a constant
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Figure 1: The growth rate and real frequency for the eigenmode with the largest growth rate at ky = 0.6
over a range of β values for HSX with a/LT i = 3 and a/LT e = a/Ln = Ti/Te = 1. Note the stabilization of
ITG growth rates (shown as triangles) as β increases and approaches βKBM

crit ≈ 2.2%, where there is a clear
discontinuity in real frequency, which highlights the change in dominant mode branch from ITG to KBM
(shown as diamonds).

Figure 2: Growth rate and real frequency spectra for ky = 0.1 of the HSX con�guration with a/LT i = 3 and
a/LT e = a/Ln = Ti/Te = 1 for both Npol = 1 (blue diamonds) and Npol = 4 (black triangles). Note the
lack of ITG stabilization relative to the ky = 0.6 case and the signi�cant di�erence between the two cases,
an indication that Npol = 1 is insu�cient for convergence. βKBM

crit is also much lower for this case.
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Figure 3: The βKBM
crit spectrum of NCSX (black triangles) and HSX (blue squares) with a/LT i = 3 and

a/LT e = a/Ln = Ti/Te = 1. Horizontal dashed lines correspond to βMHD
crit . Note the low βKBM

crit relative to
βMHD
crit for HSX compared to NCSX.

β = 0.48%. It is worth noting that KBM is dominant over a certain range of ky values, namely ky ∈ [0.1, 0.2],

while ITG is dominant over the remainder of the wavelength range. This means that nonlinear calculations of

HSX at this value of β will potentially exhibit concurrent ITG and KBM drive characteristics, a phenomenon

that is also observed in nonlinear simulations of tokamaks if β ≥ βKBM
crit [50, 52].

Lastly, the subdominant mode spectrum of HSX at ky = 0.2 with β = 0.5%, shown in Fig. 5, indicates

that there is not just a single KBM that is destabilized as β increases, but rather there are two families of

KBMs, one of which is a set of modes that are centred at at the outboard midplane (θp = 0) and another

which consists of pairs of sibling modes that peak away from the outboard midplane (θp 6= 0). It should

be noted that some of the centred KBMs exhibit tearing parity (blue and green curves in the bottom panel

of Fig. 5), i.e., the Φ eigenfunctions are odd in ballooning angle. The low background magnetic shear in

the present scenario enables destabilization of these modes, termed tearing-parity KBMs or TKBMs, which

had previously been conjectured not to exist based on a study involving high-shear equilibria [49]. It is

worth noting that it is unlikely that the TKBMs discussed here are micro tearing modes because of the

unique ion temperature gradient dependence of the modes, the fact that the modes propagate in the ion

diamagnetic direction, and the relatively small electron thermal transport nonlinearly, three qualities that
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Figure 4: Growth rate and real frequency spectra for the HSX con�guration (both with an equilibrium β = 0
(black) and equilibrium β = 0.48% (blue)) with a/LT i = 3, β = 0.48%, and a/LT e = a/Ln = Ti/Te = 1.
KBMs (ITG modes) are denoted by black diamonds (triangles). Note the transition from ITG to KBM (at
roughly ky ≈ 0.1) and back to ITG (at roughly ky ≈ 0.2), highlighted by the discontinuity in real frequency.
Also note the similarity in the two spectra when using a �nite-β magnetic equilibrium versus using the
vacuum case.

are not characteristic of micro tearing modes. For each mode that peaks away from the outboard midplane

a sibling mode exists with the same growth rate and frequency with an eigenmode structure that is near-

perfectly mirrored with respect to θp = 0. The physics implication of this is that HSX is qualitatively di�erent

than typical high-ŝ tokamak cases, where only a single KBM is destabilized. Eigenvalue calculations with

di�erent gradients, a/LT i = 4 for example (with a/Ln and a/LT e kept �xed), also exhibit the two branches

of KBMs. However, the exact location of minimal βKBM
crit shifts in ky-space relative to the a/LT i = 3 case.

The region of ky-space in which the outboard-midplane-peaked KBMs are dominant shifts to smaller ky as

ωT i increases. It should also be noted that the two branches of KBM are robustly present when ensuring

numerical convergence. This also complicates analysis of the nonlinear energy dynamics, as there may be a

number of unstable KBMs involved in nonlinear energy transfer.

3.2 Nonlinear characteristics of the ITG-KBM system

Previous studies of KBM instability and turbulence have found critical β values on the order of one or a

few percent for experimentally-relevant gradient values and magnetic geometries [30, 50, 52]. These analyses
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Figure 5: The subdominant spectrum (top) for HSX with ky = 0.2 and β = 0.5% consisting of KBMs
(diamonds) and ITG modes (triangles), and the associated electrostatic potential Φ eigenmode structures
(bottom) for various KBMs. Note the two distinct families of KBMs: one with Φ symmetric about θp = 0
and one with o�-centre peaking. For each mode of the latter family, there is a sibling mode that is mirrored
across the θp = 0 axis with identical γ and ω, hence they are indistinguishable in the top panel. Also note
that some of the centred KBMs (blue, green) have tearing parity, i.e., are odd functions of ballooning angle.
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also show that for β < βKBM
crit , the resulting turbulence is solely ITG or TEM and for β > βKBM

crit , signatures

of multiple modes are present and observable in the simulations concurrently. Contrary to these cases, when

β > βKBM
crit , nonlinear simulations of the present HSX case do not achieve saturation when the minimum

binormal wavenumber kmin
y of the system is unstable to KBMs. In such simulations, streamer modes span

the length of the periodic radial domain, regardless of how large the radial box is, and self-reinforce via the

radial periodic boundary condition of the �ux tube. However, if one chooses kmin
y so that it is stable to

KBMs, saturation can be achieved in electromagnetic �ux-tube simulations, where a signi�cant reduction in

transport is observed relative to the near-electrostatic (β = 0.05%) case. The time traces of heat �ux (both

ion electrostatic and electron electromagnetic) and particle �ux for kmin
y = 0.025 are shown in Fig. 6. Despite

KBM being an electromagnetic mode, below the threshold it does not drive signi�cant electromagnetic �utter

heat transport given the choice of small electron temperature gradient a/LT e = 1. While the condition that

the smallest �nite ky must be KBM-stable is empirical, one possible underlying cause is the ability of the

system to terminate an inverse cascade by means of ITG (stable) eigenmodes. The precise nature of the

phenomenon is left for future study.

The heat �ux spectrum given in Fig. 7 shows that the ion electrostatic heat �ux Qes
i (ky) peaks in the

ky-range that is dominated by KBMs, consistent with the fact that β is roughly three times as large as βKBM
crit

for ky = 0.1. Figure 7 also shows that KBM transport is the dominant physics mechanism nonlinearly as long

as KBMs are destabilized linearly, even if KBM growth rates are subdominant, where linear destabilization

is shown in Fig. 4. As discussed above, kmin
y is su�ciently small that no KBM instability occurs at that

mode; this is consistent with �ndings in high-ŝ scenarios where nonlinear saturation is possible for β values

up to βKBM
crit as ky → 0 [50]. The nonlinear electrostatic potential Φ spectrum is shown in Fig. 8, showing

that the simulation is not dominated by a zonal �ow, as the ky = 0.1 non-zonal component of Φ is nearly

a factor of two larger than the zonal component and the sum of the non-zonal contributions is signi�cantly

larger than the zonal contribution. This is an indication that zonal �ows may play at most a minor role in

saturation. This view is re�ned, however, based on nonlinear energy transfer analysis.

Nonlinear frequencies are shown in Fig. 9. Interestingly, there is no discontinuity in the nonlinear

frequency spectrum of the HSX con�guration, a feature that was present linearly at the ITG-KBM transition

12



Figure 6: Heat (both ion electrostatic (black) and electron electromagnetic (blue)) and particle �ux (red)
time traces for HSX with kmin

y = 0.025 and β = 0.48%. There is a signi�cant (factor of ≈ 5) reduction in
Qes

i relative to the near-electrostatic (β ≈ 0.05%) case [38]. There is negligible, slightly negative magnetic
�utter transport, a result of the low electron temperature gradient a/LT e = 1.

Figure 7: Heat �ux spectra for HSX with kmin
y = 0.025 and β = 0.48% (black) associated with the time

trace shown in Fig. 6 and with kmin
y = 0.025 and β = 0.24% for comparison. Note that the peaks of the

spectra are almost fully contained in the binormal wavelength range over which KBM is destabilized, which
is denoted by the shaded region. This shows that KBM transport dominates nonlinearly when KBMs are
linearly destabilized, even if KBM growth rates are subdominant to ITG growth rates.
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Figure 8: The nonlinear Φ spectrum for HSX with kmin
y = 0.025 and β = 0.48%. The spectrum is truncated

at kyρs = 0.5 since |Φ|2 amplitudes are negligible above this threshold. Note that the zonal component is
much weaker than the integrated non-zonal amplitudes.

Figure 9: The nonlinear frequency spectrum for HSX with kmin
y = 0.025 and β = 0.48%. The colour scale

has arbitrary units and is linear and normalized at each ky separately. Linear frequencies of the most
unstable (gold crosses), maximal-frequency (green triangles), minimal-frequency (red squares), and most
unstable outboard-centred (black-white dashed diamonds) KBMs are also included for comparison. Note the
agreement between the dominant linear outboard-centred KBM frequencies and the nonlinear signal.
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points in Fig. 4. Both dominant and subdominant linear KBM frequencies are overlaid in Fig. 9 to facilitate

comparison with the nonlinear data. Clearly, throughout the range where linear data is shown, nonlinear

frequency signatures match the values associated with the dominant outboard-centred KBMs. An exact

frequency match is not expected to occur, as turbulence may result in a ky-dependent nonlinear frequency

shift and broadening. This constitutes evidence that KBMs do indeed play an important role in the nonlinear

turbulent state.

Analysis of the nonlinear energy transfer to a given (kx,ky) point in Fourier space due to interaction

with (k′x,k
′
y) and (kx − k′x, ky − k′y) also suggests that modes in the KBM-dominated ky range play an

important role in the energy transfer dynamics of the turbulence and therefore in the dynamics that lead

to saturation. Figure 10 shows nonlinear energy transfer at a given (kx = 0.06, ky = 0.1), denoted by the

tip of the black arrow, to and from various (k′x, k
′
y). Regions of blue correspond to locations which cause

energy input into (kx = 0.06, ky = 0.1) while red regions correspond to locations which draw energy from

(kx = 0.06, ky = 0.1). The dominant method by which (kx = 0.06, ky = 0.1) receives energy is zonal energy

transfer, indicated by the blue clouds at both k′y = 0 and k′y = 0.1. There is also signi�cant non-zonal energy

transfer via (k′x = 0.12, k′y = −0.025). It is important to note both that the largest energy sinks are due

to non-zonal transfer and that the largest energy sinks are even larger than the largest energy inputs from

zonal transfer. Lastly, the zonal energy transfer can occur due to both the zonal �ow and the zonal �eld,

i.e., the zonal component of the �uctuating magnetic �eld.

This result appears to contradict the earlier �nding in Fig. 8 that the zonal-�ow amplitudes are low.

However, when coupling is su�ciently resonant, zonal �ows can very e�ciently mediate energy transfer even

if they are only excited to low amplitudes.

Further analysis of nonlinear energy transfer yields insight into the wavelength ranges which dominate

energy transfer between the turbulence and the zonal (ky = 0) modes. Fig. 11 shows normalized nonlinear

energy transfer corresponding to ky = 0 modes summed over both kx and k′x versus k
′
y. The peak of the data

occurs at k′y = 0.125, well within the KBM-dominated ky-range. A signi�cant portion of the energy transfer

to and from zonal modes is facilitated by modes in the KBM-dominated ky-range, constituting additional

evidence that KBMs are important nonlinearly. One can also construct a quantity to gauge the relative
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Figure 10: Nonlinear energy transfer functions indicate locations which give (blue) and receive (red) energy
to and from (kx = 0.06, ky = 0.1), denoted by the tip of the black arrow. There is signi�cant zonal transfer
from (kx = 0.06, ky = 0.1) to the blue clouds near k′y = 0 and k′y = 0.1. Signi�cant non-zonal energy transfer
is also observed at k′y = −0.025 and k′y = 0.125.
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Figure 11: The sum (over kx 6= 0) of the root-mean-squares (over coupled k′x) of time-averaged nonlinear
energy transfer functions for zonal (ky = 0) modes as a function of k′y. The data is normalized to the value
of the point at k′y = 0.125. Note that the peak is in the KBM-dominated k′y-range, evidence that KBMs
play an important role in zonal dynamics.

importance of a given ky in the overall nonlinear energy transfer dynamics, as highlighted by Fig. 12, a plot

of averaged nonlinear energy transfer functions versus ky. This quantity is the sum (over kx 6= 0) of the

root-mean-squares (of each k′x-k
′
y plane) of the nonlinear energy transfer functions corresponding to a given

(kx,ky). Both the zonal and KBMs contribute to the overall nonlinear energy transfer dynamics, with KBMs

contributing roughly twice as much if one integrates over the entire KBM-dominated ky-range.

Lastly, �gure 13 shows both the electrostatic ion heat and particle �uxes as β increases. Simulations

with kmin
y = 0.025 for β = 0.75% and 1% grow without bounds and therefore do not have associated data

points. This is consistent with the requirement that kmin
y be stable to KBMs for saturation to occur, as

βKBM
crit ≈ 0.6% for ky = 0.025, as shown in Fig. 3. Note the decrease in heat �ux as β increases until β

is su�ciently close to the βKBM
crit (kmin

y ), a result that is consistent with ITG nonlinear �nite-β stabilization.

The uptick in Qes
i as β increases from 0.48% to 0.55% is an expression of the KBMs, which, unlike the ITG

modes, become more virulent as β is increased.
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Figure 12: The sum (over kx 6= 0) of the root-mean-squares (over coupled k′x, k
′
y) of time-averaged nonlinear

energy transfer functions, which are normalized by the value of the same quantity at ky = 0.1.

Figure 13: Normalized ion heat �ux Qes
i (black diamonds) and particle �ux Γes (red squares) as a function

of β. Observe the signi�cant reduction of transport for β & 0.2% relative to β ≈ 0.05% until β approaches
the βKBM

crit ≈ 0.6% threshold for ky = 0.025. Above β = 0.6%, simulations no longer achieve a saturated
state. A vertical dashed black line indicates βKBM

crit = 0.6% at ky = 0.025 and a vertical dotted black line
indicates the βKBM

crit = 0.18% at ky = 0.1. The electron electromagnetic heat �ux is negligible (normalized
Qem

e ≈ −0.2 for β = 0.48%) and therefore not included in this analysis.
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4 Impact of average magnetic shear and ion temperature gradient

Further investigation demonstrates that ŝ and a/LT i are particularly important in setting the value of

βKBM
crit relative to the ideal ballooning threshold. This section addresses how the linear KBM characteristics

presented in Section III change as both the average magnetic shear ŝ and the fractional component of the

total pressure gradient a/Lp driven by the ion temperature gradient a/LT i change. Linear results pertaining

to H-J and a circular geometry with low ŝ will also be shown.

Figure 14 presents βKBM
crit as a function of ŝ and demonstrates that the KBM threshold increases with

|ŝ|, regardless of sign. This is consistent with the observations that, in general, drift waves are commonly

stabilized by increased |ŝ| [46, 54]. Modi�cation of the average magnetic shear of the �ux tube is done

self-consistently in the sense that the derivative of ι- is adjusted to yield the desired ŝ and then geometric

elements are recalculated accordingly. Furthermore, eigenvalue calculations of HSX with arti�cially high ŝ

yield a subdominant mode spectrum that corresponds to the usual tokamak, single-unstable-KBM scenario,

as well as to the NCSX con�guration discussed in Sec. 3.1. The physics implication of this result is that

with increased shear, modes are less extended along the magnetic �eld line and therefore cannot access free

energy in gradients via the bad-curvature regions further along the �eld line, as evidenced by Fig. 15, a plot

of two characteristic Φ eigenmodes for the ŝ = −0.05 case (black) and the ŝ = 0.5 case (blue). Conversely,

KBMs are therefore more easily destabilized with more free energy to access when |ŝ| is low like in HSX.

This result is consistent with previous work investigating KBM behavior in low-magnetic-shear toka-

maks [24, 25, 67]. In Ref. [24], despite low negative ŝ, which implies stability with respect to ideal MHD

ballooning modes, one observes KBMs at relatively small critical βKBM
crit ≈ 0.5% with ŝ = −0.2 and ky = 0.1

when a su�ciently strong ion temperature gradient is present. It has been suggested that the cause of this

destabilization of KBMs at small β is an ion-magnetic-drift-resonance e�ect [10, 24, 25]. Thermal ions couple

to and exchange energy with the drift wave via the geodesic curvature of the magnetic geometry. There are

also recent reports of KBMs in experiments which exhibit low negative magnetic shear [9, 10], where it is

suggested that the same ion-magnetic-drift e�ect is responsible for the destabilization at small β.

A preliminary, lowest-order analysis of the ion-magnetic-drift resonance condition, derived using a

two-�uid model which accounts for kinetic e�ects, given in Ref. [24]:
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Figure 14: The βKBM
crit as a function of ŝ for the HSX con�guration with ky = 0.1. A dashed vertical red line

highlights the self-consistent nominal ŝ for HSX at s0 = 0.5. Note that βKBM
crit increases as the magnitude of

the average magnetic shear increases, regardless of sign.

Figure 15: Characteristic Φ eigenmode structures for KBMs for the HSX geometries with ŝ = −0.05 (black)
and ŝ = 0.5 (blue) which highlight the extended nature of the eigenmodes when the magnitude of the average
magnetic shear is low. The mode structure magnitudes are normalized to their values at the outboard
midplane.
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(ω − 5/3ωDi)
2 − 10/9ω2

Di = 0, (1)

where ωDi = 2cTi/(eB
3)(∇B × B) · k⊥, suggests that the KBM frequencies observed in the present work

exhibit good agreement with that which is required for exact resonance. Note the di�erent sign used in

the parenthetical in Eq. 1 due to the di�erence in sign convention used for ω here relative to Ref. [24].

Taking Te/Ti = 1, 2cTi/(eB) → csρs, and ∇B → B/a, the ion-magnetic-drift frequency can be written as

ωDi/(cs/a) ≈ k⊥ρs. After computing an eigenmode average for k⊥ρs which accounts for geometry, given by

〈k⊥ρs〉 =

∫
|Φ|2((kxρs)

2gxx + 2kxkyρ
2
sg
xy + (kyρs)

2gyy)1/2dθp∫
|Φ|2dθp

, (2)

where gxx, gxy, and gyy are magnetic geometry elements, ωDi/(cs/a) ≈ 〈k⊥ρs〉 yields a normalized ion-

magnetic-drift frequency ωDi = 0.266 for (kx = 0, ky = 0.2). Using this value for ωDi, one can evaluate Eq. 1

to determine the resonant mode frequency. The resonant frequency is ω ≈ 0.724 for (kx = 0, ky = 0.2).

The resonant frequency calculated here is in agreement with the dominant KBM real frequency in Fig. 4

at ky = 0.2, where ωr ≈ 0.72. This constitutes quantitative evidence that the ion magnetic drift resonance

is likely playing an important role in the dynamics. A more thorough analysis of the ion-magnetic-drift

resonance phenomenon will be left to future work.

In support of the concept that ion dynamics are of particular importance to KBM behavior in HSX

geometry, Fig. 16 shows βKBM
crit as a function of ky, similar to Fig. 3, but with di�erent gradients. Keeping

the sum of the gradients as well as a/LT e constant, setting a/LT i = 0, and increasing a/LTn accordingly,

one observes both roughly an eight-fold increase in βKBM
crit at ky = 0.1 and that βKBM

crit no longer dips

as far below βMHD
crit . Below ky = 0.025, βKBM

crit is di�cult to ascertain, as a mode which drifts in the

electron diamagnetic direction with even Φ-parity and odd A‖-parity dominates over the relevant β range

and eigenvalue calculations are impractical at such small values of ky. This result constitutes further evidence

that ion dynamics are of particular importance to KBM behavior in HSX.

Regarding scalings of KBM turbulence and con�nement at high β, linear computations alone are

often insu�cient to predict nonlinear trends, particularly at low ŝ, as discussed in, e.g., [23, 38]. While

21



Figure 16: The βKBM
crit spectrum for HSX with a stronger density gradient contribution compared with Fig. 3:

a/Ln = 2.5, a/LT i = 0, and a/LT e = 1. Since two particle species are used, the sum of the gradients is
2.5 + 2.5 + 1 = 6, which is equal to the sum of the gradients in Fig. 3. Note that the KBM limit is now closer
to βMHD

crit as ky → 0.

more research on this topic in the context of KBMs is required, the low heat �uxes in Fig. 6 show both

that the strong linear KBM drive at low magnetic shear does not produce corresponding �uxes and that

electromagnetic stabilization of the heat �ux relative to the electrostatic case can be shown. More explicitly,

dominant linear growth rates alone are poor predictors of nonlinear heat �uxes at �nite β.

Analyses similar to the ones conducted above for HSX were also carried out for both Heliotron-J and a

circular axisymmetric geometry. H-J, a con�guration with similarly low average magnetic shear (ŝ ≈ 0.028),

also exhibits a small βKBM
crit ≈ 0.14% at ky = 0.1, as evidenced by Fig. 17. This value of βKBM

crit veri�es

calculations carried out using the GKV code of the same H-J equilibrium using the same gradient values

[29, 37]. Also note that there is a slight increase in the ITG growth rates as β → βKBM
crit , i.e., no linear

electromagnetic stabilization occurs. One particular bene�t of including H-J in this analysis is to highlight

the fact that the linear and nonlinear KBM dynamics observed numerically in HSX are not simply the

product of an aspect of the magnetic geometry that is unique to HSX, but rather are indicative of KBM

behavior in a broader class of magnetic equilibria which exhibit small average magnetic shear.

A shifted-circle tokamak geometry with a low negative average magnetic shear ŝ ≈ −0.05 also ex-

hibits similar βKBM
crit spectra and eigenvalue characteristics to those for HSX, as shown in Fig. 18. Note
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Figure 17: Growth rate γ as a function of β for H-J at ky = 0.1 with the following normalized (to major
radius) gradients: R0/LT i = 13, R0/LT e = 17, and R0/Ln = 9.3. ITG modes (triangles) dominate below
βKBM
crit and KBMs (diamonds) dominate above βKBM

crit . Note that βKBM
crit = 0.14%, shown in red, is comparable

to HSX for the same binormal wavenumber.

the similarities in the βKBM
crit spectrum between HSX and the circular tokamak with low negative average

magnetic shear. Both curves are non-monotonic and have a minimum at ky = 0.1 with a very small critical

βKBM
crit ≈ 0.1%, as shown in the top panel of Fig. 18. It is also worth noting that the low-ky behavior of

βKBM
crit in s-α is insensitive to the use of a self-consistent equilibrium relative to the high-ky behavior. The

subdominant mode landscape for the circular tokamak is also qualitatively consistent with the HSX results,

as two distinct clouds of modes are present, an ITG and a KBM branch, as shown in Fig. 18. However, one

key di�erence between the subdominant mode spectra for HSX and the circular tokamak is the presence of

only a single ballooning-parity and tearing-parity KBM branch for the circular tokamak case. The single

KBM branch in the axisymmetric case resembles the branch of KBMs centred at the outboard midplane for

HSX.

In summary, both Heliotron-J and a circular axisymmetric geometry with ŝ ≈ −0.05 exhibit KBM

behavior similar to that in HSX, providing strong evidence that the relatively weak averaged magnetic shear

is an important factor in determining the KBM dynamics.

23



Figure 18: The βKBM
crit spectrum (top) and the subdominant mode spectrum at ky = 0.2 and β = 0.8%

(bottom) for an ŝ = −0.052 circular tokamak (s-α) geometry. The top �gure contains two curves, one for the
case when αMHD = 0 (red squares), the equilibrium and Gene β are not self-consistent, and a second for the
case when αMHD is such that both the equilibrium and Gene β are the same (black triangles). Regarding
the bottom �gure, the two distinct subdominant ITG (X) and kinetic ballooning mode (diamonds) clouds
are also present in the circular tokamak case. However, there is only a single KBM branch in this case versus
the two that were present in HSX.
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5 Conclusions

Gyrokinetic electromagnetic simulations of HSX, H-J, and a circular tokamak have been presented, showing

that kinetic ballooning modes can be excited at a critical βKBM
crit that is considerably smaller than the critical

β for ideal MHD ballooning. This di�erence is associated with the relatively low average magnetic shear of

these con�gurations. While one might expect this to bode poorly for the performance of low-average-shear

magnetic equilibria, nonlinear simulations of HSX show that saturation is achievable with βKBM
crit < β < βMHD

crit

and that a signi�cant reduction in transport is observed relative to the β ≈ 0 case. However, saturation

only occurs when the minimum binormal wavenumber kmin
y ρs of the system is stable to KBMs. One possible

explanation of this result is that the nonlinear transfer of energy from the strongly driven KBMs in the

binormal wavenumber range 0.1 < kyρs < 0.2 to stable modes with kyρs < 0.1 in Fourier space is possible

and allows for saturation when the condition that kmin
y ρs is stable to KBMs is met.

The KBM subdominant mode spectrum of HSX is qualitatively di�erent than what one would observe

in a ŝ ∼ 1 tokamak, as HSX exhibits two families of unstable KBMs, whereas there is generally only a single

unstable KBM in the high-ŝ tokamak case. With low ŝ, KBMs are more extended along the �eld line,

allowing such modes to access free energy in the gradients via the bad curvature regions away from the

outboard midplane of a given �eld line. As a consequence, KBMs can peak at �nite ballooning angle, and

even tearing-parity KBMs (TKBMs in the nomenclature of Ref. [49]) are found. With respect to ŝ, βKBM
crit

increases monotonically, regardless of the sign of the average magnetic shear. This is consistent with the fact

that stronger magnetic shear tends to stabilize drift waves.

A number of nonlinear analyses have also been conducted here which highlight the importance of

KBMs in the nonlinear dynamics. Heat �ux spectra shown in Fig. 7 highlight that KBM transport dominates

the dynamics when KBMs are destabilized linearly, even if KBM growth rates are subdominant to ITG

growth rates. A comparison of dominant linear KBM real frequencies and nonlinear frequencies shows

good agreement in the KBM-dominated ky-range. This constitutes evidence that KBMs are signi�cantly

contributing to the nonlinear state. Additionally, an analysis of nonlinear energy transfer shows that KBMs

play an integral role in the energy transfer dynamics, even more so than zonal modes, further highlighting

the fact that the nonlinear state indeed shows signs of both ITG and KBM drive. An investigation of how
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the electrostatic ion heat �ux changes as a function of β shows a decrease in heat �ux as β increases until

β is su�ciently close to βKBM
crit (ky = kmin

y ), showing both the improved nonlinear behavior relative to linear

βKBM
crit predictions and the steep increase in �uxes at large values of β � βKBM

crit .

The linear characteristics of the low-average-magnetic-shear equilibria presented in this work

raise questions regarding the utility of such con�gurations at the β values required for an e�cient

fusion reactor concept. However, as the nonlinear calculations presented here show, nonlinear dynamics

can overcome poor linear KBM properties such as the increase in total heat �ux generally associated

with β > βKBM
crit , and nonlinear �uxes in HSX even decrease as β increases above βKBM

crit (ky = 0.1),

as shown in Fig. 13, until β ≈ 0.6%. It is important to keep such KBM saturation physics in mind

during e�orts to optimize stellarator equilibria at reactor-relevant β values. Lastly, the fact that in the

present simulations, achieving saturation depends critically on βKBM
crit (ky = kmin

y ), it is possible that the

value of ρ? = ρs/a � and thus the KBM threshold at n = 1 � of a low-magnetic-shear con�nement

device may a�ect the achievable plasma β. However, future investigation will need to determine whether

this e�ect survives in more realistic simulation frameworks, in particular when retaining global pro�le e�ects.
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